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Shifts of integration variable within four- and N-dimensional Feynman integrals
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We resolve inconsistencies between integration in four dimensions, where shifts of integration
variable may lead to surface terms, and dimensional regularization, where no surface terms accom-

pany such shifts, by showing that surface terms arise only for discrete values of the dimension pa-
rameter. General formulas for variable-of-integration shifts within N-dimensional Feynman in-

tegrals are presented, and the VVA triangle anomaly is interpreted as a manifestation of surface
terms occurring in exactly four dimensions.

I. INTRODUCTION

It has long been known that shifts of integration vari-
ables within linearly divergent Feynman integrals in four
dimensions are accompanied by finite "surface terms"; for
example, '

d k k„jd k(k+p)„
[(k —p) —m ] [k —m ]

facilitate the development of a regularization procedure
fully consistent with supersymmetric theories.

In this paper, we generalize the arguments of Ref. 1 to
calculate finite terms accompanying shifts of integration
variables in 2' dimensions. We argue that such terms
occur only for discrete values of co. For example, we find
in Sec. II that

k k„d"k(k+p)p
p2 ~22 k2 22

It is also well known that naive shifts of integration vari-
able are always permitted within dimensional regulariza-
tion ':

d "kk„d"k (k +p)„"-=0 .~ [(k —p) —m] [k —m]
(1.2)

Equations (1.1) and (1.2) are contradictory, and this
contradiction merits further investigation (as opposed to
defining or postulating it away) if perturbative field
theory is to be truly self-consistent.

The basic point of our paper is that if dimensional regu-
larization is to be a procedure for continuing four-
dimensional Feynman integrals to n dimensions, then it
should reproduce finite results that occur from standard
four-dimensional manipulations when n is taken to be
equal to four. In particular, Eq. (1.1) should be repro-
duced in n dimensions when n is taken to equal four. This
criterion is certainly reasonable from a mathematical
point of view. We emphasize that the criterion has a
physical motivation as well; the triangle anomaly can be
made to vanish within dimensional regularization if sur-
face terms are not included, unless ad hoc rules for mani-
pulating the matrix y5 are constructed. These rules ap-
pear to be incompatible with supersymmetry, and alterna-
tive rules consistent with supersymmetry (in which
[y5,y„I=0 for all y„,as in four dimensions) appear to be
inconsistent with the Adler-Bardeen theorem, whose
perturbation-theory proof in dimensional reduction seems
still to require the nonfully anticommuting y5 matrix of
Ref. 3. Consequently, we believe features of n;
dimensional integration need to be reexamined in order to

p„6 p (1.3)

for co( —, . Hence, Eqs. (1.1) and (1.2) reflect a discon-
tinuity at co=2. This discontinuity is not merely a curios-
ity. We demonstrate in Sec. V the explicit connection be-
tween shift-of-integration-variable "surface terms" and
the VVA triangle anomaly, and we argue that the anomaly
may be peculiar to four (as opposed to 4+@) dimensions if
we wish to maintain a sensible and self-consistent Dirac
algebra.

In Sec. III, we examine the difference

2n +1
d

krak

PJj=1
[(k —p) —m ]"

2n+1
d~"k + (k+p)„

j=l
[k —m ]"

for less-than-quadratically divergent integrals in which
neither ~ nor r is constrained to be an integer. We find
this difference to be zero unless co=r n Age—ner.al for-
mula [consistent with Eq. (1.3)] for the difference is ob-
tained when this condition is satisfied.

In Sec. IV, we make a similar analysis of the difference

d k+k
P)j=1

[(k —p) —m ]"

d k + (k+p)„
j=1

[k —m ]"

for less-than-cubically divergent integrals, and obtain a
nonzero result only if co=r +1—n. Once again, a general
formula for the difference is obtained when this constraint
is satisfied.

In Sec. V, we briefly discuss the significance of these
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discontinuities in co. We show that divergences of all
three VVA-triangle-graph currents may be expressed as
differences of variable-shifted linearly divergent integrals,
and we show how the usual chiral anomaly is obtained
from finite terms accompanying such a shift when ate=2.
We compare this approach to regularization procedures in
which the anomaly arises from either having y& commute
with (fractionally indexed) y matrices associated with
2' —4 dimensions, or from abandoning the cyclic trace
property of y matrices. We present a case for retaining
conventional y-matrix properties and for regarding the
anomaly (and observed m ~yy rate) as a manifestation of
the discontinuity in Eq. (1.3).

Two lengthy appendices follow Sec. V. In Appendix A,
we examine symmetric integration (over k) in 2' dimen-
sions of numerator factors

II. THE JAUCH-ROHRLICH SURFACE TERM

We begin by considering the difference between

k)"
I"(co,r)= f d "k

[(k —p) —m ]" (2.1)

+ (k+pz)„
j=l

where z can be zero, one, or a Feynman parameter. Re-
sults of Appendix A are extensively used in Secs. III and
IV.

In Appendix 8, we "bootstrap" Eq. (1.1) to derive for-
mulas for differences between divergent variable-shifted
integrals in (exactly) four dimensions. These results pro-
vide a consistency cross check of the general formulas ob-
tained in Secs. II and III. Appendix B is also intended for
those readers who would like to pick up where Ref. 1

leaves off without having to fight through the more gen-
eral arguments of Secs. III and IV, where co is not con-
strained to be 2.

if x&y , (2.7)

where x and y do not depend on k", and

b bf d "k f dz f(k+p, z)= f d "k f dz f(k,z)

for less-than-linearly divergent integrals, ' i.e., for

(2.8)

f (k) — (k )
" when 2' 2r & 1 . —

k~ 00

Equation (2.4) is standard Feynman parametrization.
Equation (2.5) follows from the definition of the beta-
function; note that Eq. (2.5) is finite on both sides and
well defined on the right-hand side. If 2' &Z+ (positive
integers), then (2.5) is the definition of the left-hand side.
It is important that Re(q co t)&0; othe—rwis—e the right-
hand side is not well defined and (2.5) cannot be em-
ployed. Equations (2.6) and (2.7) follow from the linear
algebra of integration operations. Equation (2.8) indicates
the conditions under which shifts of the integration vari-
able are permitted. ' Note that in Eq. (2.8) a reversal of k
and z integrations is not allowed if the k integral is diver-
gent'; such a reversal is permitted only for finite integrals.
We also employ the relations

of case I. To proceed further we shall need the following
relations:

1

a " b—'=r f dz(b —a)[az+b(1 —z)] '+",
(2.4)

f d "k(k )' .m™I(co+t)l (q to —t)—
[k +X]2 I (to)I (q)X't

Re(q co —t)&—0, (2.5)

f d k[f(k)+g(k)]= f d "kf(k)+ f d "kg(k),

(2.6)

Oif x=yf d "kf (k,x,y)(x —y) = .

J"(co r)—= f d "k (k+ )"
[k —m ]" (2.2) k2 Pvf d k k"k'f(k )= f d "k f(k )2' (2.9a)

for three illustrative cases:

Case I: I"(2,2) —J"(2,2)

d k
!

!

!

~

!

I
~

~

~ ~ ~ ~
~

~

I

7

4 k" (k +p)~
[(k )2 2]2 [k2 m 2]2

Case II: I"(co,2) J"(co,2)—
(2.3a)

f d "k k"f(k )=0 (2.9b)

Equation (2.9a) holds for 2co&Z+; if 2coEZ+, then (2.9a)
defines the left-hand side. Equation (2.96) follows from
setting kz ~—k@.

We shall find it useful to briefly recapitulate the argu-
ments of Ref. 1 in evaluating case I. Using (2.4) we find
that

d k
[(k —p) —m ]

Case III: I"(co,co) —J"(co,co)

P, (2.3b)
[k —m ]

I"(2,2) —J"(2,2)

1 pP=fd'kf dz

d k
[(k —p) —m ]

(k+p)"
[k2 —m ]" (2.3c) 2k"(2p.k —p )

[k2 —2p.kz+p z —m ]
Case I corresponds to the case considered by Jauch and
Rohrlich'; cases II and III continue the dimensionality
and the power of the propagator from the ~=r =2 limit

(2.10)

Since the second integral is logarithmically divergent, (2.8)
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may be used (note that k and z integrations are not inter-
changed) in order to obtain

I"(co,2) —J"(co,2)

I"(2,2) —J"(2,2)

=fa'kf Zz
pP

[k —m ]

4k&k p
[k +z(1—z)p —m ]

=fe'"kf yz
4k"k p„

[k +z(1 —z)p' —m2]'

[k +z(1 —z)p' —m']p~
[k'+z(1 —.)p' —m']'

(2.16)

2pPp z(1 —2z)

[k +z(1—z)p —m ]

In the last integrand, we may partial integrate over z to
find that

dz z (1—2z)

[k +z(1—z)p —m ]

—1/(2p')
22+[k~—m ] 2p o [k +z(1 —z)p —m ]

(2.12)

Using (2.9a), k "k"~g""k /2', and (2.16) becomes

I"(co,2) —J"(co,2)

p"k [(2/co) —1]
[k +z(1—z)p —m ]

p"[z(1—z)p —m ]
[k +z(1—z)p —m ]

(2.17)

We may interchange k and z integrations provided
2' —4 &0. Using (2.5) and (2.8), (2.17) becomes

Substitution into (2.11) yields

I"(2,2) —J"(2,2)

1 4k"k p„
d 1@ dz

[k +z(1—z)p —m ]

[k +z(1—z)p —m 2]p&

[k +z(1—z)p —m2]3
(2.13)

I"(co,2) J"(co, 2—)

=f dz

or

—im (1—2/co)l (co+1)I (2—~)
21 (co)[p z(1 —z) —m ]

i~ I (3—co)

2[p z(1 —z) —m ] (2.18)

Using (2.9a), we find k&k ~g&"k /4, explicitly canceling
the factor k p" in the second integrand of (2.13) [Eq.
(2.7)]. The remaining terms lead to finite integrals, so k
and z integrations may be interchanged; using (2.5) we ob-
tain

I"(co,2) J"(co,2) =0—, co (2 .

Hence

0 ~ 67(2
I"(co,2) —J"(co,2) = '

'

,

—le p /2, 60=2,

(2.19)

(2.20)

= —i~ p"/2 . (2.14)

I"(2,2) —J"(2,2)= f dz f d k
[k +z(1—z)p —m ]

and so I"(co,2) —J"(co,2) is discontinuous at co=2, con-
sistent with Eq. (1.3).

For case III, the same manipulations that lead to (2.17)
now yield

Thus we reobtain the Jauch-Rohrlich surface term [Eq.
(1.1)].

Consider now case II. All manipulations leading to Eq.
(2.11) remain valid provided 2' —4& 1, so that (2.8) may
be used to obtain

I~(co,2) —J"(co,2)

=fa" kf az-
[k' —m ~]2

I"(co,cu) J"(co,co)—
[k +z(1 —z) — ]~+'

p"[z(l —z)p —m ]
[k +z(1 —z)p —m ]"+'

4k "k"p —2p~p'z (1—z)

[k +z(1—z)p~ —m2]3

(2.15)

For case II, (2.12) is still valid, so

iver p~/[I (co+1)]—, (2.21)

where the first integrand vanishes because of (2.7), and
where (2.5) has been used to evaluate the second integrand,
which is finite.

We stress that cases I and III do indeed differ from case
II, in the limit m~2. This is not surprising; in general,
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we find that

lim f d' k f(k, co) ~ lim f d'"k f(k, 2)
op~2 60~2

(2.22)

The degree of divergence of the integral in Eq. (3.3) is one
less than that of the integral of Eq. (3.1). If co & r + —,', the
integral over k in Eq. (3.3) is finite and a naive shift of
variable k —pz —+k is allowed,

and

g(co, 1, 1 ) =iaaf'(2 co—)P(co l,—co —1)(p )

g(13)Q) I (4—2co)

1 (3—co)

(2.24)

XP(co —1,2co —3)(p )" (2.25)

in which case

reflecting a discontinuity at co=2. As an example, consid-
er the integral

d k
(k') [(k +p)']~

(co,a, ) =

13( —a co —P)( ')
1 (a)l (P)

(co (a+ I3) . (2.23)

One can show that

I' '=r f d "k f (34)
[k +p z(1 —z) —m ]"+'

The integral over z can be shown to be zero by noting that

d [p2z(1 —z)]=p (1—2z)dz,

and that z(l —z) is symmetrically double valued between
z =0 and z =1. Therefore I' '=0 provided co &r+ —,', in
which case naive shifts in the variable of integration for
I' ' are allowed provided Do ( 1.

In fact, this argument can be applied to any less-than-
linearly divergent integral; henceforth, we shall always as-
sume that naive shifts of integration variable are permit-
ted in integrals with degree of divergence less than one.

Let us now consider the difference between variable-
shifted integrals containing the product of an odd number
of numerator momenta:

lim [((co,1,3 —co)]=—, lim [g(co, 1, 1)],
67~2 Q)~2

and not

lim (co, 1, 1)
co—+2

as one might expect.

(2.26) 2n+1—= f d "k g k [(k —p) — ]
j=1

2n+1

j=1

(3.5)

III. SURFACE TERMS
FROM LINEARLY DIVERGENT INTEGRALS

We wish to consider the difference between any pair of
Feynman integrals that are related to each other by an ad-
ditive shift in the variable of integration, and are linearly
divergent when integrated over (exactly) four dimensions.
To proceed, we must first establish that naive shifts of the
integration variable are permitted in any Feynman integral
whose degree of divergence is less than one. Consider the
difference between two integrals whose degree of diver-
gence is Do ——2' —2r,

I(0)= d k d"k
(3 1)

[(k —p) —m ]" [k —m ]'
Using the formula'

(3 6)

I2n +1,r
' '~Zn+i

2n+1= f d "k + kp [k —m ]
j=1

+rfd kf dz

Zn+1
[2k.p —p ] + k„

j=1
[(k —pz) +p z(1 —z) —m ]"+'

If 2co+2n +1—2r & 1, these integrals are equal. We wish
to consider the difference between these integrals in the re-

gime 2&2co+2n +1 2r & l. Using E—q. (3.2), we find
that

1

a " b"=r (b —a) f—dz [az +b (1—z)] '+",
we find that

1(o) dz(2p k —p )

[(k —pz) +p z(1—z) —m ]"+'

(3.2)

(3.3)
I

(3.7)

The first integral in Eq. (3.7) is odd in at least one com-
ponent of k and must therefore vanish [Eq. (Ala) of Ap-
pendix A]. The second integral has degree of divergence
2co+2n +2—2(r + 1) & 1, in which case the variable shift
k~k +pz is allowed. Consequently, we find that

2n+2 2n+1I„'"+!„"=r f d k f dz 2p""+' g (k+pz)„—p g (k+pz)„[k +p z(l —z) —m ]"+'. (3.8)
j=1 j=1

Let us now define an n-indexed object o. ' " which equals unity if all j's are different and zero if any two j's are the
same:
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0J1J2 Jn J1J2 Jn i ~ isign(E) (3.9)

m m

X X.. .
j1=1 j2=1

Jm

j =1
(3.10)

Using the "cr tensor" (which is not, strictly speaking, a tensor), we see that

m

J1 ——1 J2 ——1

m J1J2' ' jm

Jm=
(3.11)

Note that values of pj. need not necessarily be different for different values of j;. For notational convenience we will
t

treat the summation over j's as understood whenever indices j; are repeated.
In Appendix A, we prove that numerator factors of (3.8) can be expressed in terms of the contraction of the o. tensor

onto products of the momenta p& and the metric tensors
J

gPJ. PJ.

Substituting Eqs. (A20) and (A15) of Appendix A into Eq. (3.8), we find that
n

I2 +nI, & r d2tok dz g ((k2)tz2 +n1 —2t[2(co+ t)P2Z]+(k2)tz2n —2t[(2n —2t + 1)k2] (k2)tz2n+1 —2t[(co+ t)P2])» &2n+1 0 t=0

X [G, 2„+,(p)][k'+p'z(1 —z) —m']-"-', (3.12)

where [from Eqs. (Al 1) and (A7) of Appendix A]

Gt 2n+ &(P) =(Rp, tt gtt tt )(Ptt P„)
J1 jP j2t 1 j2t J2t+1 j2n+1

Xcrj' '"+'I (co)/[t!22'I (co+t +2)(2n +1—2t)!] .

We choose to regroup the terms of Eq. (3.12) as follows:

n

Ip", .+. ".
~, ——f d "k g (k )'(2n 2t+1)G, 2„+)(p—)

t=0

(3.13)

1 dzz
X

[k +p z(1 —z) —m ]"+'

+r (co+ t) p (1—2z)dz
[k'+p2z (1—z) —m ']"+ '

z 2n —2t+1

2n —2t +1 (3.14)

An obvious integration by parts yields

n

= I d "k g (k )'(2n 2t+1)G, „—2)(+p)

X (co+ t)(2n —2t + 1) '(k —m )

+ dz Z
„[k'(r co t) (p'—z(1——z)——m )(co+t)]

[k +p z(1 —z) —m ]"+' (3.15)

In (3.15), we are performing a Zco-dimensional integral,
where the value of co is fixed. In particular, the coeffi-
cient of k in the numerator of the last integral on the
right-hand side is (r co t), where both —r a—nd co have
fixed values which are not necessarily integral.

Let us first suppose that there is no integer t for which

f
r —~—t =0. Then the coefficient of k is nonzero for all
t. If we employ the formula

d "k(k ) iver"I (co+m)I (q —co —m) (3.16)
(k +X)» 1(~)I (q)X&

in (3.15), we see that the integrand of the right-hand side



28 SHIFTS OF INTEGRATION VARIABLE WITHIN FOUR- AND 1V. . . 1983

le
s&r+n I ( )

Gn, 2n ~1(p) (3.17)

One can attempt to argue away this surface term for the
case of r =co+n by choosing co=r —n +e and consider-
ing the limit a~0+. The relevant term in (3.15) becomes

d'~k (k')'+ 'e
lim

o+ [k ~p z(1 —z) —m ]"+'+'+'

which leads to a nonzero result proportional to

eI (e)=I (e~ 1) ~ 1

that would cancel the surface term. Such an approach as-
sumes continuity in co, inevitably removing any surface
terms that may arise at discrete values of co. ' We take
the point of view here that Eq. (3.15) has a discontinuity
when r =co+ n which the @~0+ limiting procedure
necessarily defines away. Indeed, by saying that the con-
tribution of (r —co t)k is—exactly zero for r =co+n
when t =n, we are assuming that

(k')s (k')s
[(k+p) —m ]" [(k+p) —m ]"

consistent with Eq. (2.7), even if

d "k(k )f [(k +p) —m ]"

diverges for the choices of r, co, and s considered. "Hence,
we cannot use the pole to cancel the zero as in case II of
the previous section of our paper; to do so would violate
Eqs. (2.7) and (2.8), equations which are necessary for us
to be able to continue to values of co outside of the range
0(co (

We now use Eq. (3.17) to evaluate the difference be-
tween (3.5) and (3.6). The first term on the right-hand
side of (3.17) is equal to Jz".+. ". &,a result easily seen by

setting z =1 in Eq. (A15) and then substituting directly
into (3.6). Therefore, we find that

integral over z vanishes when integrated over k.
Now let us suppose for our particular choices of r and

co that there exists an integer t such that r —cu —t =0.
Since 2co+2n +1—2r (2, the only possible value of t for
which r can equal co~t is n T. hus, if r =co~n, the in-
tegrand of the integral over z in (3.15) when t =n is just

—[p zz ( 1 —z) —m ](co ~ n )

[k +p z(1 —z) —m ]"+"+'

leading to a surface term when integrated over k:
I2n +1,r

&1' ' '
~2n ~1

n

= f d k g (k )'G, qn+i(p)(CO+t)/(k —m )"
t=O

G„q„+I(p)= I I (co)/[I (co+n + 1)n!2 "]I

~ ~ ~

J1 J2 2n —1 2n 2n+1

(3.19)

Also note that if' n =0,

G, (p) = [I ( )/I ( ~ 1)]p„

(3.20)

consistent with Eq. (1.3).
We stress that no surface term arises unless co and r

differ by an integer. When co=r n, the—integrals of Eqs.
(3.5) and (3.6) are exactly linearly divergent. We see,
therefore, that variable shifts do not lead to surface terms
within less-than-quadratically divergent integ rais with
products of an odd number of numerator momenta unless
the degree of divergence is exactly one.

IV. DIFFERENCES OF MORE-THAN-LINEARLY
DIVERGENT VARIABLE-SHIFTED INTEGRALS

Let us now consider the difference between

25

I„",'".„,= f d ".k. g k„[(k—p) —m ]
j=1

(4.1)

2'J„"'.". .„=f d k g (k ~p)„[k—m ]
j=1

(4.2)

where 2co+2n —2r &3. We once again use Eq. (3.2) to
find that

~2n, r
I 2n

2'
= f d~~k ~ k [k~ —m~]

Jj=1
27k

dz[2p k —p ] + k„
+p d 2@ok

[(k —pz) ~p z(l —z) —m ]"+'

Note that in the (2n+1)! terms of (3.19), each of the
(2n + 1) possible values for p& multiply (2n —1)!!distinct

J
products of n g's, as is discussed in Appendix A. For ex-
ample, if n =2, each j; goes from 1 to 5, and

j»2j3j4js
~PJ' PJ ~PJ' PJ PPJJ3 J4

p&i(g&Hsg&ws+g&it'4g&sI's gl'wsgl'sl'~

+8pp2(gpipsgp~s+ )+8pps(gpip2gp~s+ . . )

+8pp4(gpip2gp~s+. )+8pps(gpip2gp~4+. . . ) ~

I2n+1, r J2n+1, r
I 1 I 2n+1 ~1 I 2n+1

where

i~"G„pn~i(p)
r, cu/n

(3.18)

(4.3)

We want to make the variable shift k~k+pz in the
second integral of Eq. (4.3). Such a shift results in a sur-
face term when 2co+ 2n + 1 —2(r + 1)= 1; using Eqs.
(3.18) and (3.19) we find that
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2'f d2~k / k [k2 m2) —r
1"2n PJ.j=l

2n+1 2/i

p
'"+' g (k+pz)„ g (k+pz)„

f 1 j=1 J j=1+2r d k dz —rp d k dz
o [k2+ z(1 —z) —m ]r+' o [k +p z(1 —z) —m ]r+'

1

+2rp '"+' f dzI im—6 „+)„/[2"n!I (io+n +1)]I(g„q . . g„qp„zo' '"+') .
0 Jl J2 J2n I J2n J2n + I

(4.4)

The integrands of the second and third integrals in (4.4) can be evaluated using Eqs. (A16) and (A19). The contraction
of p

'n+' into terms in the final curly brackets is given by

2n+ 1(g . . . g p & 1 2n+1)P ~ J ' 'J
"J2. I"J2. "J2.+I

2 J I J2 jI ' ' '
J2n

JI J2 J2n —I J2n J1 J2 J2n —3 J2n —2 J2n —I J2n

a result most easily understood when one considers that (2n + 1)!permutations of indices on the left-hand side of (4.5)
may be partitioned into either (1) a choice of

PP, . —PP2„+I
~

J2n+ I

in which case there are (2n). permutations of the remaining indices running between p& and p2„, or (2) the
[(2n +1)! (2n)—!]=2n (2n)! permutations of 2n +1 indices constrained such that pz does not equal p„[forboth

J2n+ I
~2n+ I

cases (2n)! corresponds to the contraction of the 2n indices pj . . pi into o ' '"].
Upon substitution of Eqs. (A16), (A19), and (4.5) into Eq. (4.4), we find that

2&i

I",". . . = fd k +k [k —m ]
j=1

z " ' '(k )'+'(2n —2t)G, 2„(p)
[k +p z(l —z) —m ]"+'

z " '(k )'(co+ t)p (1—2z)G, 2„(p)—r d "k dz
[k +p z(l —z) —m ]"+'

2 "n!I (to+ n + 1) J I J2 J2n —3 J2n —2 J2n —I J2n J2n —I J2n
(4.6)

The third integral in (4.6) can be integrated by parts over z by identifying

du =p (1—2z)dz/[k +p z(1 —z) —m ]"+' .

We see that when t =n, the third integral vanishes, and (after a little algebra) we find that

I„"'". =fd "k +k . . [k —m] "+g fd kf dz
2n n —1 z " ' '(2n —2t)(r to t)(k —)'+—'G, 2„(p)

' '~2n J 0 [k2+p2z(1 z) m2]r+1

z " ' '(2n —2t)(co+t)(k )'[p z(1 —z) —m ]dz r+f t 2I! p0 [k +p z(1 —z) —m ]"+'

n —1

+ g f d k(co+t)(k )'G, 2„(p)[k2—m2]

(4.7)

If r&o2+t, the second and third integrals cancel [Eq. (3.16)] as before,
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(r —co t—) f d k(k )'+'[k +p z(l —z) —m ]

=(co+t)[p z(1 —z) —m ] f d "k(k )'[k +p z(1 —z) —m ]

=im"1 (co+t + l)I (r c—o —t+ 1)[p z(1 —z) —m ] +' "/[I (co)I (r +1)I . (4.8)

If r =co+t, our restriction that 2co+2n 2—r & 3 is satisfied only if t equals n —1, its largest allowed value. Thus, we
find that

2n n —1

I„'",'."..„,= f d'"k +k„[k'—m'] "+ f d "k g (co+t)(k')'G, ,„(p)[k'—m']
j=1 t=O

2l 7T l&
I (~) " ' " 2'"I (n +1)l (~+n+1)n —1,2n +

1 2 2n —3 2n —2 2n —1 2n ~2n —1 J2n (4.9)

The first two integrals on the right-hand side of Eq. (4.9) are equal to J&"'."..„asis seen from substituting Eq. (A16)

(with z =1), (Alb) and (All) (with t =n, m =2n) into Eq. (4.9). If we then use Eq. (All) to evaluate G„~z„,we find

that

~2n, r ~2n, r

X [(~+n —1)p g& „+2n(2co+2n —1)p„p„]I
J2n —I J2n J2n —I 12n

As an example, note that for four indices there are 24 permutations, facilitating determination of

(4.10)

J]J2J3J4
(gent PJ gpj PJ

)= [gP 8 gP3P +g/ P gaze +&8 8 gP?J (4.11a)

A j2J3J4
gp, p; ppj. ppj. [gv~vge3pI q wy 3 I gl & eip4 &7» pzp3 &ip&4 &zp4 &i I'3 &H~ &i &z

(4.11b)

Once again, we see from Eq. (4.10) that naive shifts of variables are permitted for products of an even number of
numerator momenta unless ~ is exactly equal to r + 1 —n, corresponding to a degree of divergence exactly equal to 2.

V. DISCUSSION

In Secs. III and IV, we have shown that naive variable shifts are permitted in divergent integrals with nonintegral de-
grees of divergence, but that additional finite terms accompany such shifts when the degree of divergence is 1 or 2. In
other words, the function F(co) defined by

is not a continuous function of the dimensionality co This result .has its most obvious ramifications in calculations of the
VVA triangle anomaly.

Consider S„z,the sum of the triangle graphs in Fig. 1 (in which interior momenta are parametrized in the most gen-
eral possible manner). In four dimensions, divergences of all three triangle-graph currents are proportional to differences
of variable-shifted linearly divergent integrals (note that p q

—pz ——p ~
—p ~):

k S„z—— f d r[Tr[yz(y+p&+q) 'y&ys(y+p&) ']—Tr[y (y+pz+q) 'y„ys(y+pz) ']]
(2n. )

2

~ f d r [Tr[y~(y+pz+q) 'ypys(y+pi ) 'l Tr[yp(y+—p2+q) 'y~ys(y+pi) ']]
(2n. )
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2—(q +kpS = f d r ]Tr[(y+p2+q) 'y (y+p~+q) 'y&ys] —Tr[(y+pq) 'y (y+p'~ ) 'y&ys] )(2m. )
~ 2

+ 4 f d r [Tr[(y+Pi) '1' (y+Pi+q) 'X„Xs] T—r[(y+Pz) 'X (y+P'z+q) ')'„rs]],
(2m )"

~ 2

& f d r [Tr[yp(y+P2+q) '@~as(y+Pi) '] T—r[ye(y+P2+q) Vcr''s(y+Pl ) '] j(2~)'
~ 2

+ & f d r [Tr[y&(y+P2+q) )' (y+P&+q) )'s] Tr[Y—p(y+P2) Y (y+Pt ) 'ys] j .
(2~)

(5.4)

(p 2
—p2 )„=Aq„+Bk„, (5.5)

we repeatedly apply Eq. (1.3) and find that
k Sp ——( ie /8~—)(1+A)ep,pqq k (5.6)

—(q+kPS„=(ie Igvr )(2 A+B)—e„,„q'k",
q"S&z ——(ie —I8~ )(1 B)ez, „q'—k" . (5.8)

These three equations in two unknowns forbid simultane-
ous conservation of vector and axial-vector currents. Im-
position of vector-current conservation upon Eqs. (5.6)
and (5.7) yields A = —1,B = —3; this value for B yields
the usual chiral anomaly in Eq. (5.8).

We stress that this result is obtained directly from sur-
face terms associated with the difference of variable-

(5.7)

—(k+q)

Each difference of traces within curly brackets yields a
finite surface term contributing to anomalous divergences
of triange-graph currents. If we define

S 2
—a2(=el —S»)

as an arbitrary linear combination of the external momen-
ta q and k such that

shifted linearly divergent integrals in exactly four dimen-
sions. ' If naive variable shifts were permitted in Eqs.
(5.1), (5.2), and (5.3), no anomalous divergence would
occur, ' despite the fact that the anomaly corresponds to
the physical field-theoretical amplitude for m —+yy.

One can, of course, obtain the triangle anomaly in n ~ 4
dimensions (where naive variable shifts are permitted) at
the price of defining a ys which commutes with y„for
n ~4 (Ref. 3). In essence, an exotic definition of ys (not
to mention nonintegral y-matrix indices) compensates for
removal of the discontinuity in dimensionality that occurs
in Eq. (3.18).

Such a y5 does not seem to be appropriate for super-
symmetric theories; [ys, @zan

=0 and Tr(1) =4 are neces-
sary conditions to preserve supersymmetry in the Wess-
Zumino model. ' Dimensional reduction, an alternative
regularization procedure in which naive variable shifts are
also permitted, manages to uphold these conditions by
partitioning four-dimensional space into n and 4 ndi--
mensions and by using the usual four-dimensional y ma-
trices. '" Unfortunately, the calculation of the triangle
anomaly under dimensional reduction is somewhat ambi-
guous. Nicolai and Townsend show that to recover the
usual triangle anomaly, one must selectively abandon cy-
clicity of Dirac-matrix traces. For example, we retain
having Try&y =Try y@, but we also require that

Tr[r ~~,1 apÃlc b'Tr[) —1,) a,).]

k(=V2 —V1 ~

—(k+q)

I I
k (=p —p

Vg 2 I

FICx. 1. VVA triangle graph and cross graph.

contradicting the equality that follows from cyclic rear-
rangement.

Under these circumstances, we find it reasonable to
question the exclusion of variable-shift surface terms at
integral values of dimensionality. In particular, if y ma-
trices retain their usual properties, the triangle anomaly
appears to be peculiar to four dimensions, a manifestation
of the discontinuity of Eq. (3.18) when co r is in-—
tegral. ' '

Consequences of retaining finite terms associated with
variable shifts in divergent integrals have also been exam-
ined in the renormalization of a spontaneously broken
gauge theory in which fermions are absent. ' The in-
clusion of such terms to full two-loop order has been
shown to lead only to absorbable divergences (even though
the absence of fermions precludes any y-matrix peculiari-
ties that may compensate for surface terms). Finite terms
associated with variable shifts in divergent integrals have
also been examined in two-dimensional QED'; results ob-
tained are consistent with the theory first-discussed ob-
tained by Schwinger. '
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APPENDIX A: SYMMETRIC INTEGRATION IN 2' DIMENSIONS

Consider the k -symmetric integration of a product of numerator momenta k& in 2' dimensions:
J

2r +1f d "kf(k2) + k„=0,
j=1
2T

f d "kf(k ) g k„,= f d "kf(k )(k )" g„„,g„,„.g„j=1

Jj jz

CYANO

r!2" (A lb)

(The "o tensor" is defined in the text. ) In general, there are (2r). terms on the right-hand side of Eq. (A lb), correspond-
ing to (2r). permutations of the 2r indices pi, pz, . . . , p2, obtained when the product of g s is contracted into cr. Qf these
(2r)! terms, only (2r)!/(r!2")=(2r —1)!!are distinct, as there are r! ways to arrange a product of r g's, and for each one
of these g's, there are two equivalent choices of indices (g ti

——gti ). For example, when r =2,
j»», j4

&jii j2 I j3&j4 i l&2 &&4 &li 3 &784 &1&4g&2J 3

corresponding to 3( =3!!) distinct terms within 4! permutations of four indices.
We wish first to derive the value of N„in terms of r and co. To do this, consider

(A2)

2r +2f d'"k P(k') + k„,= f d'"k P(k')(k')"+' g„„
j=1

Ji ' ' ' Jzr+zxr
~ ~ ~ g"lz, +i"j~,+z (r +1)!2"+' (A3)

Let us call p2„+i=pand p2„+2=o. Consider contractions of gt' on both sides of Eq. (A3); using Eq. (Al), we find that
contraction on the left-hand side yields

2l'

f d kP(k )k +k = f d "kP(k )(k )"+' g . gPJj=1

Jzr

(A4)

(2r +2)!—(r + 1)(2)(2r)!= [2(r + 1)(2r)](2r)!,

where once again the factor of (2r)! corresponds to the number of ways of arranging the 2r indices p& —p2, . Conse-
quently, contraction of gt' into the right-hand side of Eq. (A3) yields

Jzr+zcvr+1~
0 ~ ~ g"'2.+ i"'2.+2 (r + 1)!2"+'g~ f d "k $(k2)(k )"+' gPJ Pj

Contraction of g~ into the right-hand side of Eq. (A3) will be proportional to the same product of r g's and the o tensor
as in Eq. (A4). To find the constant of proportionality, consider the (2r +2). permutations of indices on the right-hand
side of Eq. (A3). The number of permutations containing an explicit factor of gz is (r +1)&&(2) X(2r)., corresponding
to r + 1 choices for either gz~ or g z in the product of r + 1 g s, and (2r). permutations of the remaining indices p, —p2„
excluding p and o. Moreover, the number of permutations not containing an explicit factor of gz (i.e., p and cr indices
occur in different g's, as ingz„,g & ) is

= f d k P(k )(k )"+ '
I
gt' gz [2(r + 1)]+[2(r + 1)(2r)] I g& &

Since g~ gz ——2', comparison of Eqs. (A5) and (A4) shows that

(2co+2r)N„+,=N„.
Since N& ——I/2', we see from induction that

Ã„=2 "I (co)/I (co+r) .

JzrX„+1O
~ ~ ~ g"'2.—i 'z. (r +1)!2"+'

(A6)

(A7)

We now wish to consider the integration of a product of variable-shifted numerator momenta over a function of k in
26) dim. enslons:

2n+1
I2„+i(q)=—f d k f(k ) + (k+q)„

j=1
(A8)
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Using the o. tensor defined in the text, we see that

2n+1 2n +1
(k +q)„= g (k„ k„)(q„

j=1 s=o Js Js + I

0
' j2n+I

qp )
J2n+| s!(2n + 1 —s)!

(A9)

[Summation over j&,j2 j2„+~over integers 1(j;(2n+1 is understood. Note that the "out-of-order" products
(k& .

k& ) and (q&
. .

q& ) corresponding to s =0 and s =2n + 1, respectively, are understood to be unity. ]
JI Jp J2n+2 J2n+ I

If we substitute Eq. (A9) into (A8) and make use of Eqs. (Al), we find that
n

I2„+&(q)=J d "kf(k ) g (k„k„)(q„,q„)(o' '"+')l[(2t)!(2n 2t+1)—!]
JI J2t J2t+ I J2n+ I

n

~ I ~2n+ I

X qq, )
J2n+1 (2t)!(2n 2t + 1 )!—

[Note that the factor (k„k& ) corresponds to (2t)! products of 2t k's.]JI
We define

(A10)

Gt, (q) =2(g,J,JI J2 j2t I J2t J2t+I Jm

'Jm
o

t!2'[m —2t]!
(Al 1)

and use Eq. (A6) to find that
n

I2, + i (q) = J d' k f(k') g (k ')'(~+ t)G, 2„+)(q) .
(A12)

This result corresponds to making the following substitu-
tion in the integrand of Eq. (A8):

2n +1 n(k+q)„g(k )'(co+t)G, 2„+,(q) .
j=1 t=0

An identical argument yields the result

(A13)

2n n

g (k+q)„g(k')'(~+t)G, ,„(q). (A14)
j=1 t=0

When q =pz, we see that G, (q)=z 'G, ~(p), leading
to the following formulas for products of variable-shifted
momenta within k -symmetric integrands of 2co-
dimensional integrals:

2n +1 n

g (k+pz)„. g ( k')'(~ +t) z'"+' "G, ,„,(p),
j=1 t=O

(A15)
2n+ (k+pz)„~g (k')'(co+t)z'" "G„„(p).

j=l t=0

(A16)

Let us now consider the numerator factors
2n +1

p
'"+' + (k+pz)„

j=1
which occur in

p"'"+ 'I2„+,(pz)

[Eq. (A8)]. From Eq. (A10), we see that

k 2 t~ z 2n 2t +1—
p"'"+'I2„+,(pz)= J d "kf k

t!2'(2n 2t +1)!—
JI J2 J2t —I 2t 2t+ I J2n+ I

(A17)

fhere are [(2n + 1)—2t] p indices; if any one of them is p2„+„contraction with p
'"+' will reduce the number of p in-

dices by 1. Similarly, there are 2t g indices such that if any one of them is p2„+~,contraction with p
'"+' «p»ces

g with p„,thereby increasing the number of p indices by 1.
Jl J'2n+I

Hence, we find that

P [(gp p' gp p. )(P.p.
'' ' Pp.JI J2 J2t —I J2t J2t+ I J2n+ I

=p [(2n + 1)—2t][(g~„..g„„)(p„..p„)o' '"]
JI J2 j2t I j2t J2t+ I J2n

+2t[(g~ ~JI J2 J2t —3 J2t —2 J2t —I J2n
(A18)
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Substitution of Eqs. (A18), (Al 1), and (A6) into Eq. (A17) shows that

2n+1
p '"+' + (k+pz)„

j=1

~ g z " '(k )'[(to+t)p z]G, 2„(p)
r=O

2" +' 2'(k2)'X

1 (t —1)!2' '(2n +1—Zt)! '1 '2 '2t 3-'2t 2—'2t —1 '2

n z2n —2t —1(k 2)t +1~

g z'" "(k')'[(to+t)p'z]G, 2„(p)+g, + [(g„„t!2'(2n 2t ——1)!
n n —1

g z " '(k )'[(io+t)p z]G, 2„(p)+g z " ' '(k )'[(n —t)k ]G, 2„(p).

. g„. „.)(p. . . )t7' '

j

(A19)
t=0 t=0

Similarly, we find that
2n +2 n n

p "+ g (k+pz)„, g z " '+ (k )'[(to+t)p z]G, „,(p)+ g z'" '(k')'[(2n 2t+—1)k'/2]G, ~ (p)
j=1 r=0 t=0

(A20)

APPENDIX B: VARIABLE-OF-INTEGRATION
SHIFTS WITHIN FOUR-DIMENSIONAL

FEYNMAN INTEGRALS

In this appendix, we use Eq. (1.1) in order to derive the
following formulas for integration-variable shifts in four
dimensions:

d k krak kz
~

d k(k+p) (k+p) (k+p)&
[(k —p)' —m'j' [k —m2]3

l&
12 [Pttgvi, +Pvgtt2. +Pi.gttv ]

d kkqk„ I d k(k+p)„(k+p)„
[(k —p) —m ]2 [k' —m']'

6 [p 'g„.+5p.p.],

dkkpk kg
P&~ k 2 2 3

Following Ref. 1, we use the identity

1 1

[(k —p)' —m']" (k' —m')"

n(p ——2p k)

1 dz
X

[(k —pz) —(p z —p z+m )]"+'

in order to write

d k k~k„kgI
(k —m )

1 dzk~k kg—3p dk
[(k —pz) —(p z —p z+m )]

(B5)

(B6)

d kk I d k(k+p) 3im2.
[(k —p) —m ] [k2—m2]2 2

dk p dk im

k —p —~ ~ k2 m2 2
(B4)

These results are consistent with Eqs. (3.18) and (4.10).
Consider first the integral

1 dz krak„krak,
+6p d k

[(k —pz) —(p z —p z+m )]
(B7)

The final two integrals in Eq. (B7) are at most logarith-
mically divergent in k. Consequently, the variable k may
be replaced in these integrals with k +pz, and

d kk~k„kg
(k —m )

(k +pz)&(k +pz) (k +pz)2 1 (k +pz)&(k +pz)„(k+pz)2(k +pz),
3p dk dz 2 "22 2 2 4+6p. dk dz

[k2 —(p2z2 —p z+m2)] 0 [k —(p z —p z+m )j
d kk„kkg
(k —m )
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3pppvpx p

T

—3p 4
' dzk z(1 —2z)+(Ppg 2.+P gpX+Pxg p)'

Q [k2 (p2z2 p2z +m2)]4

dz k4

[k —( — +m 2)]
J

(88)

dkkpk kg

(k —m )

le
2 PPPvPX

The coefficient integrals multiplying pzp, pi are finite and
can be easily evaluated,

I

Consequently, we find that any surface term in I&„2can
only be proportional to (p&g 2+p g&2+pig&, ):

2 2
Ipvi. —Jyvi, =~ (P m )(Ppgvi, +Pvgpk+Pxgij, ,v)

(811)

+(ppgvx+pvg px. +pzg pv) I
' ' '

I (89) The coefficient A can be determined by contracting two
indices in Eq. (810), using Eqs. (85) and (810) for I and J:

Now consider the integral

d k(k+p)„(k+p) (k+p)2
(k —m )

(810)

corresponding to a naive shift of integration variable in
I„„2.It is straightforward to obtain the coefficient of
pep.p~ in Jp.k. This coefficient is precisely the same as
that obtained for I& 2 on the right-hand side of Eq. (89).

6~(p m )p„=gA, (I„x—J„2, )

dkk„k
[(k —p) —m ]

~
d k(k+p)„(k+p)

(k —m )

Now we see that

(812)

d4k k„k2 I d4k[[(k —p)2 —m2]+m +2p k —p ]Ik„
[(k —p)2 —m ] [(k —p) —m']'

d kk~ 2 d kk~ d k(2pk p)ki, —
+m

2 3+[(k —p) —m2] [(k —p) —m ] [(k —p) —m ]
(813)

Only the first integral on the far right-hand side of Eq. (813) is more-than-logarithmically divergent. The surface term
for that integral is given by Eq. (1.1). Naive shifts of integration variable are permitted for the remaining integrals on
the far right-hand side of Eq. (813), leading to the following result:

d k k„k d "k (k +p)„
2 23 k2 m22

i~2 2 d4k(k+p)p d4k(p2+2p k)(k+p)p
2PP ™(k, m2)3+ (k2 2 3

(k +p)„(k+p)
d k

(k —m )

l&
2 PP ~ (814)

Substitution of Eq. (814) into Eq. (812) determines A:
~ 2

L '7l
6A (p, m )p~ = — pp2

in which case A (p, m ) = i H/12 Th—us, Eq. (.81) is obtained by substitution of this value for 2 into Eq. (811).
Equation (82) can be derived using the identity of Eq. (86) and, subsequently, Eq. (81). First note that

(815)

d kkpk d k krak krak k

[(k —p) —m ] [k —m ] 0 f(k pz) (p z pz+—m )]— —
1 krak„—2p d k dz

[(k —pz) —(p2z2 —p2z+m )] (816)
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The integral multiplying p in Eq. (816) is logarithmically divergent, in which case the shift of integration variable
k~k+pz is permitted. The integral multiplying p, is of the same form as the first integral in Eq. (Bl). Hence, we can
use Eq. (Bl) in order to find that

d kkpk
Ip =, ", , +4P' dz (P,zg +P~g,.+P.zg,.)

(k —m )3

(k +pz)&(k +pz),(k +pz), i (k +pz)„(k+pz)„
[k —(p z —p z+m )] P [k —(p z —p z+m )]

d k kpkv im2 1 (1—2z)k„k„= f ""— [pg„+2p„p]—2p fdkf dz

Ik —[p (z —z) m ]j p Ik2 [ 2 2 2 j3

The first of the last three integrals in Eq. (817) vanishes, since

(817)

f dzp (1—22)f(p (z —z))= f dQ f(Q)=0 .
(818)

The second of the three integrals can be integrated by parts over z,

p (1—2z)z d k 1 Z—2p&p d k dz =p&p —2p&p d k dz
tk —[p (z —z)+m ]j' " (k —m ) p [k2 [ 2( 2 )+ 2]j2

(819)

The last integral of Eq. (819) can be combined with the last integral of (817) as follows:

—2p&p~ d k dzz
1 1 k

Ik —[p (z —z)+m ]j Ik —[p (z —z)+m2]j

[l 2
(

2 2 2 + 2)]3
(820)

[We are allowed to interchange the order of integration in Eq. (820) because the integral over k is finite. ] Substituting
all of these results into Eq. (817), we find that

d k(kpkv+ppp ) i~2
(821)

which is a rearrangement of Eq. (82).
Equation (83) can be found trivially by contracting the indices of Eq. (82). Equation (84) can be found through judi-
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d k f d k[k —2p k+(p2 —m2)]
[(k —p) —m ] [(k —p) —m ]2

d k(k+p)2 3ivr2 2, d k(k+p)
(k —m ) 2 (k )

d4k

k —rn 2

~

~

le d4k
p +(p' — ') f (k —m )

(822)
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