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Simple procedure to compute accurate energy levels of a double-well anharmonic oscillator
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Accurate eigenvalues of the double-well anharmonic oscillator (H =p —Z x +x4) are
obtained in all regimes of the coupling constant Z . Tables of some eigenvalues up to
Z & 100 are presented. The method is nonperturbative and involves the use of an appropri-

ately scaled harmonic basis.

I. INTRODUCTION

Perhaps the most simple and successful method
used in the literature to obtain accurate eigenvalues
of the anharmonic oscillator'

H =p +x +Ax

p x
Hp —— +K

2 2

u„(x)=
A'

~m-2"n!

a'=Sr,

1/2

H„(ax)e- " ",

is the variational procedure. Take N members of
some arbitrary complete orthonoririal set of basic
vectors u„(x). One then constructs the N&(N ma-
trix representation of H:

H;~ fu; Hu~dx, =

where H„(ax) are the usual Hermite polynomials
and a is some parameter to be determined. The sim-
plest variational calculation is to just use a single
eigenstate of H p and get a best fit to the correspond-
ing ground state of an irreducible sector (n odd or
even) of H by varying a.

Should one choose up as the trial wave function

p= leap X QpX X

Det[H, J EI,&]=0, i—j =1,2, . . . , N, (2) dEp

lJ lJ

The eigenvalues are obtained at different levels of
truncation and we search for the limit of successive
estimates as the truncated determinants are in-
creased in size.

The most natural basis for this problem (1) is in
terms of the harmonic oscillator

it gives the condition

a' —a' —3A. =0 .

In the subsequent calculation we keep a fixed at
that value and proceed as indicated in (2). The re-
quired matrix elements are

TABLE I. Convergence of some eigenvalues E& of the anharmonic oscillator
H =p +x +A,x for X=10.N &(N is the size of the matrix.

10
20
40
60
80
90
95

10 'Ep

0.244 917414 796
0.244 917407 212
0.244 917407 212
0.244 917407 212
0.244 917407 212
0.244 917407 212
0.244 917407 212

10 E2l

~ ~ ~

0.290 889 187 347
0.283 879 30S 446
0.283 879 305 433
0.283 879 305 433
0.283 879 305 433
0.283 879 305 433

10 E38

~ ~ 0

4.275 220 568 94
0.775 211 251 430
0.615 623 574 398
0.615 577 264 638
0.615 S77 264 599
0.615 S77 264 599
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TABLE II. Convergence of some eigenvalues E~ of the double-well oscillator
H =p —Z z +z for Z =50. N)&N is the size of the matriz, and has been fized by Eq.
(4).

90
100
120
140
150
160

10 Ep

—0.610742 213 410
—0.612072 333 718
—0.613040 968 777
—0.613 554919 533
—0.614000 551 485
—0.614219966 345

10 E2i

—0.049 935 452 957 7
—0.091 509 194754 2
—0.139 118904 206
—0.184 139 163 267
—0.212 204 059 437
—0.224 718 854 775

10 E38

2.312 134630 63
1.788 939 643 02
1.129 189654 58
0.748 235 413 774
0.616675 349 792
0.511263 315 798

(n ~H
~

n+4)

X[(n+1)(n+2)]' ', (6)

(n
~

H
~

n ) = (2n +1)+ (2n +2n +1),cz4+ l 3i,
2a 4a4

(n ~H ~n+2&= — + (4n+6)(a —1) A,

2a 4a

which one may believe to be the exact eigenvalues.
However, the enormous advantage of this method
lies in the fact that the process of increasing N is ab-
solutely trivial because the matrix elements one has
to put in are always of the type (6). In all our com-
putations we have used the UNIvAc 1100, perform-
ing the diagonalizations by means of the standard
routine JACOBI.

If one tries to perforni the same job for the
double-well anharmonic oscillator,

[(n + 1 )(n +2)(n +3)(n +4) ]'~'
4+4 H=p Zx +x—, Z )0, (8)

and the solution of the matrix eigenvalue problem
(2) is easily done by machine. Because of the
(x~—x) symmetry of H, even and odd states are
obtained by a separate diagonalization.

In fact in the odd case it is better to fit a by
m1n1mlz1ng

E, ().)—:f u( x) Hx(x)dx .

The new condition is

a —a —5A, =O .

The results converge exceedingly fast for any value
of A, . In order to illustrate that convergence we
show in Table I the energy eigenvalues correspond-
ing to & =0, 21, and 38 at different levels of trunca-
tion for a coupling strength A, = 10.

Obviously as IC increases one needs a bigger and
bigger matrix in order to reach a set of stable figures

one easily recognizes that this method works only
for small values of Z . That is easy to understand
because as Z grows the depth of the two wells be-
comes deeper and deeper and the actual low-lying
energy eigenstates of the problem become radically
different from the trial wave function offered by the
harmonic basis; this fact handicaps severely the con-
vergence. In principle the natural solution would be
the simultaneous use of two harmonic bases centered
around x =+

~

Z
~

M2, i.e., the positions of the two
minima; however, the implementation of that idea
although possible implies the use of nonorthogonal
states, which is more cumbersome because one has
to forget the simple scheme (6) for the Hamiltonian
matrix. To illustrate the problems one finds with
the convergence of the eigenvalues of (8), if a is
fixed by means of (4), we show in Table II the ener-
gies of the states K=O, 21, and 38 got at different
levels N of truncation.

TABLE III. Convergence of some eigenvalues E~ of the double-well oscillator H =p —Z x +x for Z =50. N &(N is
the size of the matrix and a has been fixed by the criterion (14).

20
40
60
80
90
95

100

10 Ep

—0.351 752 165 698
—0.575 113242 590
—0.615012 840 616
—0.615020 090 903
—0.615020 090903
—0.615020 090 903
—0.615020 090 903

10 E
—0.359 828 057 502
—0.578 031 748 074
—0.615015 775 110
—0.615020 090903
—0.615020 090 903
—0.615020 090 903
—0.615020 090 903

10 E38

0.436 886 985 612
0.004 141 762 985

—0.151 848 042 313
—0.260 462 072 450
—0.261 112800 933
—0.261 112800 977
—0.261 112800 977

10 E39

0.449 835 949 661
0.006 541 332 963

—0.155 881 746 746
—0.260 754 358 808
—0.261 112800 970
—0.261 112800 997
—0.261 112800 997
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Hence the specific problem we have faced has
been the following: Is there any way of fixing a in
the harmonic basis (3) so that by using the general
method (2) we may get accurate eigenvalues for the
double-well oscillator? In the next section we will
show a simple way of doing it, which produces a
very good convergence for any value of Z .

II. METHOD AND RESULTS
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The fixing of a for the single-well potential by
(5) and (7) is so successful because up(ui) is always
the best candidate among all the elements of the
basis (3) as the trial wave function for the ground
state of (1). In other words,
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(u„ip' —Z'x +x
i u„) (10)

is a nontrivial function of n and a . Qualitatively
this is easy to understand because

~
u„~ presents n

nodes and the maximum of the probability density is
coincident with the amplitude of the corresponding
classical oscillator; i.e., the probability of finding the
particle is maximal x=+

~

d
I

with
I
d

I
&0 And

this is just what must happen in this problem, as Z
grows a sensible description of its low energy should
involve wave functions which present the maximal
probability density at a position coincident with the
minimum of the two wells. Although u„,with

n&0, provides a bigger contribution than up to the
expectation value of the kinetic energy (because of
their n nodes), the expectation value of the potential
energy may be lower, which causes the existence of a
competition between these two opposite effects.
Therefore, one has to consider the possibility of
varying also the n index to get a good variational
parameter a . Specifically our proposal is to fix a~

by imposing simultaneously the following two equa-
t1OQS:

B(u„i p —Z x'+x
i
u„)=0,

Ba

g(u„
i p —Z x'+x

i
u„)

&(u ~p +x +M ~u) V oddi .

Input this is not true any longer for the double-well

potential because as Z increases the minimum
value of

which lead to
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3
(2n +2n+1)a +Z a

(2n + 1)
a6 —Zza +3(n + —, ) =0 .

By eliminating n the final equation for a is

(12)

(13)

reached at N =220.
For Z lower than Zo ——1.96 Eqs. (12) admit only

the trivial solution corresponding to n=0 (1). In
that regime our calculations have been perforiried in
the old ways (5) and (7). In that region Z is reason-
ably small and therefore we do not find any problem
for a fast convergence.

From (13) two real and positive solutions for a
may be extracted. They provide similar efficiencies
in the convergence process, but in order to obtain a
simple criterion, easy to remember in practical cal-
culations, Eq. (13) may be simplified. Should one
skip the —, terni, the solution of (13) is

(14)

The value provided by (14) is practically coin-
cident with the bigger root of (13) when Z is larger
than say Z& ——10. In all practical cases (14) is an
excellent recipe of convergence and has been used by
us to get the numerical tables. In Table III we show
the convergence of the method for Z =50, and
a =V'Z . The ground states converge at about
N=75, and when N=100 all 40 states are already
stabilized.

In Table IV, just as an example, the numerical
values of some energy eigenvalues for 0(Z (100
are presented. In all cases N=100 and we have
checked its stability by computing later N=130. In
the case Z =100 the convergence of the 40 states is

III. CONCLUDING REMARKS

Our main interest in this paper has been to obtain
a simple and efficient procedure to obtain accurate
eigenvalues of the double-well anharnionic oscilla-
tor. This problem has received great attention in the
last years and it has been attacked by a broad range
of methods; we believe, however, that the method
developed here is perhaps the most simple and there-
fore the most economical; it may be summarized by
Eq. (14). Our work remarks on the great impor-
tance of a good choice of the scale a in order to get
fast convergence. By quoting Cashwell, but in an
affirinative sense, "we believe that with our method,
the evaluation of the DWP eigenvalues is already an
industry. " Now we try to extend these ideas to the
problem of the two coupled anharmonic oscillators. '
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