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Simple rules for discontinuities in finite-temperature field theory
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The discontinuity, or imaginary part, of the self-energy function at T&0 is found to be of the
form I =I ~+I; for bosons and fermions, respectively. The generalized decay rate I d and inverse

decay rate I; are recognizable as integrals over phase space of amplitudes squared, weighted with
certain statistical factors that account for the possibility of particle absorption from the medium or
particle emission into the medium. Nonequilibrium statistical mechanics shows that I gives pre-
cisely the rate at which the single-particle distribution function approaches the equilibrium form.

I. INTRODUCTION

There are many unanswered questions about the
behavior of quantuin field theories at nonzero tempera-
ture. In particular, not much is known about the ima-
ginary parts of finite-temperature Green's functions.
Only the simplest of these, viz. , the self-energy II, will be
treated here. At T=O, ImH can be expressed as the
square of the decay amplitude, integrated over phase
space, and consequently has an obvious physical interpre-
tation as the probability of particle decay. The purpose of
this paper is to compute ImII for T&0 and organize it
into a recognizable form as the square of an amplitude, in-
tegrated over phase space but weighted with certain sta-
tistical factors appropriate to a thermal distribution.

The field-theory calculations that will be presented are
very simple and the results can be nicely accounted for by
arguinents of statistical mechanics. Consider, for exam-
ple, a world containing only three species of particles: W,
e, and v. The decay W~ev will have a rate I d in which
the phase space is Pauli suppressed by the statistical fac-
tors (1—n, )(1—n-„) appropriate to a thermal distribution
of e's and v's, where n '=exp(E/T)+1. However,
since real e 's and v's are present in the heat bath, it is also
possible for W's to appear spontaneously by the inverse
decay ev~ W. The rate I; for this process should depend
on the product n, n„of occupation numbers. It turns out
that the W self-energy II(to) precisely accounts for both
these processes. It has a discontinuity, or imaginary part

ImII(to) = —coI'(to),

which provides a link between field theory and statistical
mechanics in that I (co)=I q —I;.

The above result is for any W boson with sit &m, .
Suppose, however, that s@ & m, . Then W~e v is
kinematically forbidden and at T=O the self-energy has
no imaginary part. But at T&0 such a virtual W boson
can disappear by absorbing a v from the heat bath. The
rate I d for Wv~e should depend on the product
n„(1 n, ) for absorp—tion of v and emission of e. On the
other hand, a virtual W boson cari spontaneously appear
in the medium from the inverse process e —+Wv, whose
rate I; has a statistical weight n, (1 n„). Both these pro-—

cesses are accounted for by a new cut in the W self-energy
for —m, &sn &m, that is not present at T=O. The
discontinuity across this cut is pure imaginary and again
given by (1.1) with I (co)=I d —I; appropriate to Wv —+e
and e~ Wv.

There are several ways in which I differs from an ordi-
nary decay rate: (1) For fermion self-energies the ima-
ginary part is given by I =I d+I; instead of the differ-
ence. (2) Since the heat bath provides a special Lorentz
frame, a particle moving with energy-momentum (to, k) in
this frame is not physically equivalent to a particle at rest.
Thus even for a fixed value of s =co —k, the rate I (co)
has nontrivial co dependence. (3) After a very long time
T»1/I it is clearly not true that all the particles in
question, e.g., W bosons, have decayed away. Even after
an infinite time there will still be a thermal distribution of
W's preserit in the medium.

These three properties show that I should not be inter-
preted as some kind of net decay rate for the particle.
Further investigation shows instead that I is the rate at
which a nonequilibrium distribution f (to, t) approaches
thermal equilibrium:

f (to, t) = 1
+c(co)exp( —I t),

exp(co/T) —o
(1.2)

where I =I d —o.I; is the imaginary part of the self-
energy appropriate to bosons (o = 1) or fermions
(o = —1).

As noted earlier, one could anticipate the form of I d

and I; from statistical-mechanical considerations without
reference to self-energy graphs. This has been the ap-
proach taken in recent papers on neutron decay by Dicus
et al. ' and by Cambier, Primack, and Sher and on Higgs
boson decay by Donoghue and Holstein. The rather dif-
ficult computation of these rates included radiative
corrections and cancellation of some new infrared diver-
gences. The emphasis of this paper is not in computing
these rates, but rather in relating them to the self-energy
function.

The paper is organized as follows: Section II contains
analysis of the one-loop contributions to boson and fer-
mion self-energies. From the one-loop results an extrapo-
lation is made to the many-particle case. The justification

1983 The American Physical Society



2008 H. ARTHUR WELDON

of the many-particle discontinuity is presented in the Ap-
pendix. Section III develops the physical interpretation of
I [viz. , (1.2)] and presents evidence that virtual, off-shell
particles will also be in thermal equilibrium in any heat
bath with a Breit-Wigner probability of width I . No-
where in the paper are there chemical potentials, but it is
straightforward to include them.

o"
Gab 4U&, p

—k

II. THE SELF-ENERG Y

D(co„p)=
2 ~2 2m, —p —m

(2.1)

There exist two formalisms for field-theoretic computa-
tions at nonzero temperature Th. e imaginary-time (or Eu-
clidean) formulation invented by Matsubara" quantizes
field operators on the imaginary-time interval
0 (it & 1/T. The resulting Green's functions, when
Fourier transformed, depend on discrete frequencies. For
a relativistic theory of scalar bosons the two-point Green's
function is

FIG. 1. The general two-particle contribution to the self-

energy of N.

tomatically yields results with the correct analytic proper-
ties and will therefore be used throughout this paper.

A. Boson self-energy

(1) Two boson -intermediate states: The simplest self-
energy graph is that shown in Fig. 1 when $„$2, and 4&

are all scalar bosons with a cubic coupling of strength g.
Then

co~ =12vraT, (2.2)
II(co„k )

where a is an integer. The great advantage of this forrnal-
ism is that perturbation theory may still be organized into
a diagrammatic expansion with the same vertices as at
T =0. ' Computation of a particular diagram will yield
a result which depends on various external three-momenta

p and external frequencies co, of the form (2.2). One
must then analytically extend the result away from the
discrete imaginary frequencies co, down to the real ~ axis
to describe particles with real energy m. Although this ap-
proach is more tedious than the real-time approach, it au-

00

gT g —J 3 D(cot„p )D (cob —co„p —k ),
b „(2'�)

(2.3)

where cob ——i2mhT. It is perhaps worth noting that for
T&0 (2.3) depends separately on co, and k because the
heat bath singles out a preferred frame of reference. How-
ever, the k dependence on (2.3) will be suppressed from
now on. The summation in (2.3) is straightforward and
yields

d
II(co, ) =g j (2~)

coth(E i /2T)
4E]

1 1+ +(E)~Ei)
(co, —E) )' —E2' (co, +E) )' —Ep'

(2.4)

E, =(m, '+p')'~', E2 ——[m2'+(p —k)']' '. (2.5)

It is useful to write —,coth(E/2T) = —, + n where n is the Bose-Einstein distribution

n =(e ~ —1) (2.6)

and then to separate (2.4) into partial fractions

t

'

d P 1 1+&t+n2 n j. n2 n2 n 1 1+n1+n2II(co, ) =g +(2~)3 2Ei2E2 co, E) E2 co, +Ei —E—2 co, E)+E2 co,—+—Ei+E~
L

(2.7)

One can immediately extend this function from the discrete, imaginary values co, to the full complex co plane. There are
a few obvious properties of this extension: (a) considered as function of the complex variable co, II satisfies

II(co }*= II(co' } (2.8)

and is thus Hermitian analytic. (b) II has cuts along the real axis. (c) The discontinuity across these cuts [defined by
II(co+iran) II(co ir)) fo—r co rea—l] is pure imaginary so that

DiscII(co) = —2iImII(co) .

The explicit discontinuity of (2.7) is

(2.9)
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DiscII = —ig
8p 2&

(2~)3 2Ei2E2
[5(ro —E, E—2)[(1+ni)(1+n2)—nin2]+5(ro+E, —E2)[ni(1+n2) —nq(l+n, )]

+5(ro E—i +Eq) [nq(1+ n i ) —n i ( 1+n2 ) ]

+5(~+Ei+E2)[nl 2 (1+ni)(1+n2)] I (2.10)

Although no products n in 2 were present in (2.7) they have
been added and subtracted in (2.10) so as to provide a
physical interpretation. For example, the first term in
(2.10) may be interpreted as the probability for the decay
@—+Pi/2 with statistical weight (1+n i )(1+ n2 ) for
stimulated emission minus the probability for the inverse
decay Pig2~@ with weight ntn2 for absorption. Similar-
ly, the second term corresponds to C&gi~gz with weights

n i(1+nq) minus the probability for Pz~@Pi with weight
n2(1+ n i ). All eight processes are shown in Fig. 2.

For fixed masses rn i and mz the 5-function constraints
can only be satisfied for certain ranges of s =co —k . For
definiteness, take mt &m2 and ro) 0. Then co=E, +E2 is
possible only if s )(mi+m2); ro+E& E2 is po——ssible
only if m i

—m2 & s & (m i —m2); but neither
co+E2 ——E] nor ~+E&+E2——0 can be satisfied. Figure 3
shows the location of the corresponding branch cuts in the
complex s plane. The new cut from mi —mq &0 to
(mi —mz) results from the process @P&~$2 and its in-

)'Wa 'Y 'p+m
S co~, p

Q)g
—p —f72

(2.11)

co, =i 2m(a+ —,
' )T .

This gives a one-loop self-energy

(2.12)

verse and has a discontinuity proportional to
ni(1+n2) —n2(1+ni)=ni n—2 T.his is always positive
since E2 —E]——co )0 here.

The con.y system is a nice example of these analytic
properties. The self-energy of a virtual co has cuts for
—m ~s„~m„and m ~s„& ao. The same argument2 2 2

shows that the self-energy of a virtual y has cuts for
—m„+m &sz &(m„m)—and (m„+m ) &sz & ae.

(2) Two fermi-on intermediate states: Next we consider
the self-energy graph shown in Fig. 1, but now take P&

and Pz as a fermion-antifermion pair which enjoy a Yu-
kawa coupling to the scalar boson @. The imaginary-time
propagator for fermions is

II(ro„k )

(o) 00 d3
=g~T g I Tr[S (cob, p )S (rob —co„p —k)],

b (2n)

(2.13)

where the extra minus sign relative to (2.3) comes from
the closed fermion loop. The trace and summation yield

(c)

FIC». 2. The eight amplitudes responsible for the disappear-
ance and reappearance of W. Only one pair of amplitudes is
kinematically possible for given values of co and s: Reactions (a)
for co&0 or (d) for co &0 require (rn&+m2) &s & op', reactions
(b) for co(m

&
—m2) & 0 or (c) for co(m l

—m2) & 0 require
—

I
m& —m2

I
&s & Im& —m&

I

2 2
(m, -m, ) (m„+ m, )f7' l m p

A - . A A A AvvvvyqyyvvvYYYYYYYYYN V v v v v v v v v +V

FIG. 3. Location of the branch cuts in the one-loop self-

energy as a function of s =m —k . The discontinuity across
the new cut —

I
m~ —m2

I
&s &(mi —mqi is produced by re-

actions (b) or (c) of Fig. 2 and automatically vanishes as T—+0.
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d11(~.)=g' J "P,
(2n. )

tanh(E i /2T)
4E1

+2 +(Ei~Eg)
(co, —Ei) —E2 (co, +Ei) —E2

(2.14)

N =2s —2(mi+m2) (2.15)

where s =co, —k and E&,E2 are the same as in (2.5). If we use —,
' tanh(E/2T) = —,

' n—where n is now the Fermi-Dirac
distribution

n =(e~"+1)-'
then (2.14) can be separated into partial fractions as

p n1 —n2 —1+n1+n2
11(~.)=g' --+ + + +C,

E12E2 ~a E1 E2 ~a+E1 E2 ~a E1+E2 ~a+E1+E2

(2.16)

(2.17)

where C is a real constant independent of co, and k:

tanh(E, /2T) tanh(E2/2T)2

(2~)3 2Ei 2E~

When the discrete, imaginary frequency co, is extended to an arbitrary complex variable co, then (2.17) is again Hermi-
tian analytic with cuts along the real co axis.

The discontinuity of (2.17) across the cuts is

DlscH = —Eg
d'p

I 5(co Ei —Ez—)[(1 n& )(1—nq) —n in 2] 5(co—+E—i E2)[n i(—1 n2 ) ——n2(1 n i )]—(2~)' 2Ei2E2

5(co Ei—+E2)—[n2(1 n i ) n, (1——n—~ ) ]

+5(~+Ei+E2)[nin2 (1 ni)(1 —n2)] J (2.18)

As before, the product n in2 is not present in (2.17) but has been added and subtracted in (2.18). The location of the cuts
here are the same as in Fig. 3. The curious alternation of signs in (2.18) has a simple explanation: Since co=+(Ei+E2)
can only be satisfied for s &(mi+m2), X is positive in this region. Since co=+(Ei E2) can on—ly be satisfied for
—

l
m

&

—m2
l

&s &
l

m i
—m2 l, N is negative in this region. Consequently all four terms in (2.18) actually contribute

positively.
A more physical representation of (2.18) is obtained by introducing the amplitudes '

M(%~1,2) =gu(pi)U(p2), M(C&, 2~1)=gu(pi)u (p2),

M(@,1~2)=gU(pi)U(p2), M(4, 1,2~0)=gu(pi)u(pz),

for the fermion Pi and antifermion $2. Then

DiscII= i I dp,—dp (2m) Q I5 (k —pi p2) lM(@ I » l'[(1—ni)(1 —n2) —"in2]
$)$2

+5 (i+pi —p2) lM(@, 1~2) l'[ni(1 —n2) n2(1 —ni)l

+5 (k pl +p2) I
M(~' 2 1)

I
'[n2(1 —n i )—n i(1—n2)]

+5 (k+pi+p2)
l
M(@ 12 )

l
'[,n, —(1—ni)(1 —n2)]I,

(2.19)

(2.20)

where dp =d p/2E(2~) . The probabilistlc interpretation of this result is obviously the same as for (2 10)

B. Fermion self-energy

%%en N is a fermion the self-energy graph Fig. 1 still applies if Pi and P2 are taken as fermion and boson, respective-

ly, with a Yukawa coupling g. The self-energy matrix X(co, k) for N is obtained by using (2.11) for the P& (fermion)
propagator and (2.1) for the $2 (boson) propagator:
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d pX(co„k)= g—T g f S (cob, p )D (cob —co„p—k ),
(2m )' (2.21)

where both co, and cob are of the form (2.12). After computing this sum and extending co, to the full complex co plane, X
is again a Hermitian analytic function of the complex variable co. The discontinuity across the real co axis is

DiscX = —&g
dp 2K

[5(co—E] E2—)(p]+m] )(1—n]+n2)+5(co+E] —E2)(p] —m] )(n]+n2)
(2~)3 2E]2Eq

+5(co E] +—E2)(p]+ m] )(n] +n2) +5(co+E]+E2)(p] —m ] )(1 n—] +n2)],

(2.22)

where p] E» 0——here. Note that n] is the fermion distribution function (2.16) and n2 is the boson distribution function
(2.6). This discontinuity is nonvanishing either for —

~
m] —m2

~
&s &(m] —mq) or (m, +m, )'&s & ao as shown in

Fig. 3.
In order to interpret (2.22) in terms of probabilities, it is useful to define

II(co, k ) =u(k)X(co, k )u (k),
where u (k) is a free particle spinor with effective mass parameter V s, i.e.,

(]|c—~s )u (k) =0, u(k)u (k) =2v s

Then one may rewrite (2.22) as

DiscII= i f—dp]dp2 g (2m )"I5 (k —p] —p2)
~

M(@~1,2)
~

[(1 n] )(1—+n2)+n]n2]

(2.23)

(2.24)

+5 (k+p] —p ) ~M(e, 1~2)
~

[n](1+n2)+n2(1 n])]-
+5 (k —p]+pp) ~M(e, 2~1)

~
[n2(1 n])+—n](1+n2)]

+5 (k+pl+p2) ~M(C' 1 2 0) ~'[n]n2+(1 —n])(1+n2)]I (2.25)

where s] is the spin of the fermion P], dp =d p /2E (2m ), and the amplitudes M are given by'

M(@~1,2) =gu(p] )u (k) =M(@,2—+I ), M(C&, 1—+2) =gu(p] )u (k) =M(4, 1,2~0) . (2.26)

The statistical weights such as (1 n] )(1+—n2) for 4—+P]Pz and n ]n2 for the inverse decay P]$2~@are just as expected
since n] refers to a fermion and n2 to a boson. However, the rates for the disappearance of + and for the reappearance
of N are added in (2.25). This is to be contrasted with the previous results for 4 a boson, in which case the two rates
were subtracted as in (2.10) and (2.20). This is a general feature.

C. Multiparticle discontinuities

It is straightforward to generalize the previous results. The probability for a particle 4 to propagate through a T&0
medium with energy co & 0 and momentum k (s =—co —k ) will decrease with a rate I d(co) given by"

I d(co)= g f dQ, b ~M(@,l, . . . , a —+1', . . . , b')
~

n] n, (1+n] ) (1+nb)
2~ ab

and will increase with a rate I';(co) given by

I;(co)= g f dQ, b i
M(1', . . . , b'~@, l, . . . , a)

i
n'] . nq(1+n]) (1+n, } .

267

(2.27)

(2.28)

Boson emission is enhanced by the statistical factor 1+n(E); fermion emission is suppressed by 1 n(E). Th—e phase-

space integration is

a b
dfI~s—:f dp] ' dp~dp] ' dpb(2m) 5 I]. + gp; —gp'

1 1

(2.29)
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where k"=(co,k) and dp =d p/2Ep(2m) .
The results of Secs. IIA and IIB suggest that I d and

I; in the general case are also related to the N self-energy
by

DiscII(to) = i—2to[I d(to) o—I; (to)], (2.30)

where o =1 if @ is a boson [as in (2.10) and (2.20)] and
o.= —1 if @ is a fermion [as in (2.25)]. This conjecture is
demonstrated more fully in the Appendix, though not
with complete rigor. Similarly, (2.30) can be expressed as

Imll(to) = —tv[I d(co) —o I;(co)] . (2.31)

It is important to point out that the ratio of I d to I; is
a universal function of co, because the single-particle dis-
tribution functions n (E) satisfy

(1+n)/n =exp(E/T) (bosons),

(1 n)/—n =exp(E/T) (fermions) .
(2.32)

Thus the ratio of the statistical factors in (2.27) to those in
(2.28) is given by

exp
0 b

1 1

T =exp(co/T) . (2.33)

If CP invariance holds, the corresponding
~

M are equal
for direct and inverse reactions so that

I g(to)
=exp(co/T) .I

q cgj
(2.34)

III. PHYSICAL INTERPRETATION

At T&0 the self-energy of any particle N, stable or un-
stable, has an imaginary part because of reactions like

(b) (o) (b) (c) (o) (c)

In fact, even if CI' invariance is violated, this result still
holds because of unitarity. ' '

An interesting example of the multiparticle discontinui-
ties occurs in the order-a radiative corrections to the
Higgs-boson decay H ~e+e that were studied by
Donoghue and Holstein. They computed rates by squar-
ing amplitudes and integrating over phase space, taking
into account the possibility of particle absorption from the
heat bath. The same results are obtained by computing
the discontinuities in the H self-energy illustrated in Fig.
4. [In the regime T«m, considered by Donoghue and
Holstein all of the inverse reactions and He—++ ye—+ are
negligible because of exp( m, /T) suppression —factors. ]

@P&- -Pz. P&. This, of course, does not mean that all
N's will disappear from the heat bath after a sufficiently
long time. In fact, after a very long time one expects a
thermal distribution of all elementary particles, both
stable and unstable. Thus a different interpretation of
ImII is required.

(l) The approach to equilibrium T. o interpret Imll we
note that although P~, gz, $3, . . . are taken to be in thermal

equilibrium, it is not necessary for the previous calcula-
tions to assume that N itself is in thermal equilibrium.
For example, one might specify that at t =0 the number of
N s with energy co follow an arbitrary nonequilibrium dis-
tribution fo(co). The distribution function of the N s at
any later time will be f(to, t). Changes in f come about
both from the rate fI d for decreasing the number of N 's

and from the rate (1+ of)I; for increasing the number of
N 's, where o.=+ 1 depending on whether N is a boson or
fermion. Thus f (to, t) satisfies

(3.1)

In higher orders, 4 itself can occur within the self-energy
so that I d and I; can depend on f, i.e., (3.1) is non-
linear. ' However, for small departures from equilibrium
one can use the exact equilibrium distributions in I d ar d
I;. Then (3.1) has the solution'

(3.2)

f (co,t)=, +c(co)e1
(3.3)

Thus regardless of the distribution specified at t=0,
f (cv, t) inevitably approaches the equilibrium form as
t~ oo. The rate of approach to equilibrium I (cv) is relat-
ed to the self-energy function because of (2.31):

ImII(co) = —coI (co) . (3.4)

The distinction between boson self-energies (I =I q —I;)
and fermion self-energies (I =I d+I;) is essential in ob-
taining the distribution function (3.3).

(2) Thermal properties of virtual particles. The argu-
ment leading to the thermal distribution function (3.3) for
N did not require that N be on its mass shell. In fact, no
mass value for N has ever been introduced. This suggests
that the distribution function (3.3) should apply to virtual
N's with any value of s =co —k and that after a time
t ~~ 1/I" the virtual @'s will reach thermal equilibrium.

Additional evidence for this view is provided by the
T+0 propagator. For example, if @ is a spinless boson
the function

where c (co) is an arbitrary function. Because of (2.34) this
may be written

b, (co)= [co —k —M —II(to) ] (3.5)

FIG. 4. The order-a radiative corrections to the decay
H~e+e correspond to the discontinuities in the Higgs-boson
self-energy: (a) H= ="+e y, Hy=-: +e, He + ye, and
PA+~ye+; (b) H= ="+e with fermion self-energy correction;
(c) 0= ==+e with vertex correction.

is the fu11 propagator in the imaginary-time formalism
when co takes an imaginary value (2.2). The full propaga-
tor in the real-time formulation is not just the analytic
continuation of (3.5) down to the real co axis but is given
by
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D(co) =b(co+i') ip(co)
exp co T —1

i p—{co)=b (co+i rt) b—(co i r—t),

(3.6)
corresponding two-particle I d and I; determine the ap-
proach to equilibrium of a two-particle distribution func-
tion. This requires generalizing (3.1).

2ImII
(co —k —M —ReII) +(ImII)

(3.8)

Since ReII and ImII are even and odd functions of co,
respectively, the spectral function is odd:

p(co)=e(co)p(
~

co
~

) . (3.9)

The physical value of the variable s =co —k is ob-
tained by approaching the real s axis from above: s +ig.
In the complex co plane, this limit is equivalent to co+i'
when co & 0 and to co —ig when co &0. A simple calcula-
tion shows

h(co+i') =b(co+i e(co)rt)+i 0( co)p—(
~

co
~

) . (3.10)

as shown by Dolan and Jackiw. Although (3.6) holds for
co negative, it is misleading. To rewrite (3.6) we first use
the Hermitian analytic property (2.9) to write the spectral
function more explicitly,
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APPENDIX: MULTIPARTICLE DISCONTINUITIES

The general form for the multiparticle discontinuity
that was conjectured in Sec. II C will now be demonstrat-
ed T. he demonstration emphasizes how the statistical fac
tors arise from the finite-temperature propagators but is
not mathematically rigorous.

A single self-energy diagram may have many possible
intermediate states. We consider the contribution of a
particular N-body state as shown in Fig. 5. For simplicity
these X particles are all taken as spinless bosons with
propagators

Using (3.9) and (3.10) allows the full propagator to be
written

D (co, , p, ) =(co,'—E, ') (A 1)

D (co) =b (co+i e(co)rt) — . (3.11)ip( co )

exp{ (
co/T

~
) —1

This form is far more useful: The first term evaluates the
appropriate physical boundary value of the self-energy;
the second term provides a thermal distribution appropri-
ate to particles of energy

~
co

~

regardless of the sign of co.
In the free-field limit, ImII~0 and (3.8) gives

p(
~

co
~

)~2mB(co —k —M ). Then (3.11) is the usual
free boson propagator in which the thermal distribution
factor [exp(

~

co/T
~

) —1] ' applies only to particles
which are on the mass shell (though with either sign for
co ).

However, in the presence of interactions ImII is non-
vanishing for any particle, stable or unstable, because of
reactions like @,1~2,3, . . . , X discussed in Sec. II. Both
real and virtual N's will be in thermal equilibrium as
shown by (3.11) and the probability of an off-shell @exist-
ing in the heat bath is given by the Breit-Wigner function
(3.8).

(3) Further comments (a) As no. ted at the beginning of
Sec. II, one cannot use the conventional real-time propaga-
tors in a diagrammatic expansion and consequently one
cannot obtain the results derived here. However, recently
a new formulation of finite-temperature field theory has
been developed with new real-time propagators that can be
used in a diagrammatic expansion. ' ' It would be in-
teresting to show that this new formulation yields the
same imaginary parts as obtained here.

(b) Only normal threshold discontinuities in the self-
energy have been investigated here. From the calculations
in Sec. II and the Appendix it is clear that discontinuities
in the two-to-two scattering amplitude have the same
form as (2.27) and (2.28) except that 4& stands for the
external two-particle state. (And similarly for all other
Green's functions. ) However, it is not clear whether the

where coj ——i2mTXinteger and E~ =m~ +pj . The exter-
nal frequency and momentum are

CO=C01+ ' +CO~

pl+ + PN

(A2)

The self-energy amplitude in Fig. 5 can be written

f dP1 dPN —1

(2m ) (2n )
y)N —1

1'' ' N 1

X&(co;)D(co1) . . D(coN)B(co, ),
(A3)

where the p dependence of the propagators and of the am-
plitudes A and B is suppressed.

The discontinuity produced by the X-particle state
comes from the X propagators D and not from A or B.
Consequently, to evaluate the discontinuity one may re-
p»ce & (coi, . . . , coN ) by & (E1, . . . , EN ):

d3 3

( —&) J Pl dPN —1

(2') (2m)

XA (E; )D (co1) . D (coN )B(EJ ) .
(A4)

A proof that (A3) and (A4) have the same N-particle

FICi. S. The contribution of a particular N-body intermediate
state to the self-energy of @.
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discontinuity would presumably follow the zero-
temperature argument but is not attempted here.

To evaluate (A4) it is necessary to compute

This is a trivial integration which can be performed con-
cisely by writing

y")N —1

Al ]s ~ ~ ~ p Qg
D(coi pi) ' D(~iv ptt) . J cr =+1J

fJ = —,
' (1+cr) )+n~

(A9)

(Alo)

This summation is equivalent to an (N —1)-loop diagram
and is extremely tedious to evaluate directly. Instead, it is
convenient to transform from frequency to time by

D(coj, pj)= f dre ' D(r, pj), (A6)

D(w, pj)= [e ~ (1+nj)+e J nj], (A7)
J

where 0&1 &P and nJ =n (EJ ) is the usual Bose-Einstein
distribution function (2.6). The statistical factors in (A7)
are just those appropriate to stimulated emission (1+n )

and absorption (nJ ) and will be crucial in the final result.
After substituting (A6) the frequency sums in (A5) yield

P
R =( —1) ' f dre 'D(r, p~) D(v., ptt) . (AS)

Then (AS}becomes

1 1 —e-&&

(2E ). . (2E ) co —Q

(A 1 1)

Q =trlE1+tr2E2+ +~NEN (A12}

—Pcr.E.J Jf —g. .

1

gj =, (1 crj)+—nj,
allows R to be expressed as

(A13)

(A14)

where exp(coP)=1 has been used. Writing the identity
e ~ (1+n)=n as

1 1 (fif' ftt g ig2 . — (A15)

Thus (A4) is given by

d PX —1 AE;RBEJ
(2sr) (2m )

(A16)

Up until now co has been pure imaginary and discrete. In (A16) one may continue co down to the real axis and evalu-

ate the discontinuity across the real axis:

N

Discil(co) = i f dp~ .—. dp& g 2m.5(co —Q)(2sr) 5 k —g p;
1 N 1

X&(E;)&(E,)(f~f& f~ g~g2. . . tv)—, (A17)

where dp =d p/2E(2sr) . When the contribution of the
jth boson to Q is positive (i.e., oj ——+ 1) the statistical
factors are fj ——1+nj appropriate to stimulated emission
and gj ——n~ appropriate to absorption. %'hen the contribu-

tion of the jth boson to Q is negative (i.e., crj = —1) the
statistical factors are automatically reversed: fz ——nj and

gJ
——1+n&. Summing the various possible amplitudes A

and B then gives the result claimed in Sec. II C.

1D. A. Dicus, E. W. Kolb, A. M. Gleeson, E. C. Cs. Sudardshan,
V. L. Teplitz, and M. S. Turner, Phys. Rev. D 26, 2694
(1982).

2J. L. Cambier, J. R. Primack, and M. Sher, Nucl. Phys. 8209,
372 (1982).

J. F. Donoghue and B. R. Holstein, Phys. Rev. D 28, 340
(1983).

4T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).

5L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,

Methods of Quantum Field Theory in Statistical Physics

(Prentice-Hall, Englewood Cliffs, New Jersey, 1963).
E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2

(Pergamon, New York, 1980).
The real-time approach, discussed in Ref. 5, fails to give the

correct analytic results even to one-loop order. The same



28 SIMPLE RULES FOR DISCONTINUITIES IN FINITE. . . 2015

failure occurs in nonrelativistic theories and is discussed in
Refs. 6 and 7.

Spinors are normalized by uu =2m, uu = —2m.
' The amplitudes for the inverse reactions are given by the com-

plex conjugates.
The amplitudes M will depend on T in higher orders.
A. Aharony, in Modern Deuelopments in Thermodynamics,
edited by B.Gal-Or (Wiley, New York, 1973), pp. 95—114.

3S. Weinberg, Phys. Rev. Lett. 42, 850 (1978).
E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552
(1933).

' Of course, when I 's are calculated from the self-energy bub-
bles any internal W's automatically have a thermal distribu-
tion of momenta. It is only from the more general, statistical

mechanical approach that I could contain nonequilibrium
distributions.
This solution does not apply if the temperature changes with
time.
Y. Takahashi and H. Umezawa, Collect. Phenom. 2, 55
(1975).
I. Ojima, Ann. Phys. (N.Y.) 137, 1 (1981).
H. Umezawa, M. Matsumoto, and M. Tachiki, Thermo Field
Dynamics and Condensed States (North Holland, Amsterdam,
1982).

OH. Matsumoto, Y. Nakano, and H. Umezawa, Phys. Rev. D
28, 1931 (1983).
A. J. NieIni and G. W. Semenoff, MIT Report No. CTP-1078,
1983 (unpublished).


