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We show that the configuration space of the classical, bosonic Weinberg-Salam theory has a non-

contractible loop. This probably implies that there is an unstable, static, finite-energy solution of
the field equations. Its energy is the height of the barrier for tunneling between "topologically dis-
tinct" vacuums. We establish an upper bound on this energy of order 10 TeV.

I. INTRODUCTION

All experiments to date indicate that the weak and elec-
tromagnetic interactions are mediated by the bosonic
fields of the gauge theory proposed by Weinberg and
Salam. ' The gauge group is U(2) and it is spontaneously
broken to U(1), by a complex Higgs doublet. Further-
more, all known weak processes, including the recently
discovered 8'-boson production, are well described by a
perturbative treatment of the quantized theory. The main
purpose of this paper is to argue that nonperturbative phe-
nomena exist in the %'einberg-Salam theory, even though
the theory admits neither monopoles nor instantons, and
they become important at energies of order 1—10 TeV.
Our arguments are primarily topological in nature, so we
start with some mathematics.

It has been known for some time that there is a connec-
tion between the topology of a smooth manifold and the
stationary points of an arbitrary smooth function defined
on it. This is the subject of Morse theory. A standard ex-
ample is a two-torus standing on end, with the height
above some reference plane the function defined on it (see
Fig. 1). The existence of points where the height is
minimal (Po) and maximal (P3) is a consequence simply of
the compactness of the torus, and such points must also
occur on a two-sphere, for example. What is surprising is
that the topology of the torus requires that there must be
at least two saddle points (P& and Pz). On a two-sphere
there need be no further stationary points.

Ljusternik and Snirelman use the following minimax
idea to prove the existence of these saddle points. Sup-
pose that the minimal height occurs at a single point Po.
Consider all loops on the torus which pass through Po and
are homotopic to the loop shown in Fig. 1. On each of
these loops there is a point where the height is maximal.
Now consider the infimum over all loops of these maxi-
mal heights. It can be shown that there is a loop whose
maximal height is precisely this minimal possible value,
and Pl, the point on it where this height is attained, is dis-
tinct from Po and is a saddle point. The maximal height
on any other loop provides an upper bound to the height
at P).

On a noncompact manifold, this reasoning can break
down. For example, consider the two-dimensional mani-
fold shown in Fig. 2, and the loops homotopic to the one
indicated. The infimum of the maximal heights on these
loops exists, but there is no saddle point because it "es-
capes to infinity. "

By a bold extension of these ideas, one can study the
static classical solutions in field theories. The manifold
here, which we shall refer to as the configuration space, is
the function space which consists of all finite energy, stat-
ic field configurations, and the function(al) defined on it is
the energy. Suppose that there is a unique vacuum config-
uration of minimal energy Eo and that there are noncon-
tractible loops in the configuration space beginning and
ending at the vacuum. Let us restrict attention just to the
loops in a particular homotopy class. Each of these loops
has a configuration on it of maximal energy, and let E~ be
the infimum of these energies. By analogy with the situa-
tion on the torus, it is a reasonable hypothesis that there is
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FIG. 1. Stationary points of the height on a torus.
FICi. 2. A manifold with noncontractible loops but no saddle

points.
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a loop whose maximal energy configuration has an energy
precisely equal to E&, and that this configuration is a sad-
dle point of the energy functional, and therefore a solution
of the field equations. Since the vacuum is unique, a
necessary condition for the existence of such a configura-
tion 1s that E j )Eo.

By developing rigorously an infinite-din1ensional
version of Ljusternik-Snirelman theory for this field-
theory application, Taubes has recently obtained a re-
markable proof of the existence of a new type of static
solution in a Yang-Mills-Higgs model. The model is the
Bogomolny-Prasad-Sommerfield (BPS) limit of the SO(3)
Yang-Mills theory minimally coupled to a triplet (adjoint)
Higgs field. Finite-energy configurations have a quan-
tized topological charge which measures the net magnetic
charge. It was already known that this model has many
static solutions, namely, the Prasad-Sommerfield mono-
pole and the large class of static multimonopoles, all of
which are local minima of the energy. But Taubes' new
solution is in the vacuum sector, where the topological
charge is zero, and where the only previously known solu-
tion was the vacuum itself. It is associated with a noncon-
tractible loop in this sector of the configuration space, and
it is a saddle point of the energy functional, and therefore
unstable. Physically, it can probably be visualized as a
monopole-antimonopole pair in unstable equilibrium, at a
separation where the long-range Coulomb attraction is
balanced by a short-range repulsion of essentially topolog-
ical origin. This configuration is unstable against a rota-
tion of one monopole relative to the other about the line
joining them.

The application of Ljusternik-Snirelman theory to any
Yang-Mills-Higgs model is hard, for several reasons.
First, the manifold is infinite dimensiona1, so there are an-
alytic difficulties. Second, the manifold is noncompact.
Third, one must deal with the gauge invariance of the en-
ergy functional.

The gauge invariance can be handled by regarding the
configuration space as the space of gauge orbits. That is,
one regards a field configuration not simply as a gauge
potential and Higgs field [A, 4&J defined everywhere in
space, but as the set of all [A', @') gauge equivalent to
[A, C& J. It helps if one can find a completely unambiguous
partial or complete gauge-fixing procedure because this
reduces the size of the gauge orbits. Note that only the
spatial components of the gauge potential appear here.
Time, and the time component of the gauge potential,
play no role. The field energy is given by the spatial part
of the Hamiltonian and there is no kinetic contribution.

The reason for worrying about gauge invariance is that,
depending on the boundary conditions, the gauge orbits
themse1ves could have some nontrivial topology unrelated
to the existence of stationary points of the energy. One
wants, in particular, that the vacuum is a single point in
the configuration space, and this requires the removal of
the gauge freedom.

We shall consider just one aspect of the noncompact-
ness problem, namely, the effect of scale transformations.
Suppose [A, C&J is some field configuration, and
[A (,),@(,) J the same configuration rescaled by v. That is,

d 2g

d(9
+q(l —cosO)Q=EQ . (1.2)

This is the simplest model of a physical system where the
configuration space has a noncontractible loop. If the
pendulum is long (q large), the ground state and low-lying
excited states are approximately harmonic-oscillator states
near 8=0. One can develop perturbation series in q
to take into account the anharmonicity, but such series for
the eigenvalues do not converge. Loosely speaking, this
is because they ignore tunneling between 0=0 and 0=2+..
If one is interested in the high-energy states (E & 2q), these
series are clearly inappropriate. There a better first ap-
proximation is to regard the pendulum as freely rotating.

In the Weinberg-Salam theory, conventional weak-
coupling perturbation theory provides series expansions
about the harmonic-oscillator states of free fields. For

A(„)(x)=vA (vx), @(,)(x)=N(vx) .

The energy of [A, @j has three non-negative contribu-
tions: from the field tensor, from the covariant derivative
of @, and from the Higgs potential. In three dimensions,
these are multiplied by v, v ', and v, respectively, when
[A, @) is replaced by [A („),@(„)J. The energy diverges
both as v—+0 and v—+ oo, and has a unique minimum with
respect to v at some finite value. Scale transformations
are therefore no obstacle to the existence of classical solu-
tions in a coupled Yang-Mills-Higgs model. This con-
trasts with the situation in pure Yang-Mills or pure scalar
models in three dimensions, where the energy varies
monotonically with v, and there are no static solutions
other than the vacuum.

In this paper we look at the topology of the configura-
tion space of the classical Weinberg-Salam theory. ' Only
the gauge and Higgs fields are considered, and the fer-
mion fields set to zero. We shall show that here too there
are noncontractible loops in the configuration space, be-
ginning and ending at the vacuum, and it seems likely that
the minimax principle applied to these loops again implies
the existence of a static, unstable, finite-energy solution.
As before, its energy is the infimum of the maximal ener-
gies on the loops. We explicitly describe the field configu-
rations on a restricted class of noncontractible loops.
These fields have a high degree of symmetry. By comput-
ing the maximal energy on a suitably chosen loop in this
class, we obtain an upper bound on the actual energy of
the solution. Both our bound and the actual energy de-
pend on such details as the weak mixing angle and the
mass of the Higgs particle, but their order of magnitude is
M~/cx. Here M~ is the semiclassical mass of the 8'bo-
son and a is the fine-structure constant. We make no at-
tempt to prove rigorously that a solution exists, but hope
that Taubes' methods can be adapted to this case.

There are important physical consequences of the ex-
istence of noncontractible loops, whether or not the associ-
ated static solution exists. In general, it is likely that the
infimum of the maximal energies on such loops defines
the energy scale where perturbation theory breaks down.
The analogy here is with the quantum pendulum,
described by the Mathieu equation
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phenomena at or below the energy scale M~ these series
should be useful up to high order. However, we expect
the nontrivial topology of the configuration space ulti-
mately to make them diverge. More importantly, for phe-
nomena at the energy scale Mii /a or higher, conventional
perturbation theory is probably completely unreliable.

Let us consider what the most interesting nonperturba-
tive phenomena would be. We suppose now that the un-
stable solution does exist, although this is not crucial.
Since the solution is at a saddle point of the field potential
energy, its energy represents the height of a barrier be-
tween lower energy regions of field configuration space.
We shall show that this barrier in fact separates what can
be regarded as topologically distinct vacuums. Such vac-
uums are really identical field configurations, but con-
tinuity considerations imply that they must be described
in different gauges.

In a pure SU(2) gauge theory, instantons control tunnel-
ing over a barrier between topologically distinct vacuums,
and their Euclidean action is 8~ /g, where g is the cou-
pling constant. However, because of scale invariance, the
height of the barrier is indeterminate. The Belavin-
Polyakov-Schwartz-Tyupkin (BPST) instanton climbs to
a height inversely proportional to its scale size, so this
height is arbitrarily small.

In the Weinberg-Salam theory, on the other hand, the
barrier height is well defined but there are no true instan-
tons. A scaling argument shows that in any finite-action
solution of the four-dimensional Euclidean field equa-
tions, the Higgs field cannot differ from its vac-
uum value in any finite region, so the only instantons are
singular. Nevertheless, there exist smooth dynamical
fields in Euclidean space which connect topologically dis-
tinct vacuums and also satisfy Gauss's law, and whose ac-
tion is greater than Sir /g by an arbitrarily small amount.
Consequently, one still expects the tunneling amplitude
between these vacuums to be of order exp( —Sir /g ).
Since g —10 in the Weinberg-Salam theory, this ampli-
tude is vanishingly small and the dramatic effects associ-
ated with the tunneling are usually assumed to be unob-
servable. Because of anomalies in the baryon and lepton
currents, these effects include violation of baryon and lep-
ton number. '

But are these effects negligibly small? We suggest that
the amplitude for passing over the barrier could be greatly
enhanced by simply increasing the real energy in the
gauge and Higgs fields so as to be comparable with, or
greater than, the height of the barrier. This could be
achieved in pp or e+e collisions, for example, at center-
of-mass energies of order 1—10 TeV. Whether the field
energy would ever be in a coherent enough form remains a
problem though.

In an earlier version of this paper, " we stated that the
unstable static solution might correspond to a resonance.
We no longer believe this is likely. Our idea was based on
the fact that in finite-dimensional quantum mechanics a
smooth wave function peaked around a saddle point of the
potential energy is not a stationary state, but the decay
rate can be slow if the saddle region is large. Such a wave
function(al) in field theory would correspond to an un-
stable, but relatively long-lived particle. The relevant sad-

For static classical fields in the Weinberg-Salam theory,
one form of the energy functional is

r

E
2

Tr F'J'Fj'
2g

1 1 (TrF J )(TrFJ )
4g

~ 2 4g 2

(2.1)

where

(2.2)

The gauge potential is an anti-Hermitian 2&(2 matrix and
the Higgs field is a two-component complex vector

Although the fields are normalized in an unconventional
way, the parameters g, g', A, , and U have their conventional
meaning, as in Ref. 13. We denote by @R, the four-
component real vector

Re+1

Im@1
R' Re+

Im+2

(2.3)

Let us introduce spherical polar coordinates r, 8, P.
The associated covariant components of the gauge poten-
tial [A„,Ae, A~ j are related to the Cartesian components
by

A„dr +AedH+A&dP=A;dx' . (2.4)

We are interested in fields which are smooth in their
Cartesian form. In spherical polars, ensuring smoothness
at r =0 requires care.

Let us next impose the polar gauge condition' A, =O.
By doing so we avoid having to work explicitly with the
space of full gauge orbits. Any field configuration with
A„&0 can be put in this gauge via the gauge transforma-
tion

1

U(r, 8,$)=H exp A„(or, 0,$)rdo
0

(2.5)

die region is large in the Weinberg-Salam theory, and one
would estimate that although the mass of the unstable
particle was 0 (Mii /g ), its width would be only O(M~).
However, more structure in the potential barrier is neces-
sary before resonance behavior occurs. In one dimension,
a square potential barrier or one with a dip in the middle
exhibits resonance, but a smooth bell-shaped barrier does
not. It is well known that the transmission amplitude
rises and then has multiple dips as the energy of an in-
coming particle increases above the level of a square bar-
rier, but for the potential Vo{1 —tanh (x /a) ) the
transmission amplitude increases monotonically with ener-
gy

12

II. A CLASS OF NONCONTRACTIBLE LOOPS
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Moreover, when A„=O, there is no further local gauge
freedom. In principle, a gauge transformation U(0, $)
would preserve the polar gauge condition, but this is ill
defined at the origin and leads to a singular gauge poten-
tial there, unless U is independent of 0 and P. The residu-
al global gauge freedom will be dealt with later.

Asymptotically, the magnitude of the Higgs field of a
finite-energy configuration must tend to 1. More precise-
ly, we suppose that in the polar gauge there exists a limit-
ing field

(2.6}

(i}p(p, 0,$) is continuous in its arguments; (ii) the depen-
dence of p on 0 and P is consistent with these angles being
spherical polar coordinates —that is, p is unchanged if
P~P+2ir, and p is independent of P when 0=0,ir; (iii)
for all p, p(p, 0=0,$)=(0,0, 1,0); (iv) for p=O and p=m. ,
p(p, 0,$) =(0,0, 1,0) for all 0,$; (v) each point p on Sd,
occurs for at least one triple (p=p(p), 0=0(p),$=$(p)),
and if p is not the point (0,0, 1,0), then p(p) is unique [if
restricted to the range 0 &p(p) & m.] and (0(p), $(p))
represents a unique point of S .

The map %' may now be defined by

ilI(p) = @iT,(p(p), 0(p), $(p) ) . (2.10)
which is a smooth function of 0 and tI), and which satisfies

(2.7)

(Sufficient conditions for the existence of 4 are estab-
lished in Ref. 15. These are in fact slightly stronger than
simply the condition of finite energy. ) Let us use the glo-
bal gauge freedom to fix

0
(0=0)=

There still remains a global U(1) freedom corresponding
to the unbroken gauge group. The vacuum configuration
is, however, completely fixed. It is

0
(2.8)

Equation (2.7) implies that we can regard the field NR,
as a map 4R, . S —+S, where S is the two-sphere at spa-
tial infinity and S is the vacuum manifold of the Higgs
field. Because of the polar gauge condition, this map is a
physical property of the field configuration and not a
gauge artifact. The homotopy group II&(S ) is trivial, so
the map NR, is contractible. It follows that any finite-
energy field configuration can be continuously
transformed to the vacuum, and for this reason there are
no magnetic monopoles in the Weinberg-Salam theory.

We are interested in loops in the configuration space,
beginning and ending at the vacuum. Let p &[0,ir] be the
parameter along one such loop. The asymptotic Higgs
fields of the configurations on the loop define a family of
maps @iT,(p ): S ~S, varying continuously with p.
NR, (0) and Nit, (m. ) are identical constant maps, mapping
all of S to the point (0,0,1,0) on S, because they corre-
spond to vacuum configurations. For all p, +R, maps the
point (0=0) on S to the point (0,0,1,0) on S, because of
our gauge choice.

We wish to show that such a family of maps is topolog-
ically equivalent to a single map 4: S —+S . To avoid
confusion, we shall denote the domain of 4 by Sd, and
its target by SH;gg, . We proceed by associating with each
triple (p, 0,$) a point p (p, 0,$) on Sd, , which we write as
a four-component unit vector

p (p, 0,$)= (simp sin0 cosp, sinp, sin0 sing, sin p cos0

cia(p)

0 1
e"(P) (2.11)

where a(p) is any continuous function. 4 will vary as
a(p) varies, but in a continuous way, so its degree is un-
changed. This gauge freedom does not therefore affect
the relationship between a nonzero degree and a noncon-
tractible loop.

(O, O, I, O)

This is an unambiguous definition for p&(0,0, 1,0) be-
cause of property (v) above, and unambiguous for
p =(0,0, 1,0) because of the special properties of the maps
@R,(p) mentioned earlier.

The geometric meaning of (2.9) is simple. For given p
between 0 and ~, the points p lie on the two-sphere which
is at the intersection of the unit three-sphere with the hy-
perplane p3cosp —p&sinp=cosp (see Fig. 3). As p varies
these two-sphere sections swing over the whole three-
sphere.

We have now associated with a loop in the configura-
tion space, beginning and ending at the vacuum, a map 4:
S —+S . %' is important because if its degree is nonzero,
then the loop is noncontractible. To verify this statement,
we suppose the loop is contractible. Then the fields on it
can be simultaneously and continuously transformed to
the vacuum. In the process, 4 is continuously
transformed to the trivial map of degree zero, where all of
S is mapped to one point. The degree must therefore
have been zero initially, because it is unchanged by a con-
tinuous change of 4'.

Recall that we still have a global U(1) gauge freedom.
Under a gauge transformation of this type

+cos p, sing cosp(cos0 —1)) . (2.9)

This identification has the following desired properties: FIG. 3. Two-sphere sections of a three-sphere.
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A simple map of nonzero degree is the identity map,
which has degree one. With this choice for 4, the asymp-
totic Higgs fields are

lim h(r)=0, lim h(r)=1,

lim f(—r) =0, lim f(r) =1 .1

r —+0 r r~ oo

(2.18)

or equivalently

sing sin8 cosg
sing sin8 sing

sin'p cose+cos'p
sinp, cosp(cos8 —1)

(2.12)

sing sin8e'~
(p, 8, )=

e '"(cosy+i sing cos8) (2.13)

where U is the U(2) matrix

@oo+ C oo
2 1

1 2C oo @oo (2.15)

Since @ varies with p, 8, and P, so do U" and A P).
U has the property that

0
(goo U oo

1
(2.16)

and for this reason, the covariant derivatives De@ and
D~4 vanish asymptotically, as they must for a finite-
energy configuration.

Consider now the following field configurations:

0
4'(p, r, 8,$)= [1—h (r)];& +h (r)N (p, 8,$),e '"cosp

A
(q) (p, r, 8,$)=f (r)A (e) (p, 8,$), (2.17)

A, (p, r, 8,$)=0

with @ given by (2.13) and Ae, A~ given in terms of @"
by (2.14) and (2.15). These fields are defined over all of
space, are smooth, and have finite energy for suitable radi-
al functions f and h. To ensure smoothness at the origin
and to ensure that the fields have the desired asymptotic
behavior, f and h must satisfy the boundary conditions

A loop of finite-energy field configurations, whose asymp-
totic Higgs fields are given by (2.13), will be noncontracti-
ble.

A suitable ansatz for the asymptotic gauge potential is

(2.14)

0
C'(x) = U(x) 1, A;(x) = —(8;UU ')(x), (2.19)

where U~1 at spatial infinity, and U cannot be continu-
ously transformed to U= 1 while preserving this boundary
condition.

Topologically distinct vacuums are not really physically
distinct, just as little as points on a circle whose angular
coordinates differ by 2ir are geometrically distinct, but the
notion is useful if one considers noncontractible loops in
configuration space. The notion will probably cease to be
useful when one attempts to deal with the nontrivial
higher-dimensional topology of the configuration space
(i.e., noncontractible spheres). This higher-dimensional
topology certainly exists. '

III. AN ENERGY BOUND

We have argued that the existence of noncontractible
loops in the VVeinberg-Salam theory may imply the ex-
istence of an unstable classical solution, whose energy is
the infimum of the maximal energies on these loops. In
this section we use the loop of field configurations of Eq.
(2.17), with particular forms for the radial functions f and
h, to obtain an upper bound on this energy. Recall that p
is the parameter along the loop.

Let us first rewrite the energy functional (2.1) in spheri-
cal polar coordinates, taking into account the polar gauge
condition A, =0 and the tracelessness of the field tensor:

For p =0 and p =ir the fields are those of the vacuum.
We conclude that the fields (2.17) represent a noncon-

tractible loop in the configuration space of the classical
steinberg-Salam theory, beginning and ending at the vac-
uum. Note that U is not just unitary, but has deter-
minant equal to one. Both the gauge potential and the
field tensor are pure SU(2) and therefore traceless, and
there is no contribution to the energy from the second
term in (2.1).

Finally, let us note that by relaxing the polar gauge con-
dition, a noncontractible loop connecting the vacuum to
itself can be cast in a form where it becomes a path con-
necting "topologically distinct" vacuums. If one imposes
the gauge condition that at spatial infinity all fields must
approach the unitary vacuum (2.8), and also that the con-
figuration corresponding to @=0 is still the unitary vac-
uum, then the configuration corresponding to p=~ will
have the form

—1 1 1 1E = Tr(Q,AeB,Ae)+ Tr(B„A~8„A~)+ ~ Tr(Fe&F&&)
g r r sing r sin

2 4
(g @)tg„cy+ (D&@)tD&@+ — (D&@)tD&@ + (4 4—1) r sin8 dr d 8 dp .

r r sin8 4
(3.1)
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1—
Fs~ ——— [A e,Ap] (3.2)

because the gauge potential is proportional to a pure gauge.
A direct computation shows that the fields (2.17) have a spherically symmetric energy density. This is rather remark-

able, since the fields themselves are not spherically symmetric, as we shall show in Sec. IV. The total energy is
2

E(p)= f . 4 2
sin p+ [f(1—f)] sin pr

dh

dr

2

sin p+ I[h(1—f)] sin p —2fh(1 —f)(l —h)cos psin p+[f(1—h)] cos p sin pJr 2

2 2+ (h —1) sin p 4mr dr .-
4

(3.3)

A simple choice for f and h, satisfying the boundary
conditions (2.18), is

h(r)= &o

1, r)Rp,

2

«&pf(r)= Ro

1, r&Ap .

(3.4)

Rp is an arbitrary parameter which represents the core
size of the configuration. The energy density is identically
zero outside the core. If desired, f and h can be made
smooth near Rp with an infinitesimal change in the ener-

gy.
With the above radial functions the maximal energy on

the loop occurs when p = —,
' ~. The only term in the ener-

gy density for which this is not obvious is

2

I [h (1 —f)]~sin p —2fh (1—f)(1—h)cos p sin p2

(3.9)

One could lower these bounds by choosing optimal
forms for the radial functions, but that would require a
numerical solution of coupled ordinary differential equa-
tions. Since the angular dependence of the trial configura-
tions probably differs considerably from that of the solu-
tion, this effort does not seem worthwhile.

In physical terms

4' v ~H=2 sin Op (3.10)
g a

where (9~ is the weak mixing angle. If sin 0~ ——0.23 and
M~ ——79 CieV, the energies (3.8) and (3.9) have values of
12 and 16 TeV, respectively. The values A, =O and X=g
correspond to Higgs-particle masses M~ ——0 and
M~ ——2~2M~. The actual energy of the solution is prob-
ably in the range 1—10 TeV.

+[f(1—h)] cos psin pJ . (3.5) IV. MORE ON CLASSICAL SOLUTIONS

However, if 0 &f & 1 and 0 & h & 1, then this term has its
maximum at p = —,~ provided

(1+~2)h (1 f))f (1 —h) . — (3.6)

4~ 1248 +51v Rp+4Av Rp4 3

210 g2&p
(3.7)

This shows that a change of Ap corresponds to a rescaling
of the fields in the canonical sense. Our upper bound on
the energy of the expected unstable solution of the field
equations is the minimum of (3.7) with respect to Ro. The
dependence of this bound on A, is not very informative, so
we just give it for two values of k. For A, =O we find

This condition is satisfied by the radial functions we have
chosen, for all r.

The field configuration with p = —,~ has energy

There are clearly many questions left unanswered by the
preceding analysis. Most important is whether the classi-
cal solution that we expect does in fact exist. While
Taubes' methods may lead to an affirmative answer, they
give no detailed description of the solution. Our present
ansatz (2.17), with p= ,' vr, is probably f—ar from an accu-
rate picture. There are some ideas in the literature which
may be more helpful, however.

Let us first note that the Weinberg-Salam theory has a
vortex solution. This vortex is simply the Nielsen-Olesen
vortex' of the Abelian Higgs model embedded in the
non-Abelian theory. One can truncate the Weinberg-
Salam theory by assuming that the Higgs field has the
form @ = (~) and that the gauge potential has the form

0 0
(4. 1)0 a;

and for k =g
g

(3.8)
a; is the field corresponding to the Z boson. The energy
functional in terms of P and a; is precisely the Abelian
Higgs model. The argument which showed that the vor-
tex was topologically stable in the Abelian model fails in
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ia be"
—be " ic (4.2)

the larger theory, so there it is probably unstable. In any
case it has infinite energy, because of its infinite length, so
it does not correspond directly to the solution we seek.

However, there have been two proposals for using the
vortex. First, Nambu studied a configuration where a fi-
nite piece of the vortex is terminated by monopoles. '

Second, Huang and Tipton considered joining the ends of
the vortex to form a vortex ring. ' They argued that
quantum effects could turn this into a metastable particle,
dubbed a "vorticon. " The classical vortex ring, just be-
cause it is unstable, may be an approximation to the solu-
tion we seek.

We stated earlier that the field configurations of Eq.
(2.17) are not spherically symmetric, even though the en-
ergy density is. The reason for this is rather interesting.
There is a simple way to regard the bosonic fields of the
Weinberg-Salam theory as embedded in an SO(4) gauge
theory. One just forgets the complex structure and writes
everything in real form. A complex doublet becomes a
real four-component vector, as in (2.3) for the Higgs field.
An element of the U(2) Lie algebra

The unmarked entries in Aa, are determined by anti-self-
duality, since the gauge potential is pure SU(2).

Both NR, and AR, are manifestly rotationally sym-
metric. A rotation R acting on 4R, is compensated by the
SO(4) gauge transformation (0 i ), which is identified with
the element (R,R) of SU(2)L XSU(2)z. The rotation R
acting on 2R, is compensated by the gauge transformation
R in SU(2)L, or more generally by any element (R,R') in
SU(2)L XSU(2)~. If R' is position independent it has no
effect on AR, . @R, and AR, are simultaneously invariant
under the rotation R if we choose R'=R.

If the fields of the Weinberg-Salam theory are in real
form, then the field energy has a form which would be
standard in an SO(4) Yang-Mills-Higgs theory. Since the
SO(4) fields are spherically symmetric, the energy density
is also spherically symmetric.

Qn the other hand, the fields in their original complex
form are not spherically symmetric. There is no way a ro-
tation R can be compensated by a global gauge transfor-
mation in U(2). Trying to use position-dependent gauge
transformations does not help either. It follows that even
for p= , n the fi—elds (2.17) cannot satisfy the field equa-
tions for any nontrivial choice of the radial functions.
The U(1) current

is identified with the element j "'=4 D 4 (D 4&) N— (4.6)

~Re
Q 0

—b cos~ —b sin~

b cosr —b sin~

b sim. b cos~
—c (4.3)

b sin~ —b cos~ c 0

(4.4)

P dz —zdg
zdx —x dz

0 xdy —ydx
0

(4.5)

of the SO(4) Lie algebra. If c = —a then the U(2) matrix
is traceless and hence in the Lie algebra of SU(2). The
corresponding SO(4) matrix is anti-self-dual.

SO(4) is generated by the anti-self-dual and self-dual
4X4 matrices, which commute, and therefore SO(4)
=SU(2)L X SU(2)z. (We ignore central elements in what
follows. ) We see from (4.3) that U(2) can be identified
with SU(2)L XU(1)~ CSO(4), where U(1)z is a subgroup
of SU(2)~ which depends on how the four real variables
are paired to make two complex ones.

Let us just discuss the symmetries of the fields (2.17)
for p = —,m. This is the most important case, and the sim-
plest. Let us also revert to Cartesian coordinates. Qne
can show that the real forms of the Higgs field and gauge
potential are

is nonvanishing and not spherically symmetric, although
it is part of a spherically symmetric SU(2)z current. It is
therefore inconsistent with the field equations to have a
vanishing U(1) gauge potential, as in (2.17). However, if
there were a nonvanishing U(1) gauge potential, it would
not be spherically symmetric, and without further modifi-
cations the field equations would still not be satisfied.

In conclusion, we expect the actual solution of the field
equations to have even less symmetry than the fields we
have been discussing. Possibly there is a residual axial
symmetry. A physical consequence is that the solution,
while not being a magnetic monopole, would have a defin-
ite magnetic moment determined by the leading behavior
of the asymptotic electromagnetic gauge fields.

V. CONCLUSIONS

We have shown that there are noncontractible loops in
the field-configuration space of the Weinberg-Salam
theory. If some analog of Morse theory applies to this
infinite-dimensional configuration space, then associated
with these loops there is a static, unstable solution of the
field equations. In a related gauge theory, Taubes has
proved that such a solution does occur, and it is likely that
his methods can be applied in the Weinberg-Salam case.
It would also be worthwhile to seek the relevant solution
numerically, and find its energy.

The solution, if it exists, is at a saddle point of the field
potential energy, so its energy is the barrier height for
vacuum-to-vacuum tunneling along these topologically
nontrivial paths. Such tunneling leads to baryon- and
lepton-number violation. Although the tunneling ampli-
tude appears to be negligibly small, we suggest it could be
enhanced by pumping enough energy into the fields. Par-
ticle collisions at 1 TeV and above may achieve this.
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