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New approach to spectrum calculations in lattice Hamiltonian field theories:
Introduction and application to A,P theory in 1+1 dimensions
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We introduce a finite-lattice technique for calculating the spectrum of fluctuating Bose theories in
the continuum limit. The method gives the continuum spectrum to an estimated —1 fo accuracy in

1+1 dimensions using available computer memory. The spectrum of A.P theory in 1+1 dimensions
is studied as a trial application; we find no bound states in the spectrum between I and 2m.

I. INTRODUCTION

Recent advances in lattice quantum field theory have
made possible the numerical solution of problems which
had been studied for decades with little success. Of spe-
cial note are the Monte Carlo calculations of the spectrum
of gauge theories using techniques developed by Creutz, '

which have recently been applied successfully to the deter-
mination of the hadron spectrum of QCD in 3+ 1 dimen-
sions. Similar Monte Carlo techniques have been used
to study properties of scalar theories in different numbers
of space-time dimensions; fascinating results have been ob-
tained in particular for the properties of k&&P theory in
various dimensions. '

An essential limitation of Monte Carlo techniques is the
determination of excited-state masses for given quantum
numbers. This is because Monte Carlo techniques typical-
ly look at numerically evaluated propagators at large dis-
tances, where they become exponentials in the lowest-lying
state's mass;

—M;ix —yi Mp lx —y /S(x —y}-gc;e ' -cue

Although Mo may be evaluated in this way, higher masses
may not be separated unambiguously.

In this paper we develop a technique for determining all

the rest-state (P„,= 0) energies in a quantum field theory,
using functional methods and lattice Hamiltonian field
theory. The technique is explained in Secs. II and III of
the paper, and in Sec. IV we discuss how the continuum
limit of the lattice spectrum is obtained. Section V is a
first nontrivial application, namely, the study of the renor-
malized "two-particle" mass ratio m2/m —= (E2 Eo)I—
(E~ Eo) in —,mo P +—Rod theory in 1+ 1 dimensions.
This theory is known to be nontrivial [in the sense that
A,&0 for suitable A,o&0 (Ref. 5)] but we nonetheless find
that m2/m =2.0 independent of A,o. These results are
consistent if the interaction is always repulsive so that no
bound states may form, as was suggested by Lee and Hal-
liday .

The technique we use is to generate the lowest few
eigenvalues of the Hamiltonian matrix, employing Paige's
modification of the Lanczos technique. We calculate the
Hamiltonian matrix on a special basis of classical func-

tions, suitably modified to span only P„,=O wave func-
tionals. This P„,= 0 block diagonalization of H is impor-
tant in that it eliminates all the redundant boosted states
from the spectrum, and it also reduces computer-memory
requirements by -X„'for large-X„ lattices.

The basis of classical functions is generated on a lattice
in x space and in (classical) P space, and the Hamiltonian
matrix is determined by acting on this basis with the func-
tional Hamiltonian operator. This gives diagonal terms
which are the classical energies of the basis functions and
off-diagonal terms (-A ) which drive the quantum fluc-
tuations between the classical configurations in the physi-
cal energy eigenstates. Essentially we make function space
discrete before evaluating the Hamiltonian. Removing the
Pt t&0 states from the basis has allowed us to treat prob-
lems with up to 5 space points and 14 P points; this is
equivalent to the brute-force diagonalization of a 14
square (537 824)& 537 824) dimensional Hamiltonian.

The finite Hamiltonian approach has previously been
applied to the study of spin systems by Roomany
et ~~ &o, » and by Hamer and Barber. l2 —&5 Applications to
continuous-x field theories include studies of the spectrum
of the (1 + 1)-dimensional Schwinger model by Irving and
Thomas'6 and Hamer et al. '7 and of (1+ 1}-dimensional
SU(2) Yang-Mills theory by Hamer. 's

Our approach differs from these earlier finite-lattice
studies in two important aspects. First, we use a basis of
classical functions rather than a basis of free-field-theory
states. Second, we treat active (fluctuating) Bose fields
rather than spin systems or fermions and nonfluctuating
Bose fields. This requires an infinite number of states
(N~) at each site as well as an infinite number of sites
(N„). Despite the forbidding distance from practical lat-
tices to this limit, we find that we are able to obtain the
low-lying spectrum of (1 + 1)-dimensional scalar field
theories to an accuracy of —l%%uo at present.

II. LATTICE HAMILTONIAN FIELD
THEORY USING WAVE FUNCTIONALS

An energy eigenstate of a quantum-mechanical problem
is completely described by the wave function lb(x) at some
fixed time t, this being the amplitude to find the particle
at the point x in coordinate space. The wave function
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1((x) satisfies the time-independent Schrodinger equation.
Similarly, an energy eigenstate of a quantum field

theory is described by a wave functional P[P( x )], which is
the amplitude to find the field at any specified function
P(x). The set of functions IP(x)} may be thought of as
points in function space at which the field may be detect-
ed, just as a particle may be detected at any of the points
IxI in coordinate space. The wave functional it[/(x)]
satisfies a time-independent functional Schrodinger equa-
tion, which for a scalar field with a potential V(P) is ex-
plicitly

fdx —— + V(p(x)) lt'[p(x)]
fi

5P( x )'

=—alt[(t(x)]=El([p(x)] . (2.1)

Examples of solutions of this Schrodinger equation, as
well as the analogous equation for other Bose and Fermi
fields, may be found in the literature. '

Numerical determination of energy eigenstates of
quantum-mechanical problems requires the reduction of
the continuum of points I xI to a finite lattice I x„I, fol-
lowing which the finite Hamiltonian matrix H„„ is diago-
nalized to give energy eigenvectors and eigenvalues. To
treat quantum field theories similarly, we must restrict the
continuum of functions IP(x)I to a finite set of functions
IP„(x)I, n =1,2, . . . , Nf. A finite-difference approxima-
tion to the functional Hamiltonian (2.1) is an Nf &&Nf ma-
trix, whose eigenvectors are the energy eigenstates and
whose eigenvalues are the bound- and scattering-state en-
ergies of the quantum field theory.

To obtain a finite set of functions, we restrict ourselves
to discrete values of both x and (t(x). The coordinate x
(in one dimension) takes on the values xi ——0, x2 ——h„,
x3 ——2h„, . . . , x& ——{N„—1)h, and periodic boundary

conditions are imposed by identifying xz + &
with x ~. The

field P„=P(x„) is also allowed only discrete values. For
odd N~, these values are $„=0, +h~, . . . ,
+(N~ —1)h~/2, with periodic P boundary conditions, so
that P = (N~ + 1)h ~ /2 is identified with
—(N~ —1)h~/2. The even-N~ case can be made discrete
using two schemes: (1) P=+h~/2, +3h~/2, . . . ,
+ (N& —1)h ~ /2, with (N~+ 1)h ~ l2 and —(N~ —1)h~ l2
identified as above, or (2) /=0, +h~, +2h~, . . . ,

q) = 3h~ --2h@

TABLE I. Finite-difference approximations.

Continuum

P(x)
dP(x)

dx
5

5$(x )

6(x —x')

dx (x)

Discrete (X~—P by N„x)—
x„=(n —1)h„

P(x„)—:P„
4.+i —4.

h„
a

h„ae„ lattice

h„hy &n ~n+ /2" ~ ~n —/ "(5, —5, )

(only used as r) /BP )
1—5nn
x

N

h„g f(x„)
n=l

+(Np —1)hp/2, with the extreme points identified. We
have used the first scheme in our example in Sec. III, but
have employed the second scheme for our large-N~ com-
putations in Secs. IV and V. The spectra resulting from
the two schemes are very close for large N~.

'After discretization, we have N~ possible values for P„
at each of the N„points x„. The total number of func-
tions is

X
Nf ——Np" . (2.2)

The lattice for N~ ——5 and N =4 and a typical function
on this lattice are shown in Fig. 1.

We note that the number of points in function space
represented on the lattice quickly becomes prohibitively
large; for the N4, ——5 field values and N„=4 x sites shown
in Fig. 1, we already have a 5 =625-dimensional function
space and a 625)&625-dimensional Hamiltonian to diago-
nalize. If we go to an (N~ ——7))&(N„=7) lattice, we find
an 823543-dimensional function space, and taking the
5)&4 lattice to three space dimensions produces a truly as-
tronomical —10 -dimensional Hamiltonian.

Due to the large size of the Hamiltonian matrix in
theories with fluctuating Bose fields, we are limited to
models in only one space dimension. It is not practical to
treat theories in higher dimensions or with more field de-
grees of freedom if one retains the complete basis of
Nf ——N~

" functions.
For purposes of illustration we shall consider the solu-

tion of a free scalar theory on a finite lattice. The contin-
uum Hamiltonian is

N
q) =08-values

g= —hy 1

g=-2 hg J
Lx --Nx hx

N„x-sites

4, 5 1

~hx x

[mage of Q (x l)

g= —h~ = ——h~3 — 1

2 ~ 2

x =x
3 1

x i 2"x

0
f3-
f2-
f1—

h
( 1, 1)2
( 1, —1)
(-1, 1)
(-1, -1)

FIG. 1. Function-space lattice and a representative function
for Xp =5 and N =4.

FIG. 2. The 2X2 lattice and its basis functions. [fi(x) is
shown on the lattice. ]
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l d (x) l
2 +— +—mo p(x)2 Qt)tt(x) 2 dx 2

(2.3)

V(P(x) )

The mapping of continuum to discrete symbols we shall employ is as shown in Table I.
This maps the continuum Hamiltonian (2.3) into the following finite-difference operator:

g2 x Q2

a=i a lattice x a =i n=i
(2.4)

Hfluctuations Hkinetic Hpotential

We visualize this H as operating on a column vector
whose entries are the Nf functions which serve as the basis
for our wave functionals. Obviously, the —,'(VP) term
H„;„and the —,

'
mo t)tt term H~t are diagonal on this basis,

and only the functional derivative ( —A'~/2h„)
Xt)'/t)y„'

~ „«... in Hn„, produces off-diaIaonal terms in

H. It is notable that an interaction h„g„"i'(ttt„) will

only appear as a modification of the diagonal of H; the
fluctuations are driven by Hflu„which is the same in both
free and interacting theories.

The finite-difference version of the partial derivative,
t) /BP„~ i,«,„, requires some explanation. If we act on a
given function t)t(x)=(tt t, g2, . . . , P„, . . . , t)trav ) with this

operator, it returns a linear combination of functions
which differ from ttt(x) only at P„. The difference at P„
depends on the finite-difference approximation used for
the second derivative. The choice we have used connects
functions which differ by + 1 or 0 units of h ~.

a2 = 1

a 2 f(x)=
2 [f„p(x)+tttd, „(x)—2$(x)] . (2.5)

lattice

The functions P„„and tttd, „„are equal to P(x) every-
where except at x„, where they are equal to gati„+h& and
P„—h ~, respectively.

Only the t) /8/2 term in the Hamiltonian (2.4) produces
off-diagonal terms in the Hamiltonian matrix on a classi-
cal function basis, just as it has coupled t)t(x) to P„~(x)
here. This will be illustrated in the following example.

Consider a 2X2 lattice, with two space points x~ ——0
and xz ——h„, and two P values =+h~/2. This lattice and
the four functions it allows are shown in Fig. 2. We write
these four basis functions, which span the space of wave
functionals on the 2&(2 lattice, as a four-dimensional
column vector:

{2.6)

Assuming the functions are orthonormal in function
space we easily find the matrix form of the diagonal parts
ofH,

hpH
h„

0

0
(2.7)

hm hp
pot 4

The differential operator Q„B /BP„~ in Hft„„when re-
placed by a finite-difference operator on the lattice, gives
both diagonal contributions and off-diagonal terms. The
off-diagonal entries connect function pairs which differ by
one step in t)tt (AP=h~) at one x„, and are equal at every
other x point. On the 2)&2 lattice, the matrix form of
Hfl is explicitly

$2
Hflu, ———

2h„h 2

—4 1 1 0
I —4 0 1

1 0 —4 1

0 1 1 —4

(2.&)

For completeness, we note that an additional interaction
Vl(P(x)) in the Hamiltonian (2.3) gives the diagonal con-
tribution

hp
2V

Hint=h~

hp hp
+Vr

2

hp hp
Vr — + Vr

(2.9)

hp
2V

2



2048 TED BARNES AND GEOFFREY J. DANIELL

Returning to the free Hamiltonian, we may factor out the bare mass mp and write the entire lattice H in terms of three
dimensionless parameters lk, l~, and l~ which control the relative strengths of the kinetic, potential, and fluctuation terms
on the 2)&2 lattice:

H =mp '2lk

4 —1 —1 0
—1 4 0 —1

0 —1 —1 4

(2.10)

where

'V

1 I (Vp)
mp 2 I mo p

mp 2

$2 $2
dx

mo 2

I

State Energy
2

7

2mph„

2
Ip =

4 mphxh (2. 1 I)

1

0
0
0

1
—,mp,

1
lg —— 4lp 0

mph„hp

Diagonalization of this H gives the four energy eigen-
states and eigenvalues on the 2&2 lattice as functions of
the mass parameter mp in the Lagrangian, Planck's con-
stant A', and the lattice parameters h„and h~. As the re-
sults for general lattice parameters are complicated, we
take for illustration particular values h„=mp ', h~ ——1.
[The general results are given in (2.17).]

Consider the classical-field-theory limit A~O. In this
limit the Hamiltonian is diagonal,

1

4

5
4

0

0

0
0
1

0

0
0
0
1

5
4mp,

5
4 mp~

1

4 mp.

(2.14)

5

4

1

4

mp+O(iii ) (2.12)

E,i„„„i———,
' dx[(VQ) +ma P ] .

lattice
(2.13)

These classical eigenstates and energies are

and each function has a well-defined energy, which is just
the classical energy

In this classical limit of the state vectors, the field has
unit amplitude to be at one specific function, just as a par-
ticle in classical mechanics is found at only one point in
coordinate space at a given time.

As we turn on the quantum fluctuations by bringing A'

up to unity, we find that the energy eigenstates are no
longer diagonal in function space; there is instead an am-
plitude P[P;(x)] to find each of the i =1, . . . , 4 functions
in a given state vector. For 6=1 and with the lattice pa-
rameters h~ ——1 and h„=m, ', the states and spectrum
for the 2& 2 lattice are

State

—sinO

Energy Interpretation

cosO

cosO
—sinO

ll ~5
4 2

+ mp Rest 2-particle state,

0
1

13E =—mI 4 p Boosted 1-particle state,
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1

0
9E) ——4mp Rest 1-particle state,

1~o)= ~2

cosO

sinO

sinO

cosO g= —tan (2)
2

11
4

vg
2

m p Vacuum.

(2.15}

State

/2)

Mass =E—Ep
s+~s

2
m,

(boosted
~
1) ),—:m,

(2.16)

Some features of these state vectors which allow us to
give them a physical interpretation will be discussed in
Sec. III. Here we simply note a few features of the energy
eigenstates on the 2&&2 lattice which recur for larger lat-
tices. One is the appearance of boosted states; on large-N„
lattices there are -N„ times as many boosted states as rest
states. Elimination of these redundant states from the
basis results in a great reduction in the size of the Hamil-
tonian matrix to be diagonalized; this reduction of the
basis to P„,= 0 states will be discussed in the next section.
Another interesting feature is the unequal spacing of the
vacuum, one-particle, and two-particle states. Although
we must recover this equal spacing in the continuum limit,
there is no reason to expect it on a finite lattice. For such
a small lattice we need not have expected to find the con-
tinuum ordering E2 & E~ & Ep, though it does follow with
the lattice parameters we have chosen.

We note that the mass parameter mp in the Lagrangian
is not simply related to the spectrum of energies of the lat-
tice except as an overall scale, and it is more intuitive to
express the spectrum, relative to the vacuum energy Ep, as
a multiple of the mass gap m =E]—Ep. In these units,
the 2& 2 lattice spectrum becomes

m2 ——2m/[1 —I/(I+4%' /h~ )' ] . (2.18)

This completes our explicit derivation of the states and
spectrum on the 2&2 lattice.

III. THE Ptpt 0 "REST"HAMILTONIAN Hg

P,~= fd x VPP = i fd x—VP(x)
5$(x)

(3.1)

Operating on an arbitrary state g[P( x)] with the exponen-
tiated generator P,~ gives

(U[alf}[4(x)]=e "4[4(x}l

As the number of states produced in diagonalizing the
lattice Hamiltonian H, Xf——X~ ", becomes very large for
moderate values of N~ and N„, it is important to find
ways of eliminating irrelevant parts of H. The reason H is
so large is that it has all the energy eigenstates of the
theory as eigenvectors. Most of these are boosted states, in
which we have no interest. In this section we show how to
eliminate all these boosted states from the Hamiltonian,
which gives a much smaller "rest" Hamiltonian HR. The
eigenvectors of this Hz span the P„,=O subspace of the
Hilbert space, and the eigenvalues of this matrix constitute
the spectrum of rest states in the theory.

To eliminate P„,&0 states from the Hamiltonian, we

begin by constructing the momentum operator P,~ in the
continuum theory:

For completeness, we quote below the 2 & 2 energies and
mixing angle O which follow from general lattice parame-
ters h~ and h„:

=g[P(x+a)] . (3.2)

If g is an eigenstate of total momentum with eigenvalue

P, we conclude

(3.3)
Ei ——lk+l~+2fi'/f+(lk +Pi lf )'

mp

E'] ——21k+ Ip+2A If,
Nl p

E) ——lp+2A' lf,
Pg p

Ep Ip +Ip +2~ If (Ik +~ If )
Alp

tan(2O) =2%2/h4, 4 .

(2.17)

It immediately follows that rest wave functionals are
translationally invariant.

To use this result to reduce H to its P„,=O part, we
must project it onto a translationally invariant set of basis
vectors. Constant functions already satisfy this require-
ment, but any nonconstant function f, ( x } must be re-
placed by a basis vector which is the sum of all functions
which are equivalent modulo translations:

~
P„,= 0 basis vector f, )

Finally the renormalized two-particle state mass on the
2&2 lattice is

y5(y(x) —fi(x —a)) .
N

(3.4)
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On a lattice the sum over translations is discrete, and it
is convenient to impose periodic boundary conditions.

Given this orthonormal P„,=0 subbasis I ! R; ),
i = 1,2, . . . , Nz ), we may project the full H onto it to ob-
tain the rest Hamiltonian Hz ..

N„

The translationally invariant basis vectors are

/Rg)=
/

)

2(!~)+!~))
!R,)=!- -) .

(3.7)

(3.5)

Diagonalization of H~ produces only P„,= 0 eigenvectors
and eigenvalues.

An example will certainly help visualize this, so we re-
call the N~ ——2 by N„=2 lattice of Sec. II and its four
basis functions:

(Note that there is only one possible translation with
periodic boundary conditions, x

&

——0~x 2 ——h„and
x 2 =h„~x ) ——2h„=—0.)

The original function basis 4 decomposes into a 3 of
P„,=O vectors and a 1 of ! P„, !

=m. /h„vectors. The
latter is

(3.8)

f)(x)= .

—hp
, x=0

2
—hp

X, x=h„

f2 !~) f3 ! ~&;f4=

(3.6)

Under the lattice translation this changes to

e' "!P, ) = —
! P, ) =e '!P, ), (3.9)

so pi = +K/h~.
Using the set of P„,= 0 basis vectors (3.7) to reduce the

full Hamiltonian (2.10) as in (3.5) we produce the follow-
1ng Hg.'

I +2A' ly
A lg

vZ

Alf Alp
Hg —— — 2', +lp+2A lg — mo .

&2 v'2 (3.10)

0 I +2k lg

The single boosted state
! P, ) we have excluded has an energy [using (2.10) and (3.8)] of

(P)!H! P) ) =(2ik+&~+2&'if )~0 (3.11)

Returning to the P„,=O rest Hamiltonian H~ (3.10), we may diagonalize it to find the following spectrum and rest
states:

State

! R, )+!R, )
! 2}= —sinO +cosg! R2 &

2

Energy

lp+lk+2fi ll+(lk +A' ll')'~2,

! Ri) —
! R3)

vZ
l +2k lj, (3.12)

]R, )+!R, &

! 0) =cosg
2

+sin8! R2) l~+lk+2fi'lg (lk +A lf )

where

A lg
tan(20) =

h~4
(3.13)

By inspection, these are the eigenvectors found earlier in
Sec. II in diagonalizing the full Hamiltonian. The reduc-
tion of II to Hz might seem to be of only marginal value;
we have reduced a 4&4 Hamiltonian on the 2&(2 lattice to
a 3 & 3 Hamiltonian, which is not much of an improve-

ment. For larger N~ &N„ lattices, however, the reduction
H~Hz becomes more economical. For example, the
N~ ——5&N =5 lattice has an unreduced Hamiltonian of
5 =3125&3125 entries, and diagonalization produces a
list of 3125 energies and eigen vectors. Only
629=3125/N„of these are rest states; the remaining 2496
are boosted copies of these rest states.

If we were to diagonalize the full 5 )&5 Hamiltonian,
we would somehow have to separate the boosted and rest
state energies. This would be an involved procedure re-
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TABLE II. Rest Hamiltonian dimensionality.

Np ——2
3
4
5
6

3
6

10
15
21

4
11
24
45
76

6
24
70

165
336

8
51

208
629

1560

14
130
700

2635
7826

quiring knowledge of the corresponding eigenvectors.
Constructing the rest Hamiltonian Hz initially both de-
creases storage requirements by -(1jN ) for large N„
and removes all these irrelevant boosted state energies
from the spectrum.

The general result for the dimensionality of the rest
Hamiltonian Hs, NR(N~, N„), is an interesting combina-
toric problem. Nz may be visualized as the number of
inequivalent circular necklaces which may be made from
X„equally spaced beads of X~ colors, counting "flipped"
necklaces as inequivalent. The number of such objects
may be shown to be

0[4(—x)]=(+)0[4(x)l=npo[4(x)] . (3.20)

As the low-lying rest states (vacuum, one particle, and
two particle) necessarily have r)z ——(+), this parity is not
useful in distinguishing these states. It may be useful in
further reducing the size of HR, although we have not em-
ployed it here.

IV. APPROACH TO THE CONTINUUM SPECTRUM

This P parity can be used to further reduce HR. States
composed of even or odd numbers of particles have plus
or minus P parity, respectively. In the list of states in
(3.12), we use the negative P parity of
[( ~R ) —

~
Rq))/v 2] to identify it as the one-particle

state. The remaining two states both have positive P pari-
ty and are identified with the vacuum and two-particle
states. On such a small lattice only their energies distin-
guish them; on larger lattices, we may use the number of
nodes to separate these states as well as their energies in
the continuum limit.

Another discrete parity which commutes with H is spa-
tial (x~ —x) parity. Nondegenerate eigenstates of H al-
ways have definite spatial parity

Z

N„= g —g„,
n=1

n

nlrb„

It is very important to understand the asymptotic ap-
proach of the lattice spectrum to the continuum one for
large X& and N„. This is because we are limited by
storage requirements to lattices of only moderate size; ac-
curate determination of the continuum spectrum clearly
requires identification and elimination of the spurious lat-
tice contributions.

To understand the asymptotic approach to the continu-
um, we have studied the free scalar theory on the lattice in
two limits; (1) N~~ oo, N„fixed=2 (continuous P limit)
and (2) N~ =3, N„~ oo (continuous x limit). In particu-
lar, we study the two-particle mass mz/m in these limits,
and show that our theoretical asymptotic behavior for
large lattices agrees with explicit numerical results.

(3.14)

where n
~

N„means n = all divisors of N„and g„ is de-
fined recursively by

n —1

g„=Np" (3.15)
m=1
m ln

and

(3.16)g) ——Np .

An equivalent result for the dimensionality Xz may be
given in terms of Euler's totient function P(d). [This is
defined as the number of integers from 1 to d inclusive
which are prime to d. For example, P(4) =2 because only
1 and 3 are prime to 4.] The expression for the dimen-
sionality is

A. N~ ~ oo, N„=2; continuous P limit

~Z

Ns —— Q P(n)N)
x n=1

nlN
fi d dH=-

2A„For prime X„ the dimensionality is particularly simple:

1
NR( pN, Npri em) = g~ +g(

1V„

Consider a lattice of X„=2 space points and a very
large number N~~ oo of very closely spaced P points. As

(3.17) P~ and Pq become continuous, the Hamiltonian approaches

(3.18)

The explicit values of X~ for lattices up to %~ ——6 by
N„=6 are given in Table II.

A further symmetry available here is the invariance of
H under the discrete transformation P(x)~ —P(x), which
implies a definite P parity (not to be confused with the
more familiar spatial parity, to be discussed below) for the
energy eigenstates;

(4.1)

We may diagonalize this H by going into Fourier space
with

(4.2)

0[—0(x)l =(+)0[4(x)l=ny@[4(x)l . (3.19)
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N
ik.x,. (4.3)

These are the % =2 Fourier coefficients, generally given
by

5E—=E„„,( oo ) —E„„;„(Np)

—cr.~2 1 —e'N4,
e

Lp
(4.11)

This puts H in the separated form

2 2 2 2
q + 2 +

2
(ioo &o +roi &i }

2 x dap da1

which falls very rapidly for large X~. This is not the
source of the leading energy defect in X&

' on our lattice.
To avoid significant contributions due to this truncation,
we must ensure that the P lattice extent (L~) is much
greater than the rms SHO full width 2crp..

coo=ma coi ——[mo +(2/h ) 1
' (4.5)

1/2

Ly KyV——Ny »2o'o=2
2mph„

(4.12)

khx
co(k)= mp + sin

h 2

1/2

(4.6)

On the Ã„=2 lattice k takes on the values k =2m/X=O,
m/h„.

The most general energy eigenstate of (4.4) is np rest
particles and n1 particles of momentum a/h, with an en-
ergy of

E„„=A'[ m(pn p+—, )+co,(n, + —,
' }] . (4.7)

Note that only the even-n, states (with p„,=2mN/h„-0)
will appear in the spectrum of the rest Hamiltonian Hz.

The vacuum state in the continuous P limit with N„=2
is just a Gaussian function in ap and a1. The explicit
wave functional, which is an eigenfunction of (4.4), is

The N =2 lattice is thus a superposition of two indepen-
dent momentum-space oscillators which satisfy the usual
lattice dispersion relation

For an n-particle SHO state rather than the vacuum, we
must increase the L& requirement to

Lp KpV'N——p »2v'2n + 1rrp 2- 1/2
nA

m, hx

(4.13)

The remaining source of differences between the contin-
uum and lattice spectra is the effect of having a finite grid
size in P, h~. To make this effect perturbative, we must
choose an h& much smaller than the rms width:

h4, Kp/+Np ——«2o p
——2

2mph„

1/2

(4.14)

The perturbative effect of using the finite-difference ap-
proximation to 8 /BP may be seen by expanding it to
O(h~ ). The finite-difference approximation introduces
spurious terms of O(h~ 8 /BP ) in the Hamiltonian:

4[4(x)l =

Mi kx
Cr=

fi

1/4
C1

1/4
—cOa0 e la12 2

e

(4.8}

4(4'+hy)+P(4' ~y) 2f(4) 8'1(— ~y' a'q
h 2 gy2 12 gy4

(4.15)

The rms fluctuation of a;, the ith Fourier component of
P, is given by

so the lattice has a residual effective interaction of O(h~ ):

1

1/'2c;

1/2

2~; ~x
(4.9)

0.10

0.05—

Now consider the effect of working on a large, fine-
meshed P lattice with N& points, rather than having P
continuous. We allow the P grid size h~ to shrink as
K~/QN& (K~ is an adjustable number), sa the full P ex-
tent of the lattice, L~, grows as QN~.

002!
z

o
0 01

S

hp ——Kp/QNp,

Lp =Nphp Kp+Np . ——
(4.10)

O
UJ

There are two reasons why the lattice spectrum differs
from the continuum result (4.7}. First, the maximum
value of the field P an the lattice (-L~ /2) is finite, so the
wings of the simple harmonic oscillator (SHO) wave func-
tions such as (4.8) will be distorted. This gives an asymp-
totic energy defect for the vacuum state of

0,001
1

Theory (4.19)

I «r i I

5 . 10

Ng

I j I I i t I

30 50 100

FIG. 3. Asymptotic approach to the zero-point energy E0.
(N =2, K„=V 8, Xp = 1.0, 1.5, 2.0.)
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g4 g45H=-
24h„gy, 4 (4.16)

This term gives the leading discrepancy between the
continuum and lattice spectra. The matrix element of this
effective interaction between free theory states with n rest
particles and no moving ones for N„=2 is

I

(n, O) oH
~
n, O)

[(cp+ci ) +2ncp[(n + 1)co+2ci]J
X

(4.17)

In the vacuum state, this gives an asymptotic vacuum
energy for large X~ of

2
1 h4, h„ 2 4Ep(Np) = Tiki(mp+cpi) — (mp+cpi) +O(hp )

64
(4.18)

= —,
' ih'(mo+ cp, )—

Eo(continuum)

K h„(mo+cpi)
N -'+O(N -')

64

leading energy

defect

(4.19)

Kp-2N„'~ /QK„. (4.21)

This is typically —1.0 to —1.5 for values of N„and X„
we use in our large-N„computations in Sec. V, which does
indeed give rapid approach to the continuous P spectrum.

As we have shown, the lattice spectrum with our choice
of the finite-difference operator for the P second deriva-
tive will approach the continuous P spectrum as
h4, -N~ ' for large N~..

E(Np) =E((x) )+e)%p '+e2Np + . (4.22)

The h~ -N~ ' energy defect is characteristic of all the
spectrum calculations we have studied numerically. An il-
lustration of this is given in Fig. 3, which plots the vacu-
um energy defect against N~ on a log-log scale. Three
choices for K~ (initial lattice size) are shown; the approach
to the solid asymptotic curves is quite clear, and confirms
(4.19).

Although choosing a small h~ (that is, K~) reduces the
energy defect in (4.19), it can significantly delay the onset
of the N~

' asymptotic behavior we are interested in by
making the P extent of the lattice, L~ ——K~QN~, too
small. This is the reason the K~ ——1.0 energy defect curve
in Fig. 3 departs from the asymptotic N~

' behavior for
X~ (15. It is obviously preferable to have a larger error
with a well-behaved N~ dependence which can be isolated
and subtracted off (as for K~ ——1.5) than to have a smaller
but nonasymptotic error of uncertain N~ dependence (as
for K~ = 1.0, N& & 15).

As a rule of thumb, one may choose the initial-lattice
resolution K~ to be the geometric mean of the maximum
necessary extent in P, L~ (4.13) and the estimated required

P resolution h~ (4.14). This gives a "reasonable" value for
Kp of

Ky-VLyhy —[2o'oi/2n 2cro] ~ - 2cr(o2n)'~

=-(8n)'~ [~h'/(moh„)]'~ . (4.20)

For the low-lying states, n -2, and with h„shrinking as
h„=K„/(mp+N„) as we go to large N„(4.29) and (4.32),
this gives for our reasonable value of the lattice parameter
Kp

For sufficiently large N~, therefore, we may take out
the leading asymptotic approach to the continuum energy
and accelerate convergence by forming the combinations

E"'(Np) =(Np+ —, )E(Np+ —, )

—(Np ——, )E(Np ——, ), (4.23)

E'"'(N~) =E(~)+O(N, -"-') . (4.25)

Using (4.23) and (4.24), we obtain improved estimates of
the continuous (() energy E( oo ) for given N~. We then
simply increase N until the predicted values of E(ao)
from E'" and E'~ converge and stabilize to the desired
accuracy, which occurs when the O(N~ ) corrections to
E'" become unimportant.

To illustrate this procedure, we have looked at the
once- and twice-N~-improved two-particle masses
(mi/m)" (N~) and (mqlm)' '(N~) on the N„=2 lattice,
with K~ ——1.5. These result from applying the conver-
gence accelerations (4.23) and (4.24) to the raw two-
particle mass ratio, which is given by

m p Ep(Np ) Ep(Np )—
(Np) =

m Ei (Np ) Eo(Np)— (4.26)

The raw data (mz/m)(N~) and the once- and twice-
N~-improved m2/m are shown in Fig. 4 for N~ ——10 to
28. The rapid convergence of the improved mass ratios to
the continuous P result mz/m =2.0 is quite clear. Evi-
dently, an accuracy of —10 is possible if we can accom-
modate N~ values of & 15.

Note that there is some "jitter" visible in the twice-N~-
improved (mz/m)' ' for large N~ (N~ ) 15). This is due
to rounding errors of —10 in the raw spectrum, which
are magnified by O(N4, ) in removing the asymptotic

E' '(Np ) = —,[(Np+ 1) E(Np+ 1) 2NpiE(N~ —)

+(Np —1) E(Np —1)], (4.24)

and so forth. (Note that the argument of E""+"is h»f-
integral. ) The improved energies E'"'(N~) converge to the
continuous P energies as
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f
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2.05—

(m2/m) once-Ng, -improved(~)

2,00
+

+ 4 + + + + +f y y q 0 r r r
+

+

+ + +

(m /m) Raw gpectrUm2

(m2/m) twice —Ng, - improved(2)

],90 I I I I I I I ! I I I I I I I I I I I I I I I I I I I

0 5 10 15 2Q 25
Ng

FIG. 4. Convergence of mq/m to 2.0 in the free theory. (N =2, It.„=V 8, E~ = 1.5.)

behavior using (4.23) and (4.24). It is this rounding error
which makes it impractical to accelerate the convergence
of the spectrum in X~ more than twice with present accu-
racy.

We could of course remove the h~ -X~ ' asymptotic
behavior initially by using a better approximation to
tl /BP in Table I and (2.5), so that we obtain corrections
only to O(h~ ) in (4.15). We have not done this because
the off-diagonal terms in H would no longer all be equal
(hence more difficult to code), and there would be twice as
many of these terms (hence twice the run time). It is
easier to just remove the X~ ' behavior from. the spec-
trum by hand, as we have done in this paper.

B. N4, ——3, N„~ 00,' continuous-x limit

The continuum and lattice spectra also differ due to the
finite-space lattice. The continuum of boosted states we
find in the free theory, for example, is replaced by a
discrete set of levels in momentum space, with a separa-
tion Ak =m/L„and a maximum momentum k,„=~/h .
These cutoffs in the IR and UV ensure that there are no
divergences in our spectrum calculations, so that pararne-
ter renormalizations such as replacing m o by
m =(Ei —Ep) are finite.

Physically meaningful quantities such as the ratio of the
two-partiHe state mass to the one-particle mass, m2/m,
are expected to approach the continuous-x limit on the
lattice as we take h ~0 and I. ~~. As we are limited
to small values of % sites, it is important to see how
quickly we expect the lattice values of physical quantities
to approach their continuum limits as a function of X .

We expect finite-size effects due to (a) replacing the
continuum of states I k j by a discrete set, so momentum-

space integrals becotne sums, (b) the modified dispersion
relation for states on a lattice (4.6), and (c) replacing the
continuous functional derivative in H (2.3) by a discrete
set (2.4). The only effect we can estimate to our satisfac-
tion is (b); fortunately, the evidence of our numerical cal-
culation in Sec. V is that this effect gives the leading (in
h„) approach to the continuum spectrum.

For an example of (b), consider the energy of a single-
particle state on the lattice in the free theory, with con-
tinuous P and N„ large but finite, so that

~

k
~
h„&&1.

The energy of this state relative to the vacuum is

kh„
E(k) —Ep —— mp + sin

2 2

1 /2

(4.27)

={m 2+k )'~ - -h 2+g(h 4)
~ 24 co~

CO~ k
k

(4.28)

—1
&( mi &m )

~ lattice —continuum =O ( Nx (4.30)

So, we generally expect the lattice spectrum to approach
the continuum limit as h~ as well as h~ for small h„and

Thus, the lattice dispersion relation gives an approach
to the continuous-x spectrum as —h . Assuming we
shrink the lattice with increasing X as

(4.29)

we then expect for the renormalized spectrum with the
zero-point energy removed, and expressed as a multiple of
the mass gap m = (E~ —Eo):
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I I I i
I

i i 1 I

I
I I I E„=E„mp (4.32)

1.30—

1.25—

with K„a dimensionless lattice parameter of order unity.
To test the expected N„' approach to the continuous-x

spectrum (4.30), we have studied the spectrum of a spin
system with only N~=3 possible values for the field P at
each of the N„sites. The allowed field values are P=(h~,
0, —h ~), where h ~ is chosen arbitrarily to be

Kp(=1.5)
hp ——

QN~( = 3) 2
(4.33)

Kx =10+

1.20—

K =15+
X

1.15—

+~+r+ +~y~~
+

We have obtained the two-particle mass ratio mz/m for
N„=2~9 for various values of K„[recall
h„=K„/(mo+N„)]. As we expect the finite-lattice spec-
trurn (m&fm)(%„) to approach the continuum one as

', we have removed this leading asymptotic behavior,
analogously to (4.23):

(mz/m)"'(N„) = [N„+—,
' ]mz(N„+ —, )/m (N„+ —,

'
)

—[N„——,
' ]mq(N„——,

' )/m(N„——,
'

) .

110 I t t I I & I I & I I I I

0 5 10
Nx

FKx. 5. Once-X„-improved two-particle mass rn&lm. (Test
case with X~——3, K~ ——1.5, E„variable. )

h~. Note that in some special cases, such as n rest parti-
cles in the free theory, there are no k&0 states present.
This means that results such as mz/m =2 in the free
theory are not effected by the lattice dispersion relation
(4.6), and remain true for finite as well as infinite N„.

Just as for P discretization, in x space we must ensure
that the lattice is large enough as well as fine enough to
give an accurate spectrum. The natural scale of the prob-
lem on a small lattice with weak coupling is the bare mass
mp in the Lagrangian. A physically plausible lattice must
satisfy

I.„=K„QN„»natural scale »h„=K„/QN„.
(4.31)

Taking mp as the natural length scale, a reasonable choice
for E„ is

(4.34)
This once-X -improved mp fm spectrum for various

values of K„ is shown in Fig. 5. Approach to the
continuous-x value of mq fm —1.21 is clear. It is evident
that we could estimate the continuous-x mz/m to an accu-
racy of —10 from the fIrst three Improved values of
mqfm, using N„=2~5 and various values of K . This
example leads us to believe that we can obtain the bound-
state spectrum of (1 + 1)-dimensional theories to a similar
accuracy of —10 at present.

V. A.P SPECTRUM
We have discussed the techniques required to carry out

lattice wave-functional spectrum calculations on small lat-
tices and in the continuum limit in some detail. Now we
shall present preliminary results on the spectrum of a non-
trivial field theory, A,oP, as a first application of our ap-
proach.

theory has been the subject of a number of lattice
papers, and several remarkable results have been -demon-
strated analytically or through numerical experiments.
The subject of many studies has been the behavior of the
renorrnalized coupling constant A, as a function of kp in
the continuum limit in d space-time dimensions. The in-
dependent conclusion of Monte Carlo ' high-temperature
series ' and strong-coupling studies ' is that X=0 in-
dependent of A,p in the continuum limit for d )4. There

TABLE III. AP spectrum (mi/m) for continuous P, finite N„.

o/m

0.0
0.1

0.2
0.5
1.0

Estimated
error

2.001
2.048
2.066
2.088
2.095
2.140

+0.002

2.002
2.036
2.051
2.063
2.064
2.092

+0.002

2.000
2.031
2.041
2.050
2.050
2.068

+0.003

2.001
2.023
2.036
2.042
2.045
2.059

+0.005
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+
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+
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m2 Im Raw spectrum +
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1P 15
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20 25

Flax. 6. A typical extrapolation of the lattice spectrum to continuous P. (N„=3, K =W8, 56~ = 1.5, Ao/mp =0.1.)

m2/m (N„=3, IC„=~8, Np ——oo, A,p/mp ——0.1)=2.036
+0.002. This is the value quoted in Table III.

To extrapolate the values of m2/m determined at finite
in Table III to the continuum limit, we have done a

least-squares fit of the finite-X data to the expected
asymptotic form:

e I (A p/m p~)

X„
(5.3)

m2 2 =-(N„,A,p/mp )-=
m

m2 2
(Ap/m p)+

for the accurately determined X„=2,3, and 4 cases. Al-
though one might reasonably be concerned that X„=2—4
is not large enough to be in the asymptotic region for large
X„,we find empirically that the coefficient e~ is of order
0.2 or less. Corrections of order (e, /N„) can then be ex-
pected to modify our results by -0.01.

are proofs of this result for d greater than 4. d=3
appears to be a complicated case with both interacting and
noninteracting limits. ' For the d =2 case we study
here there is general agreement ' that the continuum
theory has nontrivial interactions, that is, it can support
A, &0.

Although the existence of interactions in d=2 A,pP
theory has been shown (A, & 0), the question of the bound-
state spectrum of this theory has not been studied numeri-
cally to our knowledge.

The particular question we shall study is the renormal-
ized "two-particle" state mass m 2 /m—:(E2 Ep )/—
(EI Ep) as a function —of Xp. We shall find that it is
equal to 2.0, independent of Xp in the continuum limit, to
within our estimated accuracy of -0.01.

The continuum Hamiltonian for P theory is

2.15—

(5.1)

where

Vr(y) =ape(x)' . (5.2)

2.1Q
= 1.Q

As discussed in Sec. II, the interaction (5.2) is a simple
modification of the diagonal of the functional Hamiltoni-
an matrix, as in (2.9). We then obtain the "two-particle"
mass mq/m in the continuum-P limit for N„=2,3,4, and
5, and for A,p/mp ——0,0.1,0.2,0.5, 1.0, and oo, using the
extrapolation technique discussed in Sec. IV. The results
are given in Table III. A representative case of the extra-
polation to N~ ——~ for %„=3and kp/mp ——0. 1 is shown
in Fig. 6; the rapid convergence of the once- and twice-
%~-improved values of m2/m is evident. Taking these
two values at large 1V~ as upper and lower limits, we find

= 0.2

cps = 0.1

2.00
—2= 0.0

frl

N X

(Continuum)

5-1 0-1 21
-1

Nx

FICr. 7. Approach to continuum m2/m in A,OP .
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TABLE IV. Renormalized two-particle inass in A,P .

Ao

Ptl O
2

2.00
2.01
2.02
2.01
2.00
2.00

all masses +-0.01

0.0
0.1

0.2
0.5
1.0

VI. CONCLUSION

We have shown how to obtain the spectrum of energy
eigenstates of an interacting quantum field theory using

The result is shown in Fig. 7 and Table IV. We find
that m2/m in the continuum limit is consistent with the
free-theory result m2/m =2 independent of A,o, to within
the estimated error of +0.01 due to the extrapolation to
X„=oo.

As we have covered the full positive range of
A,o/mo ——0 to oo, it cannot be argued that this result de-
pends on how the renormalized A, is defined on the lattice
in the continuum limit. We find rn2/rn =2.0, to within
errors, for any positive value of ko.

This is a surprising but not unanticipated result; in per-
turbation theory, the four-P contact tree diagram gives
rise to a repulsive potential proportional to A,o5(x ), which
does not support bound states. Given this, Halliday has
argued that if the P quanta experience a repulsive short-
range interaction, they can just sit at infinite range, giving
m2/m=2. Certainly it cannot be &2 for this reason.
What is nontrivial is that the full theory remains repulsive
for all k, so that no bound states form when all the
higher-order effects beyond tree graphs are included. Lee
argues that this follows from the fact that the interaction
Hamiltonian A,P is positive, though his arguments are in-
tuitive and do not constitute a proof.

We note that our result m2/m =2 does not imply that
(1+ 1)-dimensional P is a free theory; we have simply
found that the interaction between quanta in the full
theory does not appear to produce bound states with
masses below 2m, where m is the renormalized one-
particle mass. This result says nothing about the presence
of repulsive scattering in the continuum limit, although
such scattering is consistent with our result.

lattice and wave-functional techniques. Our method is to
write the functional Hamiltonian operator as a matrix act-
ing on a basis of classical functions on a lattice, which we
then diagonalize using the Lanczos technique and extrapo-
late to the continuum limit.

Special techniques are introduced to project out ir-
relevant boosted states from the lattice, and to accelerate
convergence of large lattice spectra to the continuum lim-
it. These techniques allow the determination of the lowest
few eigenvalues of a lattice field theory with a very large
number of basis functions; in this paper we have presented
results which would require the brute-force diagonaliza-
tion of a 537 824 X 537 824 (14 square) dimensional Ham-
iltonian.

As a preliminary application of this approach, we have
obtained the first three energy levels of —,m&& P +A,og
theory in 1+ 1 dimensions. We find that this theory has
a free spectrum (m q /m =2.0), independent of I,o, to
within the estimated accuracy (+0.01) of our method. We
believe this result to be consistent with known results for

theory in d =2.
Since further interactions can be studied with a trivial

modification of the diagonal of our Hamiltonian matrix,
we hope to present studies of the spectra of a number of
scalar field theories using these techniques in the near fu-
ture.

Another important problem is the extension of this ap-
proach to 2+ 1 and 3+ 1 space-time dimensions. While
it is impossible to do this and keep the full functional
basis on the lattice, as we have done in 1+ 1 dimensions,
it may be possible to treat higher-dimensional problems
with a representative sample of basis functions, rather
than the full set. This possibility is currently under inves-
tigation.

Kore added in proof After com. pletion of this work we
learned that our results on the absence of bound states
below 2m in A,P2 theory (the test of Sec. V) was previously
obtained by Spencer ' and is discussed by Glimm and
Jaffe.
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