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The different methods for constructing a gauge-invariant effective action (GIEA) for
quantum non-Abelian gauge field theories proposed by 't Hooft, DeWitt, Boulware, and
Abbott are all shown to be equivalent. In the course of proving this equivalence we show
how to extend the usual background-field method so as to construct what may be considered
the prototypical GIEA and discuss in some detail the invariance and gauge transformation
properties of both the usual theory and the new theory using the GIEA. All solutions to the
GIEA field equations are shown to be physical —being solutions to the usual field equations
with an arbitrary gauge condition. The renormalization program based upon the GIEA is
shown to differ from the standard theory and we outline the modifications which are needed
in the present proof of renormalizability. In particular we prove that the physical renormal-
ization is independent of any gauge-fixing choice. Finally, we prove that the S-matrix ele-
ments derived from the GIEA for an arbitrary background-field solution to the field equa-
tions are the same as those derived using the usual effective action.

I. INTRODUCTION

In quantum field theory physical predictions are
plagued by ultraviolet infinities which must be exor-
cised by the techniques of renormalization theory.
The renormalization of non-Abelian gauge theories
is considerably more complex than that of quantum
electrodynamics and it is crucial for the proof of re-
normalizability that all invariances of the theory be
fully exploited. To quantize a classically gauge-
invariant Lagrangian field theory a gauge condition
must be imposed, thereby breaking the gauge invari-
ance, in order to secure a well-defined propagator.
The background-field method was originally intro-
duced by DeWitt' as a method for retaining a resi-
dual gauge invariance in the theory. This simplified
calculations by maintaining manifest covariance
under background-field gauge transforiiiations; how-
ever, in its original foiiriulation, the method worked
well only for one-loop calculations. Attempts to ex-
tend the method to higher orders were criticized on
various grounds until Kluberg-Stern and Zuber,
using the supergauge transformations of Becchi,
Rouet, and Stora (BRS), reformulated the method in
such a way as to be valid to all orders in perturba-
tion theory. The problem with their reformulation
was that the original simplicity of the background-
field method was lost. In order to retain the simpli-
city of the original method in higher orders,

't Hooft proposed an alternate method in which
gauge-covariant and background-field-dependent
sources are introduced. His proposal was never im-
plemented in actual calculations and the equivalence
of his formulation with the usual field theory
methods was uncertain since much of his paper was
left somewhat schematic.

Recently there have appeared several discussions
of the multiloop extension of the background-field
method based on 't Hooft's idea. Independently,
DeWitt, Boulware, and Abbott have proposed
methods for constructing a manifestly gauge-
invariant effective action (CxIEA) and have, to vary-
ing degrees, discussed how to utilize their results in
order to calculate physical quantities and to imple-
ment the renoriIIalization program. In addition,
using these extensions of the background-field
method, explicit two-loop calculations of the renor-
malization constants and P function for pure Yang-
Mills theory in the Feynman gauge have been made
by Abbott, the author, and by Ichinose and
Omote. 9 These calculations have recently been ex-
tended to the general-gauge case by Capper and
Mac Lean. '

In this paper we show that the different pro-
cedures used by the aforementioned authors to con-
struct a CxIEA are in fact equivalent. In the process
of proving equivalence we construct what may be
considered the prototypical CxIEA and formulate the
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calculational rules to be used with the GIEA. It is
shown that all solutions to the new GIEA field
equations are physical and some mistakes and
subtleties of these earlier papers are clarified. It is
also the purpose of this paper to discuss the renor-
malization program based upon the GIEA. This
has not been discussed in any detail in the literature,
and since the usual iterative proof of renormalizabil-
ity cannot be applied to the GIEA a different ap-
proach must be taken. In particular we show why
the physical renormalization is independent of any
gauge-fixing choice and we give a brief proof of re-
normalizability for the GIEA of pure Yang-Mills
theory using the renormalization theory of Caswell
and Kennedy. " Finally we answer in the affirma-
tive a conjecture made by DeWitt' as to whether the
S-matrix elements derived using the GIEA for a
nonvacuum background field are the same as those
derived using the usual effective action.

The organization of this paper is as follows. The
standard functional quantization of non-Abelian
gauge theories using the background-field method is
briefly reviewed in Sec. II. Important invariance
and gauge transformation properties are derived
without using BRS techniques. Since it is necessary
to introduce several different effective actions, we
try to be very explicit about their functional depen-
dence on fields and distinguish between total and
partial functional derivatives. The GIEA I [y] is
constructed in Sec. III and we show that previous
GIEA's are equivalent to I [p]. The renormaliza-
tion program using the GIEA is sketched in Sec. IV
and the equivalence of S-matrix elements is proven
in Sec. V. A summary and discussion of the paper
is given in the last section where some further points
regarding the uses of the GIEA are made.

II. BACKGROUND-FIELD QUANTIZATION

In this section we derive standard results of the
usual background-field method giving particular
emphasis to gauge transformation and invariance
properties of the effective action. This material is
needed for the derivation of the GIEA. Most of
these results are well known and have also been
covered in some detail by Boulware and DeWitt;

I

however, the present derivations make no use of the
BRS techniques as used by Boulware and many of
the equations are written in such a way as to facili-
tate the procedure of Sec. III. The condensed nota-
tion and conventions of DeWitt' ' are used
throughout this paper.

A. The effective action

It is well known that the generating functional for
connected Green's functions may be written as'

e' ( )=)(r f dd exp[i (S[d]+ pp +—dd')]
5PXdet, Q'p[A],

where the action S [A ] is given by
S[d]= f d x W[d, dad, . . .] for .K the Lagraa)t-
ian. The action is invariant under gauge transfor-
mations of the field A'~A'+ Q' [A ]5@:

5S[A] Q' [A]—=S, [A]Q' [A]=o

where the gauge transformations are assumed linear
in':

Q' [A]=Q' [O]+O',,A',

Since these transformations are also assumed to
form a group we have

Q' JQ p Q'p JQ =—Q'yc p,
where the c yp are the A-independent structure con-
stants satisfying

5 e 5
C ae py+C pdC ya+C ydC ap

The P =P [A ] are gauge-fixing constraints intro-
duced in (1) so as to remove the redundancy due to
gauge invariance of the action and N is a norrnaliza-
tion constant. Since A is a dummy variable of in-
tegration in (1) we may divide the quantum operator
field A' into an arbitrary classical field p' plus a
quantum piece P': A'=y'+P' (Ref. 13) and define
W[p, J,P] via

e te(e xr)=)V' f'dt)e'xp[((S[p+d]+ —,(p;d' p)(p rdd e)+ )d] dt)etp—;Q' [p+t)]—.

Note that in (6) we have chosen to couple the classical external source J; only to the quantum field (II)' and have
chosen the linear gauge-fixing condition to be a condition on P only:

P N']=P r4"—P=o
where the P; will later on be taken to depend on the field y' but for now are not so constrained. The P are
arbitrary constants introduced for later use.
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The time-ordered quantum expectation value (chronological average) of a quantum operator functional of y
and P, P[y,P], is defined as

(g[q,P])=e ' ~ ' )N' )t dP d'[y, P] exp[i(S[y+P]+ —,P P~+J;P')] detP;Q'p[y+P] . (8)

Qf particular importance is

(~,
.
)

8 W[q&, J,P]

and

P0—'~'"+( )'I "—"

iP P'—Pl-"'+( i)'P,y'I"'"'+( —i)'P, r'Jl "'+(—i)'I"J", «c. ,

where

(10)

g
o ~ e

gn

BJ;,
8'[y, J,P]

'n

and "P„"in (10) ~~di~~t~~ that ail distinct perillutations of the indices should be added while the subscript n on
P„ indicates the number of these required. As will be shown presently the Jacobian matrix

I'J= rV[q, J,P]= ~ = +=IJ'
BJ; BJq

' '
BJJ BJ;

(12)

is nonsingular and we will be able to solve (9) for the J; as a functional of y, P, and P: J;=J;[y,P,P]. The
I" ' " may also be regarded as functionals of y, P, and P. It is then easy to derive the following very useful
series expansion for the chronological average of an arbitrary operator ' ':

r

(P[y,P]) =:exp, i g I ' "[y,P,P]
ll =2 ay"

:&[v»4 l
ay'"

( —i)-;,. 8 8 ( i)' ;,g,
—B 8 -8

ay' ap ay"

~ 3

4' g' ag ay" ay'

The colons indicate that all I"s stand to the left of
the BIB/'s and W[y, P] is P[y,P] with P replaced
by its average P.

The quantum field equations follow from (6) with
the condition that the functional integral of a total
functional derivative vanish:

(S;[ +P])+ (8 [,P]) V

(14)

where we have defined 8 ~[p,P] to be the negative
inverse of the operator g p[y, P]:

& p[V»4]=P Q'p[V+4],
(15)

~ ply ga~, [v,41=—&, ,

and the vertex V p; is defined by

5$" (S,[q+y])+ (N [,y]) V~.,

+P,P.„ I J= n,j. —kj (17)

V p;=PJQp;. —

Remembering that the term detP;Q'p[y+ P]
=det5 p[y, P] is often written as a functional in-
tegral over anticommuting fields we note that
8 ~[y,P] is the usual ghost propagator in the
background-field method while V p; is the usual
ghost-ghost-quantum field vertex. If we now dif-
ferentiate both sides of (14) with respect to J~ and
use (12) we have
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Since I J is symmetric in its indices and the quanti-
ty inside the brackets is the negative inverse of I kj

which must also be symmetric, there exists a func-
tional I [y,P,P), the effective action, which satisfies

I",&P, P, P = SP+$ + &P~iP~jg' 4i

/
r

+ { l l
I

/

28 I
BP'BP

(18)
I

48 16

Further functional derivatives of (18) give relations
' 'n

between the I ' " and the vertex functions

jm'
The effective action I is related to W via the

Legendre transform

I [,P,P) = W[y, P,J]—J;P'+constant .

{+—
24

+—
8

4~ ~ 16 2 i 1

I

48

One can, using (14), (18), and (13), easily derive the
well-known graphical expansion given in Fig. 1, ' in
terms of bare propagators and bare vertices. Here
the solid lines represent the bare propagator
O'J[y, {tl] where

FIG. 1. Diagrammatic loop expansion of the effective
action I [y, ltl, P]. See Sec. II for definition of lines and
vertices. The GIEA has the same diagrammatic expan-
sion, except P is set equal to zero and the lines and ver-
tices are reinterpreted as described in Sec. III {adapted
from DeWitt, Ref. 5).

and the dashed lines represent the ghost propagator
II p[y, p] gotten by replacing ltl by p in (15). The
vertices where n solid lines meet are given by
S;, . . . ; and the vertices where two dashed lines

meet one solid line are given by the V~; of Eq. (16).
Note that the dashed lines always appear in closed,
oriented loops. Also note that the loop expansion of
Fig. 1 is entirely in terms of one-particle-irreducible
diagrams.

B. Invariance properties of the theory

We now derive several important relationships
satisfied by W and I . It is straightforward to show
from (8) that

If we now make the following change of variables
on the dummy variable of integration P in (8),

(22)

compute the required Jacobian, take into account
the gauge invariance of the action, and use (3), (4),
and (5), ' we arrive at

(23)

Equation (23) gives the important result that when
the external source J; vanishes, the expectation value
of the field P satisfies the same linear gauge condi-
tion (7) used to break gauge invariance

(21)
Taking the derivative of both sides of (23) with
respect to J gives
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We can use (23) and (25) to rewrite (21) as

(26)

both of which vanish for J=O. This means that W
is independent of the gauge-fixing condition when
the source vanishes. It is also important to under-
stand how W[y, P,J] depends on the arbitrary clas-
sical field y. Taking the derivative of (8) with
respect to q' and using the equations of motion
(14) as well as (23) and (27) gives

5w aw
5q' Bq'

BW

5P;[y]=P;J[q]Q p[q]5$

=(c prP'[q) —P;[q)Q'p, ;)NP.
A suitable choice would be P; [p]=Q; [y]. Unless
specifically noted otherwise we assume from here on
that the P; [p] are chosen in just this way
and therefore W[y, P,J]~ W[y, P [q&],J]= W[q,J].
The total variation of W is now given by

, = —J; JJ &Qj—p[y+p]Sp [q),p] &P; (27)

which implies that W[q&, PJ] is also independent of
q for J=O.

The relations derived up until now have assumed
that P; is not a functional of q. In the
background-field method, ' however, we choose
P; =P;[gr], a functional of the background field,
in such a way that P; [y] obeys the gauge transfor-
mation rule

+J, &Q'p[&+V]@P [~ e]e'&P

(29)

where 8 P [q,P] and Q p[y, P) are given as
in (15) with P;~P; [p].

W[q&,J] satisfies an important invariance relation-
ship which we now derive. If the background field
undergoes a gauge transformation: q' —+q'
+Q [y]5P then by (29), Wtransforiris as

, Q'r[ql= —J,(Q'r[q]+ &Q'p[q+4]6| P.[q,k] &+,[q o] &Q'—p[q+W]6) P [q,4]4'&P k, iQ'y[q')) .

W g J B
, Q [q]—JQ

I
=0. (30)

This means that W[y,J] is invariant under the com-
bined transfoririations

5q'=Q' [q )5P,
(31)

Using the transfoiiriation law for P;, Eq. (28), as
well as the antisymmetry of c pz and Eq. (25) we
can rewrite this as

5 I = — . &Q p[q+P]$ [q', P)P'&5P;[q']
aj~

J—+0
(33)

These relations will be important in discussing the
physical significance and renoririalization of the
GIEA.

If we vary both sides of (19) (with P =P[y]) with
respect to q& keeping J fixed we have

5JJ ———Q' JJ;5g
We can now proceed to convert the preceding

properties of W and W into relationships satisfied
by I [p,P] where I is I with P =P[y). From (19)
and (26) we have

5r ar"

5+ alp

aw
Bp

ar" ajj
aq~, a

ajj
Bg

Bp ap' — — z o
. &Q' [ q+y] p[y, y]& 0 (32)

and if the functional fornI of P; is changed, while
still satisfying (28), keeping qv fixed we have

where P '—:BW/BJ;, which implies that

ar aw
J
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and therefore we have the important invariance for
the effective action which follows from (30)

,
Q' [q]+ - Q', 4"=0. (35)

(37)

Equation (35) shows that the effective action is in-
variant under the combined transformations

&q'=Q' [m]&P

5$'=Q' ipJ5P .
(36)

The invariance (35) holds for every diagram individ-

ually in Fig. 1.' Finally (29) and (34) give

III. THE GAUCHE-INVARIANT EFFECTIVE ACTIO

A. Theory of the GIEA

We begin our derivation of the GIEA by first de-
fining a new functional W[(][),J] as

W[(][),J]—:8'[(][),J]+J;y' . (38)

Using Eq. (6) and letting A'=y'+(t)' we have

e' (e ) Pi' f dA xep[i(S[A]+ , (P;[tp](A'—tp')—P)(P—I(tp](At qr') g)+—JA'—)] detP;[p]g'it[A] .

(39)

We see that 8' is in fact equivalent to the W intro-
duced in Eq. (1) where, however, we have the unusu-
al gauge condition

and I satisfies

aI [q,A]
l (44)

P [A ]=P;[(p]A ' —(P; [y]g'+ +)=0 . (40)
and analogously to (34)

It is important to note that

5P Adet, Q'p[A ]

aI aw

is correctly given by detP; [(][)]Q'p[A ] in (39).
From (38) we also have

Using (45) and (42) we find that I satisfies the in-
variance relation

(41) ,
Q' [V]+ —,Q' [A]=o.

aq' aA ' (46)

and Eq. (30) gives the following invariance for W:

,
Q' [q]=,Q' [m]+J Q' [el

=J,Q', 0"'+J,Q' [m]

=JJQJ [A] . (42)

We can now define another effective action I [y,A ]
Vja,

I [(][),P] = W[cp,J]—J;@'+constant

= JY[p,J] J;qr' J;P '+constant— —
= g'[y, J]—J;A '+ constant

= I'[y,A ]

I [m A[J[V ] V I]=II'[V»JN]] —J [V ]A '[V»J[V 1]

which gives

5r ar
t a~(

al aAJ
aAJ a'

aw ark aJ,+
a(P' aJ. aq)'

This implies that

aJJ
,A J—JJaq'

aA1

ap

Suppose we now choose to constrain either
J=J[y] or p=y[J] in such a way that P'=0 or
equivalently A'=y'. Since I [(p,A] has free vari-
ables y and A we can vary these independently,
choosing A = (][) and fixing y via
al /aA '

i
„- = —J;. We eventually set J=O. This

is the same as defining
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BI BA J BA~

BA 1 By' By'

However, since BA/By is singular, which follows
from (29), we impose the condition that
BI /BA = —JJ to determine y[J].' It is clear that
with this choice of y or J that

arly y]
I

BI [y,A]
By

ar[y, A]
aA'

(47)

and therefore from (46) that I'[y, y] is manifestly
gauge invariant:

Q'.[y]—= r, [y]Q' [y]=0.

The effective action I [y]—= I [y,y] is our GIEA,
and we can easily derive its graphical loop represen-
tation and Feynman rules from Fig. 1. From the
procedure outlined above, we set /=0 and take
P; =P; [y] which gives the new bare propayators
G '~=G 'J[y, O] where F~ =S;,.[y]+P;[y]P~~[y]

and I ~
——8 ~[y,O] where I p

——P;[y]Q~p[y].
The new vertices are S; . . . ; [y] and

V p;=P J[y]QJp;. It is extremely important to
realize that functional derivatives of I [y] introduce
new vertices which are not present in Fig. 1 with
/=0 and P =P[y], and we must therefore distin-
guish between internal and external lines. Internal
lines which do not join up to external lines have the
propagators and vertices the same as before, whereas
external lines meet internal lines in the vertices: (1)
Iijk; . . . ; [y], where n external lines meet two inter-

nal solid lines; (2) 6 p; . . . ; [y], where n external

lines meet two ghost lines; (3) V @;,. . . ; [y), where

n external lines meet two ghost lines and one solid
line; and (4) S J . . .~;, . . .;, where n external lines

meet m )3 internal lines. Explicit Feynman rules
for pure Yang-Mills theory with P[y] =Q [y] and
y=0 are given in Refs. 7 and 8.

The GIEA I"[y] satisfies a different field equa-
tion from the usual one, Eq. (14), which is easily de-
rived. Equations (48), (45), (44), and (29) give

nr[y] aw
,iy=

5y ay' I J[m)

ar+
J =J[v l

, Jr..d J;[y]+J [—y]
p

= —J,[y](&;+&Q' [y+0l@ .[y g» [y]—&Q'p[y+0]It [y g4 "» (49)

where in the last line we evaluate the term in parentheses using (13) and set /=0. We must next deternune
whether solutions to (49) are physical solutions and understand how they relate to solutions of the usual field
equations (44), (18), or (14). Physical solutions to the field equations are determined by the condition J=O. We
have, however, placed a condition on J. The source J=J[y] is required to be that functional of the back-
ground field which gives P =0 or A =y. The condition J;[y]=0 is then a condition on the background field.
If J;[y]=0, solutions to (44), (18), or (14) are the usual ones and we see from (49) that this also implies thatI;=0. Hence all solutions to the usual field equations are solutions to the GIEA field equation. Conversely,
what if y is such that I;[y]=0 does this imply J;[y]=0? The answer is no as can easily be shown. Sup-
pose that J[y] can be written in the form

J [yl =Ã I y]+i.P;[y] (50)

then from (49)

r, [ ]=—r [ ](&+&Q' [ +@@~,[ 4]&P';[ ]—&Q' [ +4]II~,[ 4l4'&P', [ ])"=o

[y]+P;[y]&Q'p[y+0]@
—P;[y]&Q'ply+@6' [y g4'&P', [y])-=o. (51)
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The teriii multiplying j~ is zero as we now show.
Note that from (15)

and

Therefore the term multiplying j can be rewritten
as

We see that for +;[p]=0 but j +0 that I;=0.
These solutions, which have not been discussed in
the literature, are nevertheless physical. The source
term j P;p' can be absorbed into the gauge-fixing
term in (6) such that the new gauge-fixing condition
is

where

We therefore see that solutions to I;[y]=0 are
solutions to the equivalence class of problems given
by 5I /5g'=0 where the gauge condition on the
solution PJ 0 is P J[p]gj=g'. It is of course very
reasonable that the GIEA field equations do not
place any gauge condition on P since I does not de-
pend on P. Note also that since I' is gauge invariant
there is no gauge condition on the background field
and hence we are free to choose any condition which
is convenient. ' '

Although it is possible that there are other solu-
tions to I;=0 which are not of the form (50) with

g =0 this is unlikely (none occur in perturbation
theory). In particular the spurious solutions found
by Boulware will not occur. These come about if,
when @=0 in (23) we, at the same time, were to
have P;[y]P'=g for J&0, for then one can show
that J;(Q' [y+$]$ &[y,P])=0 gives rise to un-
physical solutions. If we remember that P;[y]
will, in general, involve space-time derivatives and
that g is arbitrary, it is clear that we can adjust g
so as to avoid this possibility. '

This gives

e' (~'++~ ' )=exp W[y, J,P'] if~—+ —j~2

however, in chronological averages the factors of
gj+ —,j cancel between numerator and denominator
and the averages therefore remain unaffected when
the source vanishes. ' The only change is that for
+;=0 the gauge condition on the field is changed

B. Equivalence with other methods

The method originally suggested by 't Hooft was
to choose a J;=J;[y] in such a way that

5W[y, J[p]]/5qr'= —J;[y] and then to solve for
the y such that J[p]=0. W[p, J[g]] can be easily
shown to be gauge invariant under gauge transfor-
mations of p, using (30), if J[y] transforms as in
(31). From (29) and (14) we have the explicit equa-
tion

= —J;[q ]= —(S;[q +P] ) +i (8 p[q, P] ) V;+P;P &P gP— (52)

't Hooft proposes that this equation be solved for J
iteratively via perturbation theory in which case it is
clear that /=0 is a solution. Note that since we

have not imposed the condition (52) on the J[p]
used earlier that J[qr] is not necessarily the same as

J[y]. From our earlier results we know that when

/=0, Eq. (52) is exactly the field equation for the
CxIEA equation (49) and hence for /=0, 't Hooft's

proposal is equivalent to that outlined earlier. There
is really no need to actually compute J[qr ], as
't Hooft suggests, and our procedure is simpler.

DeWitt's ' procedure for computing a CxIEA is
as follows. If we look at Fig. 1 and drop the term

, P P P P and replac—e every P[p] by P[y+ P) we see
that the resulting expansion is a functional of y and

P in the combination y+P=g only. DeWitt then
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defines

k~,ijkQ a ~,kj Q a, i I,ki Q a,j
~,ijklg a= ~, /jkg a,',ilkQ a,j,ijlQ a, k

l E

(53)

=s [tp]+x[qr],
where "~" indicates the aforementioned replace-
ment of P[cp]~P[y+P]. He then shows that X[tp]
is a gauge-invariant functional of
X;[cp]g' [cp]=0. Since S[cp] is also gauge invari-
ant this implies that I [y] is a GIEA. It is clear by
comparing this expansion for I [~p] to that for I [y]
that I [g] is identical to I [g] if we replace p~p
and that DeWitt's procedure yields the same GIEA.

The method for constructing the GIEA used in
this paper can be considered a synthesis of those
used by Abbott and Boulware. The suggestion of
viewing the GIEA as the usual effective action with
an unusual gauge condition is due to Abbott.
Boulware defines a GIEA by I [y]=8'[y,J[y]]
where J[y] is chosen such that P =0 which is from
(43) equivalent to our procedure for constructing
I [y]. It is therefore clear that the construction of
I [~p] presented here can be considered the prototyp-
ical GIEA.

IV. RENORMALIZATION

Even though, through the introduction of the

GIEA, we have added new bare vertex functions to
the theory and conceivably made calculations more

difficult, there is, in actuality, a tremendous simpli-

fication in the calculation of renormalization con-

stants. The simplification arises because all of the
full radiatively corrected vertex functions I; . . . ;

are now related through the simple Ward identities

obtained by differentiating Eq. (48):

I,JQ = —I Jg

instead of the more complicated Ward-Takahashi-
Slavnov-Taylor identities. This implies that for re-

normalizable theories only a small number of adjust-
able constants are present and that only a small

number of counterterms are needed. All counter-
terms, except those involved in gauge fixing, will be

gauge invariant and must be constructed from the

few, local, integral invariants of the correct dimen-

S1OQ.

There is, however, a subtlety in the renormaliza-
tion theory based on I [q&] in that subdiagrams of
the full vertex functions I; . . . ; at a given loop or-

der are not just insertions of lower-order vertices
and propagators. Instead, the free lines of these sub-

diagrams are internal lines which meet internal ver-

tices, and not external lines which meet external ver-

tices. In other words, these renormalization parts
cannot be derived from the GIEA by functional dif-
ferentiation. One cannot, therefore, use the usual

iterative proof of renormalizability and must, in-

stead, proceed in the following manner. We first
claim that all divergences of W[y, J] can be made
finite by subtracting a (possibly infinite) set of pure-

ly local Hermitian counterterms. This necessarily
implies that I [y,A ] is also made finite and, in par-
ticular, that the renormalized GIEA I [~p] is finite.
Since I [ip] is also manifestly gauge invariant this
will imply, as mentioned earlier, that we need only
the few local integral invariants of the correct di-

mension plus a possible gauge-fixing renormaliza-
tion. Since there exists only a finite number of such
counterterms for Yang-Mills theory we will have

then proven renormalizability.
To prove that W can be made finite, we briefly

sketch the renormalization theory of Caswell and

Kennedy" and apply their results to our case (the
reader is referred to this paper for further details).
The factor of det Py ~[y,A ] is first rewritten as

detu p[y, A]=exp[Trlns ji[y,A]] =exp[Trln(S &[y,O]+ V ~;[y]A') j

=exp[Trln5 ~[tp, O] —N ~[ip, O]V~ J[ip]AJ =, 8 ~[ip, O]V~bjA jS „[ip,O]V" kA

The integrand of Eq. (1) with P [A ] chosen as in (40) is now a pure exponential with argument a polynomial in

A. If we denote this argument by S[y,A ) then

S[q&,A]—:S[A]+ , (Pa;[ip)A' p)(P—[~p]AJ g—) Sp[ip, O]V~—jAJ ———,N s[ip, O]V p AjN~„[ipO]V" „A"

(55)
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and

e'~=NdgtF &[~,0] f dde ' ' . (56)

Next we use the usual trick of splitting S into a qua-
dratic part Sp and an interaction part St to obtain

gent part of 1 tj [0] will also be gauge invariant and
must, in fact, give 5ZS,1[0]. There is, however, one
subtlety which must be understood. Equation (33) is
easily shown to be applicable to I [y]. Therefore at
a solution to the field equations, J=O, we have

(iSI[y,5/5J] )"
W[y,J]=

n=p nt Wp[ J] (59)

Wp [y,J]—=exp —J;G 'J[y,O]JJg 7 (57)

Caswell and Kennedy introduce an operation R

which acts on dimensionally regularized graphs to
render them finite. They show that the action of R

on W[y, J], where we consider S to be the renormal-
ized action, is

RW[y, J]=exp[A(e ' ' —1)]Wp[[I[],J],
(58)

where A is an operator which acts on generalized
vertices in a particular way which we need not go
into here. We now define the interaction part of the
bar action to be A[1 exp(—iSI)]. This gives an ex-
plicit expression for the bare Lagrangian because
RW[y, J] generates physical (subtracted) graphs and
the counterterrii we compute is simply St b,„,—SI,
which is composed of purely Hermitian polynomials
in A. This proves that the resulting bare action
gives finite results and that I [qr, A ] calculated using
this bare action is finite. In particular I b„,[p]
=I b„,[[p,A ] is finite. This does not however prove
that I [y] is a renormalizable theory —we must
prove that there are only a finite number of counter-
tei iLj.S.

Since I [g] is gauge invariant so must all diver-
gences be gauge invariant. In fact this must hold
order by order in a loop expansion and also each
term in the dimensional-regularization Laurent
series in e "=(N —4) " must be separately gauge
invariant. Since the divergences of I [p] must result
from purely local Hei-raitian counterterms as just
discussed, we need only enumerate those which have
the correct dimension. For pure Yang-Mills theory
the only teria with the correct dimension is a multi-
ple of the action S[y] and therefore the divergent
part of I [y] is given by I Dqv ——5ZS[y]. This obvi-
ously comes from a term in the bare action of the
follll (1+5Z)S[A]:—ZS[A]. We further note that
Z does not depend on qr, for if it did, the resulting
divergence could not be a multiple of the action. An
easy way to calculate Z is to first calculate I,J and
then evaluate it for p=O. Since [][]=0 is a solution
to the field equations (i.e., the vacuum), Eq. (53)
gives I,J.[0]QJ~[0)=0. In other words, the diver-

This does not imply that I,J is independent of the
gauge-fixing term P—the finite part of I;1 will de-
pend on P. The actual dependence of I,J on P can
be found by taking derivatives of Eq. (33) (modified
so as to apply to I') with respect to y. The diver-
gent part of I is independent of P from (59) and
therefore 5zZ=O. The actual computation of Z is
done via the loop expansion in perturbation theory.
First the one-loop contribution to I,J is calculated
and then the two-loop, etc. The one-loop diver-
gences are single poles in e ' while, in general, two-
loop divergences give e ' and e terms. Also note
that sets of diagrams will be separately gauge invari-
ant because of the diagram-by-diagram invariance of
Fig. 1 mentioned following Eq. (36). This provides
a useful check on calculations. What one finds if a
gauge parameter a is included in the definition of P,
as is usually done, is that a naive computation of
I,J gives a (gauge-invariant) divergent term propor-
tional to a function of powers of a. ' In other
words a P-dependent divergence. What we have not
taken into account is that the original renormaliza-
tion of W, Eq. (58), also adds counterterms to the
P-dependent part of the action S—the gauge-fixing
term is renormalized. These P-dependent counter-
terms give second-order contributions to the one-
loop diagrams and these counterteriri divergences
from the one-loop diagrams exactly cancel the P-
dependent divergences at two loops thereby making
Z P-independent as it must be. ' This is clearly
evident in the general gauge two-loop calculation of
Capper and MacLean. ' If one is only interested in
computing Z, the above procedure is followed and
any P-dependent terms are simply ignored.

There are several methods for calculating the
gauge-fixing renormalization. Abbott and Capper
and MacLean' calculate the counterterm by
demanding that the one-loop contribution of the
quantum field self-energy be finite. By this we
mean the subdivergences of I which have two inter-
nal solid lines connected to a one-loop self-energy
insertion. Since we cannot generate these subdia-
grams via functional differentiation of I (we can
only generate tei-ins with external field lines) a
method more in the spirit of the CrIEA is the follow-
ing. We add counterteiins to the renormalized ac-
tion and rescale the fields according to
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A'—=Z'"A, 8 z 1/2

and define

Z —1/2 E— P B Z 1/2Z —1/2Pa

JB Z 1/2J

(60)

ly only three after using Ward-Takahashi-Slanvov-
Taylor identity) had to be calculated which involved
computing the field self-energy, ghost self-energy,
field three-point vertex, and ghost-ghost-field vertex
diagrams. ' '

V. S MATRIX
[q g] = rbgre[q g21 ]

which is now a finite functional of finite arguments.
The Z renoririalization comes from the gauge-
fixing counterterir| in (58). Since 8 ~[y,0]=P; [y]Q'p[y] is a finite nonsingular operator we
can deterinine Z~ from the condition that the (ma-
trix) functional derivative of I [y,g] with respect to
8 be finite: aI "/aII" ~=finite. This can easily
be computed from the expansion for I given in Fig.
1 with /=0 and P =P[y] and generates the expan-
sion of the full ghost propagator
G P[q]—= (+ P[q, 0]&&=o

The renormalization program using the GIEA is
therefore seen to be far simpler than that of the usu-
al theory. The proof of the renormalizability of I is
perhaps less straightforward than that for I; howev-
er, it is no more difficult, especially using the
method of Caswell and Kennedy. For pure Yang-
Mills theory we need only calculate one set of dia-
grams, I;J to find the physical renormalization Z.
As was shown earlier, the calculation of Z is un-
necessary unless one wants it for some specific
reason. In the usual theory four counterterms (real-

aI [y,Ap+~]
1

(62)

where ~ ' is defined by

As has been shown by DeWitt, the GIEA I [p]
may be used to generate S-matrix elements in a
manner analogous to that which uses I [y,A]. '2
His construction however applied only to the case
where p is taken to be the classical vacuum yp.
Using the results of Sec. III we can extend his proof
so as to apply to any arbitrary field' which solves
the GIEA field equation I;[qr]=0. This is impor-
tant in that a field which is not the vacuum field yp
may be considered a relative vacua and therefore is a
coherent state with respect to the absolute vacuum.
The S matrix then describes transitions between
coherent superpositions of particle states in the Pock
space based on the absolute vacuum.

SuPPose Ap is a solution to aI [y,Ap]/aA '=0
where there is as yet no condition on p. It is then
trivial to show that Ao+~ satisfies

ar[q, Ao+m]m '=m '+ r 'J[q, A ] .
aAJ

l a'r[q»Ao]=m '+r' [q,Ap]
2 aA JaA "aA '

and ~ Jp is an arbitrary solution to

a'r[V»Ao]
bA ~o ——0 .

aA'aA J

a2r[&,A, ]
aA ~aA

(63)

We have Previously shown in Eq. (49) that if y=Ap and ar[y, Ap]/aA '=0 that this means that J;[Ap] =0.
Since

ar[A, ,A, +m ] = —J;[Ap] =0

we see that both Ap and Ap+bA are solutions to the GIEA field equation I;=0. We can use a construction
similar to that of Eq. (63) to generate other solutions to the GIEA field equation once we have found one solu-
tion, i.e., Ap. Since both Ap and Ao+~ are solutions to I;=0 it is easy to show ' that ~ is also given by

m '=m ' +G'1[A, ] I r, [Ao+m] —r,„[Ao]m I

=~ oo+G' [Ao]I —,I Jki[Ao]~ "LhA'+ . (65)
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where ~ Joo is an arbitrary solution to

(67)

I,J [Ao]~ Joo ——0 . (66)

Here G' [Ap] is the inverse (Green's function) to FJ [A p] where

F,"[A ]=I,"[A ]+P,P , . F,". G'k= —5,.",
and the P~; are arbitrary operators chosen such that FJ is nonsingular and P;Q'&[Ap] is nonsingular. Equa-
tion (66) does not place any gauge condition on ~oo since I;JQJ =0 for J=O and ~pp is not necessarily
equal to ~p.

If we now expand I;[Ap+~ ]=0 and insert (63) for ~ we have

I [A +~ ]=0=I [Ap]+ I' [Ao]~ + I k[Ap]M M +
00=I,"[A ] . ~J+I J g, Tk, . . . ,. [.A,A ]~

n f 1 n

00

+ —,I,"k[Ao] ~ o+I g Tu . . . ; [Ao Apl~ o
' ' ' ~ o

n=2 "' i n

00 ~ ~~o+r" g „,T, , "J[Ao Ao]~o' ~o" +
t

T=2
(68)

where the T„[Ap Ap] are the sum of tree diagrams with external lines removed which result from the iteration
of (63) expressing ~ in terms of bAp. Since the ~p are arbitrary solutions to (64), Eq. (68) implies the se-
quence of identities

r,,[A,]M ', =0, (I;~[Ao]I [Ao,Ao]Tki [Ao,Ap]+I;i [Ap])M oM p ——0, etc. (69)

The first identity in (69) means that ~ p is equal to
(a constant times ') M Joo modulo an arbitrary gauge
teria Q [Ao]5P. This, of course, corresponds to
the fact that the GIEA field equation does not fix
the gauge of the solution.

One can show that the structural elements of the
S matrix may be obtained by repeatedly differentiat-
ing the following expressions with respect to the a 's
and a*'s and then setting these coefficients equal to
zero':

„[Ao Ao]~ o' ~ o"

Il =3

0=(uga~+ug*ag*)S;J~ Jo (70)

or
00

X „1,T, "„[Ao]~oo ~oo
ll =3

The u'~ and u'z* are nornialized positive-frequency
wave functions which satisfy

+ 0 o

S;J.u Jg ——0, (72)

5~ oo=Q' [Ao]5P

5~ '=Q' [Ao+~]g'
(73)

where

5P—= —0 p[Ao o]Q, [Ao]Q„'[Ao+~]@" (74)

where S,J is S,J evaluated at the classical vacuum
and the arrow denotes the direction in which S
acts as a differential operator. The T„[Ap] are the
sums of tree functions which result from iteration of
(65) for ~ in terms of ~oo. It is also easy to
show ' that (71) is invariant under the gauge
transfoi inations

where

=(u'„„+up *ag )S;~ ~oo,
0

~'=r'JS .k(u „a~+u ~*a~*)lJ 0 k k

m oo G'JS' J„(u'~a——„+u"~*a„*).

(71)
Since ~p equals X4oo modulo a gauge transforma-
tion and since (71) is invariant under gauge transfor-
mation it follows that both (71) and (70) yield the
same S-matrix elements. DeWitt has shown that
~p —~oo for the case where Ap is the vacuum.
Here, we have extended his proof of S-matrix
equivalence to the general case where Ap need only
be a solution to the field equations. The tree ampli-
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tudes derived using (71) will be composed of com-
binations of O'J and the vertices I; . . . ;, n )3. As

mentioned earlier in Sec. III, these vertices are not
the same as the usual theory; however, the Ward
identities (53) provide an extremely simple and use-
ful check in actual calculations.

VI. DISCUSSION AND SUMMARY

In the preceding sections we have shown that the
various methods of 't Hooft, DeWitt, Boulware, and
Abbott for constructing a GIEA are all equivalent
and have discussed in some detail the construction
of what may be considered the prototypical GIEA.
We dtd so by first carefully examining the gauge
transformation and invariance properties of the usu-
al effective action in Sec. II. When the
background-field gauge condition P =P[tp] is used
we showed that W and I obey the simple invariance
relations (30) and (35). We next defined a new gen-
erating functional W= W+ J;y' and showed that
the new effective action I [y,A]=I [p,f] can be
considered to be the usual effective action with an
unusual gauge-fixing condition. If the external
source J is chosen to be a functional of the back-
ground field y,J=J[y], in such a way that &(=0 or
equivalently we choose p=A, we found that the
GIEA I [qr]—:I [y,y] is manifestly gauge invariant
and that all solutions to the GIEA field equationI;=0 are physical.

In Sec. IV we showed how to prove renormaliza-
bility of the theory based upon I [y]. Since subdia-
grams (i.e., subdivergences which give renormaliza-
tion parts) of I" are not generated by functional
derivatives of I we found it necessary to proceed in
a somewhat different manner than usual. We first
showed, using the renormalization theory of Caswell
and Kennedy that I [y,A] can be made finite by
adding a possibly infinite set of purely local Hermi-
tian counterterms to the action. We next argued
that since I"[p] is gauge invariant so must all diver-
gences be gauge invariant. For a renormalizable
theory there are only a finite number of possible
counterterms and for pure Yang-Mills theory there
is only a multiple of the action. We then showed
that Z must be independent of the gauge condition,

i.e., Z&Z(a), and discussed how one may compute
Z very simply via computation of l,z. Finally, in
Sec. IV we discussed how to compute S-matrix ele-
ments using I [p] and, in particular, proved that the
method is valid for all background fields which
solve the GIEA field equations thereby proving a
conjecture of DeWitt.

It is important to realize that there does not exist
any simple method as in Eqs. (10) and (13) for com-
puting the chronological average of an arbitrary
operator using the GIEA. This is because the vari-
ous t)"I /t)(I)" and I '~ are not related to the I; . . . ;
in any easily calculable manner as is clear from Eq.
(49). In other words t) I /t)P ~I 3 but is instead
some complicated combination of the GIEA vertices
and propagator. This is not really too much of a
disadvantage, however, since one is usually only in-
terested in calculating expectation values of gauge-
invariant operators (physical observables). The case
of S-matrix elements was given in Sec. V while, for
an arbitrary gauge-invariant operator WGt we should
add a source term to the usual action: X@o&. It is
then clear that functional derivatives of the new
GIEA I"@ [y,X] with respect to X will give us the

necessary expectation values. Since WG& is gauge in-
variant it is easy to show that the proofs of gauge
invariance and P independence for I ~ still hold.

GI
It should prove much easier to use this approach,
rather than the usual method with I, for calculating
the renormalization of gauge-invariant operators,
anomalous dimension, etc. The extension of the
present approach, if possible, to supersymmetric
theories and applications to cosmology and to low-
energy effective field theory also deserves further
study.
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