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The Feynman rules of non-Abelian gauge theory at finite temperature are studied in a real-time

formulation of quantum field theory at finite temperature. In order to have a simple prescription to
obtain the Feynman rules at finite temperatures, an equivalence theorem which is a straightforward
generalization of the same theorem at zero temperature to finite temperature will be presented in

perturbation theory.

I. INTRODUCTION

Recently several authors have tried to formulate gauge
theory at finite temperature' and found that the statistics
of Faddeev-Popov ghost fields do not obey the Fermi
statistics although they are anticommuting fields. In the
operator formalism, it was shown that this is a result of
the condition that only the physical states contribute to
the trace calculation in the statistical average of a physical
operator.

In quantum-field-theoretical analysis at finite tempera-
ture, the temperature Green's-function formalism of
Matsubara has been used extensively. In this formalism
the nature of the statistics manifests itself through the
periodic boundary condition in imaginary time. The
choice of the boundary condition for unphysical fields is
determined by the requirement that the Lagrangian is in-
variant under the gauge transformation of gauge functions
with bosonic boundary condition in imaginary time. This
is a new requirement at finite temperature; it does not ap-
pear when the temperature is zero, because the time
domain at zero temperature extends to infinity. In fact
the Ward-Takahashi relations usually become complicated
in the Matsubara formalism because the symmetry
transformations are associated with the imaginary time (v)
which is confined to the finite region (0 & ~(P) and there-
fore the boundary condition at the end points of the
imaginary-time domain must be carefully chosen. One of
the most prominent examples of this kind is given by su-
persymmetry theory. Recall that in the usual quantum
field theory at zero temperature the gauge function is re-
quired to damp reasonably fast in the infinite-time limit.
Such a simple boundary condition cannot be used for fin-
ite temperature in the Matsubara formalism. In the
analysis of Ref. 3 where the operator formalism is used,
the physical-state condition played a crucial role in deter-
mining the statistical weight of the ghost fields. However,
such an analysis requires that the physical-state condition
at finite temperature must be fully formulated before one
calculates the statistical average. This is usually quite an
involved problem. All of these problems disappear when
we can extend the usual quantum field theory with real
time to consider the case at finite temperature. In this pa-
per we present such an analysis by using the recent formu-
lation for real-time quantum field theory at finite tem-

per ature.
Since the gauge invariance means the physical

equivalence among different choices of gauge, we first
study the equivalence theorem in perturbation for our
study of gauge theory at finite temperature. Two field
theories are said to be equivalent when both theories
predict the same results for physical amplitudes. Here
physical amplitudes mean matrix elements of the physical
observables.

In the framework of quantum field theory at zero tem-
perature, many equivalent theorems have been known in
the past. A pseudosca1ar and a pseudovector coupling are
equivalent. A massive Proca field is equivalent to a mas-
sive vector field with a Stueckelberg field. The study of
chiral symmetry disclosed the fact that nonlinear La-
grangians which are related to each other through a redef-
inition of the field lead to the same physical results. In
the gauge theory, physical matrix elements are equivalent
independently of the gauge conditions. The theories with
auxiliary fields frequently permit a variety of choices of
the auxiliary fields without violating the physical
equivalence.

In this paper we discuss how such equivalent theorems
can be extended to the finite-temperature domain and then
apply those results to the non-Abelian gauge theories at
finite temperature. Our analysis relies on perturbation
theory and thermofield dynamics (TFD) which has recent-
ly been developed as a quantum field theory at finite tem-
perature.

In thermofield dynamics, each dynamical degree of
freedom is doubled. A Hilbert space is constructed as a
Fock space on a thermal ground state by operating
creation operators of quasiparticle modes. A formalism
which comprises both the Matsubara formalism and TFD
was presented in Ref. 10. There it was shown that the
Feynman-type perturbative expansion in TFD is the same
as a Feynman-type perturbative expansion in which the
time-ordered products are replaced by the path-ordered
products. Here the path-ordered products are the prod-
ucts ordered along a suitably chosen path on the complex
time plane (the conditions for the choice of this path are
presented in Ref. 10, and, therefore, are not repeated here).
This path-ordered product formalism is related to the per-
turbative expansions in the Matsubara formalism through
an analytic continuation. In this way it was proven that
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to all orders the finite-temperature real-time Green's func-
tion is the same as the one calculated via the imaginary-
time expressions. The equivalence between TFD and the
so-called axiomatic quantum statistical mechanics was
proven in an excellent paper by Ojima. " One of the mer-
its of TFD is that the operator formalism and Feynman
diagram method at zero temperature are naturally extend-
ed to those at finite temperature without having to consid-
er imaginary time. Therefore the relationship between the
zero-temperature and finite-temperature situations be-
comes transparent and most of the relations based on sym-
metry requirements preserve the same forms even when at
finite temperature. ' We will use this close similarity with
the zero-temperature field-theoretical structure to extend
the equivalence theorems to finite temperature.

After we review TFD in the next section, we will show
in Sec. III the following theorems by use of perturbation
theory.

Theorem I: When the Hilbert space has no unphysical
subspace which is unobservable, an equivalence theorem at
zero temperature is preserved at finite temperature.

Theorem II: Even when the Hilbert space contains some
unphysical part which is not observable, we can always
choose the unphysical part in such a way that an
equivalence theorem at zero temperature is preserved at
finite temperature. This specifies the choice of statistics
of unphysical fields. In the proofs, we extensively use the
fact that the topological structure of the Feynman dia-
grams in the thermofield dynamics is exactly the same as
the one at zero temperature. This means that every com-
binatorics rule in the Feynman diagrams in TFD is exact-
ly the same as the one at zero temperature. Therefore, the
proofs do not need any change even when a certain sym-
metric property of the Lagrangian conditions the com-
binatorics in the Feynman diagrams. In Sec. IV, we apply
theorem II to obtain Feynman rules at finite temperature
in non-Abelian gauge theories. We consider the covariant
gauge as an example. Section V is devoted to concluding
remarks.

II. THERMOFIELD DYNAMICS

In thermofield dynamics, the statistical average of an
operator 3 is given by the vacuum expectation value with
the temperature-dependent vacuum

~

0(P) ):

g =+1 for a bosonlike operator,

g= —1 for a fermionlike operator .
(2.2c)

Following these tilde operation rules, we introduce the
tilde fields P(x) and P(x). The thermal doublets P (x)
and P (x) (a = 1,2) are formed as

P'(x) P(x) P'(x)

P (x) P '(x) '
g (x) (2.3)

P(x)

Ci/ '(x)

where t indicates transpose of vectors when P and i/ form
column vectors. 1/ is defined by i/=i/ y and C is the
charge conjugation matrix. The doublets (2.3) are con-
structed in such a manner that the first and the second
coin ponents have the same transformation properties.
The tilde operation applied to W(x) gives W(x). The to-
tal Lagrangian is then given by

W(x) =W(x) —W(x) . (2.4)

By use of the thermal doublet notation P and i/ with
a = 1 being the first component and a =2 being the second
component in (2.3), we have

9'(x) = g e W (x) (2.5)

with

(2.6)

(2.7)

j.A B -. C fora=1,1

P~(A B . C
C . . . BA fora=2.

The W(x) determines the dynamics of fields.
The Feynman rules are constructed by dividing W(x)

into an unperturbative part and an interaction part:

W (x ) =3'0(x ) +3'l (x ) . (2.9)

Let us suppose that W0(x) is given by
2

~o(x)= g [e [a„y'(x)ai'y. (x)
a=1

(2.8)

where the ordering operator P is defined for arbitrary
operators A, B, . . . , C:

tr[e ~ A]ltr [e ~ ]= (0(/3)
~

A
~

0(P) ) . (2.1)
(2.10)

To construct such a field theory requires a doubling of the
field degrees of freedom. Let us suppose that the La-
grangian of a system W(x) is a function of a boson field
P(x) and a Dirac field f(x). We assume that the Hamil-
tonian formalism exists for this W(x). The doubling of
the field operators are performed by the tilde operation
rules. The tilde operation is indicated either by the tilde
symbol on operators or by the symbol "til" in front of
operators: til[0]—:0. The tilde operation rules are defined
as

In general, the boson fields are obtained through the Bo-
goliubov transformation

ay

P (x)= Uii i—8
at harp(x), (2.11a)

while fermion fields are obtained through the transforma-
tion

ay

til [Oi Oq] =Oi Oq,

til [C)0i+CpOp]=CiOi+CpOp,

(2.2a)

(2 2b) where

i/jpr(x), (2.11b)
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1

P ]/2(e —1)

e~/2
Pro/2 (2.12a)

Pa)/2
1 1

F(ro) p ]/2 1 Pco/2
(e +1)

(2.12b)

4

f e
—ik(x —«)gay(k)

(2ir )"

(O,P I TQI(x)]tippy(x) I
O, P)

(2.13a)

with

=i f " ",.-'"'"-"S,y(k), (2.13b)
(2m )

bo(k)=r(k p, +icy—)

S()(k)= (yk +m)(k m+—icy)

1 0
T 0

(2.14a)

(2.14b)

(2.15)

Then the boson propagators are given by

(O, P I
Tit) (x)P y(y)

I
O, P)

4
=i f e ik'» «'g y(k), (2.16)

(2m )

where

with

UB(
I
ko I

)~o(k) Ua(
I
ko

I
)

=hp(k) +hp(k),

(2.17a)

(2.17b)

spy(k) = —2~i'(k —p )[fi)(
I
k()

I
)] y,

Pco/21

[fa(~)]= p„p /2e~—1

The fermion propagators are given by

(O, P I
Tg (x)Py(y)

I
O, P)

(2.18)

(2.19)

where

4
=i e 'k' +'S ~ k, 2.20

(2ir)

with

kp
I
)so(k) UF(

I
ko

I
)

=S()(k)+Sp(k),

(2.21a)

(2.2 lb)

sp (k) =+2mb(k m)(yk—+m)[fF( I
ko I )] y,

(2.22)

1

IfF(~)] p„p /2
e +1

pal/2

(2.23)

The fields Pp and QI (a=1,2) in (2.11) are diagonal with
respect to the thermal ground states in the interaction pic-
ture:

&O &I TNI( )4p"(y) IO, P)

The merit of the expressions (2.17b) and (2.21b) lies in the
fact that the P dependence besides the P dependence of co

appears only through hp and Sp' 60 and So have the same
structure as the zero-temperature propagators.

The Feynman diagrams consist of the vertices given by
Wl(x) and the propagators (the internal lines) given by
Eqs. (2.17) and (2.21). When one considers the renormali-
zation, the fields in 9'p should be the renormalized fields

and Wl should contain the appropriate counterterms.
When the masses in Xp are chosen to be the ones defined
for zero temperature, the renormalization constants
should also be those defined at zero temperature. It has
been shown that such counterterms are sufficient to renor-
malize the finite-temperature theory. '

%Then the zero-temperature masses are used, all of the
temperature effects in TFD arise from the propagators b,p
or Sp which are proportional to the 5 functions restricting
the four-momenta to the mass shells. In the Matsubara
formalism for temperature Green's functions, a real-time
propagator can be obtained by means of an analytic con-
tinuation. ' The result corresponds to the 1-1 component
of the above propagator in (2.17) or (2.21). However, one
cannot perform the perturbative calculation with the
Feynman diagrams consisting of such an analytic contin-
ued propagator only, since one then immediately finds
that the Kubo-Martin-Schwinger (KMS) condition is
upset by the higher-order corrections. ' The doubling of
the components is required in order that the analytic con-
tinuation ig perturbative calculation is usable. '

Because of the structure of W(x) in (2.4), the tilde
fields and nontilde fields mix only through the thermal
weights Ui) and UF. Therefore at zero temperature, the
tilde and nontilde fields completely decouple; the upper
components give usual amplitudes of zero temperature
and lower components give their duplicate.

Another important aspect of the Feynman rules in TFD
is that the topological structures of the Feynman diagrams
are the same as those at zero temperature. In fact, it is

easy to see from the structure of Wi(x) in (2.5) that Feyn-
man amplitudes at finite temperature are obtained from
those at zero temperature by replacing ho(k) by b y(k),
So(k) by S y(k), and vertices g (k], . . . , k„) by

g (k], . . . , k„), where g (k], . . . , k„) is given by

g (k], . . . , k„)=g(k], . . . , k„) (for a= 1)

= —( —) g*(k], . . . , k„) (for a=2)
(2.24)

with N being the number of fermion pairs associated with
the vertex g. The weight number of each diagram in TFD
also agrees with the one at zero temperature. These prop-
erties of the Feynman diagrams together with the fact that
each internal line in the Feynman diagram of TFD con-
sists of the temperature-independent part (b,p or Sp) and
the temperature-dependent one (b,p or Sp) with k on the
mass shell constitute the basis of our proofs for the
equivalent theorems.
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III. EQUIVALENCE THEOREM AT FINITE
TEMPERATURE

T =0 are equal, one has

+~[~~ g~]=Fa[~a ga] . (3.1)

In this section we prove the equivalence theorems at
finite temperature by means of the Feynman diagram
method. Let us suppose that there exist two Lagrangians
W„(x) and Wa(x) to describe the same phenomena.
When the physical amplitudes Fz calculated from Wz
and Fa calculated from Wa are equal, we say that there
exists an equivalence theorem. Here physical amplitudes
mean matrix elements of the physical observables.

Assuming that an equivalence theorem holds at zero
temperature, then the following theorem can be proven in
perturbation theory at finite temperature.

Theorem I. When all the internal lines in the Feynman
diagrams given by W„and Wa are the free propagators
of physically observable particles (so that there is no un-
physical internal line), the equivalence theorem holds true
also at finite temperature.

Proof of Theorem I. At zero temperature, physical am-
plitudes are constructed by Feynman rules as functions of
propagators b,,b and vertices g,b. . . „where 6 includes
fermion and boson propagators. The indices a, b, . . . , c
indicate possible internal degrees of freedom and polariza-
tions. Since it is assumed that physical amplitudes at

It can happen that forms of vertices gz and gz and propa-
gators Az and 4z are different. However, since there is
no unphysical internal line, propagators in (3.1) are the
physical internal lines. Then we can identify the same
physical internal line (say, ith line) in F„and Fa as 6(;)q
and A~;~z, the pole structures of which are the same.
When we confine a four-momentum of the ith internal
lines on the mass shell in (3.1), we find that the in-
tegrands, Fz' and Fz', are physical amplitudes:

f d k;Fg'(A~, gq', k;)' H()q(k;)5(k; —m; )

= f d k;Fa"(Aa, ga, ki)' H(;)a(k;)5(k; m; )—, (3.2)

where Hz and H~ are projection operators associated
with the spin and other internal degrees of freedom.

At finite temperature, the Feynman rules are modified
by replacing 6 by 6 ~ and g by g . The topological struc-
tures and the weight numbers of the diagrams are not
modified. Note that 6 ~ is given by 6 ~=Ap +5@~ as in
(2.17) or (2.21). Since the mixing of the a= 1 and 2 com-
ponents occur only through 4p, we can expand the finite-
temperature amplitudes F functionally in terms of A~..

F=F[60+ b p, g]
~ ~ ~ Q ~n~nf d (I( ' ' d ggFn(~p~g~g)~ ~ ~ ~ iIn)i( i„~pi( ((((I) ' ' pi„( In)(~ (3.3)

F~[b~ g~]=Fa[~a gal (3.4)

at finite temperature. (Q.E.D.)
In the above discussion we considered the matrix ele-

ments of an operator among the physical particle states.
When we consider the S matrix, we must replace in the
above argument every external propagator by the free par-
ticle wave function with the zero-temperature renormal-
ized mass. Note that the wave-function renormalization
constant is also the one determined at zero temperature.

When there exist certain unphysical fields in a theory, it
sometimes happens that the structure of the propagators
of those fields at finite temperature are not obvious. (For
example, we have no criterion to determine the statistics
of double poles. ) When a canonical formalism exists in-
cluding unphysical fields and conditions for physical ob-

in which the summation g„ is interpreted to include all

possible combinations of various kinds of propagators
specified by internal degrees of freedom i„(1&k&n)
Since b p(q) restricts the integration to the mass shell [see
(2.18) and (2.22)] with appropriate projection operator

or Ha, the coefficients F„ in (3.3) consist of com-
binations of the physical amplitudes. Since Ao is the same
propagator as the one at zero temperature, the coefficients
in (3.3) are given by amplitudes at zero temperature and
are identical in theories of Wz and W~. Therefore, we
have

servables are specified, the treatment of unphysical fields
are well defined in the operator formalism of TFD as was
illustrated by the gauge theory in Ref. 11. Without going
into the detail of these physical conditions of the Fock
space, we can prove the following theorem by means of
the Feynrnan rules.

Theorem II: When Wz and/or Wa include certain un-
physical fields and are physically equivalent to each other
at zero temperature, one can preserve the equivalence
theorem at finite temperature by choosing propagators
(i.e., the internal lines) of unphysical fields suitably.

Proof of Theorem II. We first point out that the dou-
bling of freedom of fields is applied also to unphysical
fields. Our question now is to ask how propagators of un-
physical fields should be determined at finite temperature
in order that the equivalence theorem is satisfied. The
equivalence theorem at zero temperature means that at
zero temperature the physical amplitude Fz is equal to Fz.
Let us consider all Feynman diagrams calculated to the
same order in perturbation theory. Pick up from one dia-
gram an internal line corresponding to a field y' and from
the other diagram an internal line corresponding to a field

When these two internal lines have a common pole in
the momentum plane and the same values for all the other
internal degrees of freedom, we say that these two fields
belong to a two-member set. One can enlarge this set in
such a way that any two-member set of a multimember set
(y', (p, . . . , ((()') has a common element belonging to
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another two-member set of this multimember set. For ex-
ample, in the R ~ gauge' of the spontaneous-breakdown
gauge theories, a massive gauge field and an unphysical
Higgs scalar field form a two-member set and an unphysi-
cal Higgs scalar field and a ghost field form another two-
member set then those three are elements of a mul-
timember set. On the other hand, the auxiliary field
which appears in the Gross-Neveu model' does not have
a pole structure. Such an auxiliary field does not belong
to any multimember set and does not change the form of
its propagator even at finite temperature, as will be shown
later. There are two kinds of multimember sets; class I,
which includes at least one physical field (i.e., fields with a
physical pole) and class II, which does not include any
physical field. The equivalence theorem at T =0 implies
that, corresponding to each multimember set of class I for
Wz, there exists a multimember set of class I for Wz,
they give rise to the same physical result and they contain
the same physical fields. The equivalence theorem at
T =0 implies also that the pole contribution to a physical
amplitude from the members of the multimember set of
class II compensates among themselves. When the four-
momentum of one internal line belonging to the same
class is put on the mass shell in the Feynman diagrams,
we have the integration over the on-shell states

g f d kF'~(b, g k )' H' (k )5(k; —m; ), (3.5)

where the summation g,. is over the same class and
I

b; (k)=H' (k, k +i@)/(k m+ie—), (3.6)

its finite-temperature extension is given, depending on
whether this field shares the same set with physical bosons
or fermions, by

%; (k) is the projection operator associated with the spin
and other internal degrees of freedom. The physical
equivalence at T =0 means that only the physical projec-
tion remains after the summation. Therefore when the
on-shell amplitudes with the projection operators belong-
ing to the same class are summed over as in the zero-
temperature case, only a physical amplitude remains.
Similar to the proof in theorem I, we separate all propaga-
tors as Ao+ Ap in which the temperature dependence is in-
cluded only in Ap, then we expand the Feynman ampli-
tude as a functional of A~. It is now clear that we have an
equivalence theorem at finite temperature when every
member of a set obeys the same statistics. The contribu-
tion from class I leaves only the physical amplitudes at
T =0 and the contributions from the fields in class II can-
cel. Thus the statistics of an unphysical field which
belongs to a set of class I is the same as the statistics
of a physical field in the same set, while the statistics
of an unphysical field which belongs a set of class II is
arbitrary. (Q.E.D.)

The above theorem leads to a simple rule for construc-
tion of Feynman propagators at finite temperature when
those at zero temperature are known. Namely, when a
zero-temperature propagator is given by

(k)=Up( [ko [
)t1% (kk +iE7)l(k —m +iE1)jvg( [ko [

) (3.7a)

or

6' (k) = Uz(
~
ko

~
) j H' (k, k +i er)i(k m+i sr)—) U~( koi)t, (3.7b)

respectively.
In the non-Abelian gauge theories, we have the

equivalence theorem between all the various choices of
gauge conditions. When this equivalence theorem is con-
sidered as a first principle at zero temperature, we can
determine by means of theorem II the statistics of unphys-
ical fields which appear due to the choice of the gauge
condition. The immediate consequence of theorem II is
that the Faddeev-Popov ghost fields should obey Bose
statistics, since they belong to the same class as the gauge
fields.

I

dent parts b,pr consist of the 5 functions which confine
the four-momentum kz to the mass shell, the projection
operators for a given gauge, and the temperature-
dependent weight functions. When the gauge condition
introduces the ghost fields such as the Faddeev-Popov
ghost, the method for construction of the projection
operator in the temperature-dependent part is supplied by
theorem II in the last section. This will be illustrated in
the following discussion.

As an example, let us consider the following Lagrang-
ian with the covariant gauge:

IV. FEYNMAN RULES AT FINITE
TEMPERATURE IN THE COVARIANT GAUGE

We are now ready to derive the Feynman rules for non-
Abelian gauge theories through the following procedure.
First, the Lagrangian is constructed in the manner of Fad-
deev for a given gauge condition and the doubling of field
operators are performed according to the tilde operation
rule. Second, the propagator s at finite temperature
4 ~=4p +b p~ are obtained by the following rules. The
temperature-independent parts Ao are given by duplicat-
ing the zero temperature ones; one for the nontilde fields
and another for the tilde fields. The temperature depen-

&(x)= —, F„(x).F""(x)+—dqC(x) D"(A)C (x)

—,' )a„A~(x))2.

Here

F„„(x)=a„A.(x)—a~„(x)
—gA&(x) &&A„(x),

D„(A)C(x)=B„C(x)—gA„(x) X C(x),
in which abbreviations

(A g g)+ f&b&Asg&—

(4.1)

(4.2)

(4.3)

(4.4)
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are used for vectors on the gauge group. The set If' 'I
denotes that of the structure constants of the group. The
fields C(x) and C(x) are the Fadeev-Popov ghost fields.
The thermal Lagrangian is given by

3'(x) = —,'F„„—F""+a„CD"(A)C —(a„A")
2(x

+ ,' F„,—F"' a„c—.D~(A )c+ (a„A")' .
2A

although C(x) and C(x) are mutually canonical conjugate:

C(x, t), C(y, t) = —i5(x —y) .
at

(4.9)

Therefore there exists a certain ambiguity in the forma-
tion of the thermal doublet of Faddeev-Popov ghost fields.
The choice (4.7) gives

We form the thermal doublet as

(4.5)
C (x, t), cr(y, t) = i&—r5(x y)—,

at

while the choice

(4.10)

A„(x) (a=1)
A„(x)=

A„(x) (a=2) (4.6)
C(x) (a = 1)

C (x)= —C(x) (a =2),
(4.11)

C(x) (a=1)
C (x)=

C(x) (a =2),
leads to

aC (x, t), C (y, t) .= i5 r5—(x y) . —
Bt

(4.12)

C(x) (a=1)
C (x)=

C(x) (a=2) .
(4.7)

As was pointed out in Ref. 18, C and C should not be
Hermitian conjugates of each other when the Hermiticity
of W(x) is required. Rather they should satisfy

The thermal Bogoliubov transformation (2.11) keeping
(4.10) is bosonlike, but it is fermionlike in the case (4.12).
Theorem II in Sec. III indicates that we should choose the
bosonlike property which leads to the choice (4.7).

Now the thermal Lagrangian is given by

W(x) =WQ(x) +Wl (x), (4.13)

C~(x)=c(x), C (x)= —C(x), (4.8) with

~,( )= y&. ——,'(a„A, —ag„)'— (a&A„)'+a„c a&c
2~ (4.14)

W, (x)=pe.[-,'g(a„A, —ag„) (A" XA" ) ——,'g'(A XA ) (A~ XA-) ga C (A~-XC-)~ (4.15)

The Lagrangian (4.13) leads to the following Feynman rules.
(a) Gauge boson propagato-rs

d4k, k( )(O,P
~

TA' (x)A„r(y)
~

O, P) =i5' e '"'" ~'6 (k,a), (4.16)

where

kp (k a)=Up( ~kQ
~

)AQp (k, a)Ug( ~kQ
~

)

=EQq (k,a)+b p„„(k,a),
—g„+(1 a)k„k /(k +i@—r)'

AQ„(k, a) =~
k +i@~

(4.17a)

(4.17b)

(4.18)

b pp, (k,a) = —2vri5(k ) —g„,+(1—a)k„k Pr
k

1

Pfkof

P/ k() i
/2

1

p k gp (Ref. 19) .
e

(4.19)

(b) Ghost propagators

(() P
~

TC (x)c"'r(y)
~

0 P) =i5 e ' ~ &~/ &(k)
d k

(2')
with

(4.20)
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(4.22)

(4.23)

(c) Vertices

p, C, 'y

igea5 —f' '[(q r)p—g p+(r —p)„gp„+(p q)@„1 (4.24)

v, b, jt)I

p., a, e 0;d, 8

v, b, P p, c, y

gPPgva gpagvp)+f f (gp gpa gaagvp)+fadefbce(gpvgap g&pgva)],

(4.25)

a)N p

j(L) C, p
ig& gaPyf abc+ (4.26)

b, p

Here we use the notation 6 ~~ = 1 when
a=p=y= and 5 py' ' =0 otherwise. These are the
Feynman rules at the finite temperature of the non-
Abelian gauge theory with the covariant guage. Explicit
demonstrations of the gauge invariance at the finite-
temperature calculation will be presented elsewhere.

V. CONCLUDING REMARKS

We showed by the use of perturbation theory that, when
certain equivalence theorems hold at zero temperature, the
same equivalence theorems hold true also at finite tem-
perature. The proof is greatly simplified with the help of
thermofield dynamics. The structure of the free field
causal propagator at finite temperature in the thermofield
dynamics plays a key role in the proof; this propagator
can be written as a sum of a temperature-independent part
and a temperature-dependent one, the four-momentum of
the latter part being confined to the mass shell. This par-
ticular structure of the Feynman internal line at finite
temperature simplifies the analysis in perturbation theory
of the temperature dependence of quantum field systems

when thermofield dynamics is employed. The proof of
the equivalence theorem is an example of this kind of
analysis.

When a theory contains some auxiliary unphysical
fields, we can determine their propagators and statistics
by requiring that the equivalence theorem which holds at
zero temperature should also be true at finite temperature.
This has many applications. In this paper, we applied this
method to gauge theories with covariant gauge and deter-
mined the propagators and statistics of the Faddeev-
Popov ghost fields. The equivalence theorem discussed in
this paper illustrates the general fact that most of the rela-
tions which originate from the symmetric nature of the
Lagrangian preserve the same form at finite temperature
when thermofield dynamics is employed.
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