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Functional-integral approach to Parisi-Wu stochastic quantization:
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The 5th-time stochastic-quantization approach to field theory, recently proposed by Parisi and
Wu, is put in a path-integral form. The procedure of taking the limit ~—+ 00 is analyzed and based
on new grounds through the introduction of the vacuum-vacuum generating functional. Different
aspects of the interplay between forward and backward Fokker-Planck dynamics are studied in de-
tail in connection with the supersymmetry recently discovered in Gaussian stochastic processes.

INTRODUCTION

Recently, Parisi and Wu' proposed a new and interest-
ing method for the quantization of physical systems. The
idea was to introduce a 5th time ~ and postulate a stochas-
tic Langevin dynamics for the system. Those authors'
showed that, at least at the perturbative level, the usual
quantum theory is reproduced by the equilibrium limit
r~ oo of that dynamics. The first advantage of this
method is the possibility to quantize gauge theories
without fixing the gauge, and much work' has already
been done in this direction. Another recent application is
the use of the Langevin equation for the computer simula-
tion of lattice-field-theory models: simulation that
should have better properties than the usual Monte Carlo
one. The third application, and we hope not the last, is a
better and deeper understanding of the so-called quenched
reduced models.

In view of all these connections and hoping for more to
come, we give in this paper a functional-integral reformu-
lation of this new method of quantization. The hope is to
be able to use all the techniques developed in recent years
in path integration and bring out the rich content, still un-
discovered, in this approach of Parisi and Wu.

The paper is organized as follows: in Sec. I we briefly
review the work of Parisi and Wu. In Sec. II, starting
from the Langevin equation, we derive the corresponding
generating functional. In Sec. III we impose on the
Langevin equation to describe a stationary process, and
the procedure of taking the limit ~—+ oo is put on a new
basis through the introduction of the vacuum-vacuum
generating functional. In Sec. IV we make contact with
the recently discovered hidden supersymmetry in stochas-
tic Gaussian processes, and analyze in detail the nice in-
terplay of forward and backward Fokker-Planck dynamics
present in the supersymmetric form of the generating
functional.

In this work we limit ourselves to scalar theories
without any internal symmetry.

I. REVIEW OF PARISI-WU
STOCHASTIC QUANTIZATION

%"e all know that the "quantum" correlation functions
for a Euclidean system, described by an action S[P], are

given by
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~
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Parisi and Wu' proposed the following alternative method
to get the quantum averages:

(i) Introduce a 5th time r, in addition to the usual four-
space-time x", and postulate the following Langevin equa-
tion for the dynamics of the field P in this extra time r:

BP(x,r) 5S [P]
a

(2)

($„(xiri )P„(X2r2) . P„(xtrt ) )„. (4)

(tt&) Put 'r] =&2= ' ='rt ln (4) and take the limit
+)~ 00 ~

It is possible to prove, ' at least perturbatively, that

lim (Pz(xi'T, )P&(x27 i) ' P&(xtr, ))&
7l~00

f eg[P(x, ) . . P(x )]e
—S[P] (&)

To understand this relation we have to introduce the no-
tion of probability P(g, r), that is, the probability of hav-
ing the system in the configuration P at time r. There ex-
ists for P(g, r) an equation that describes its evolution in
the time r. It is called the Fokker-Planck (FP) equation
and it has been derived many times in the literature:

q is a Gaussian random variable,

(q(x, r) )„=0,
( ri(x, r) ri(x 'r') )„=25(x —x ')Sir —r'),
(q. q) —0

The angular brackets denote connected average with
respect to the random variable q.

(ii) Evaluate the stochastic average of fields P„satisfy-
ing Eq. (2), that means
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It is possible to recast this equation in a Schrodinger-type
form:

be written as

P(y, r) =e (~) y c„e„e
n

In the limit ~~ m the only term that does not disappear
in this expression is +o, so we have

= —2H FP
a~

where

(7) lim P(P r)=c e ' ' e '~' =c e
T~ 00

This is the reason why (5) holds.

e=P(y r)e II. FUNCTIONAL-INTEGRAL APPROACH
TO STOCHASTIC QUANTIZATION

as l a's
2 5y2 8 BP 4 gy'

Because of this form, we call H" the Fokker-Planck
Hamiltonian. It is a positive semi-definite operator
H " %„=E„%„,E„)0 whose ground state Eo ——0 is
%p ——e (~)~ . The solution of (7) is

4'(P, r) = g c„4„e

where c„are normalizing constants. The probability can
I

In this section we would like to reformulate the Parisi-
Wu method in a path-integral form.

We want to build a generating functional (that we will
call Z [J] for the Fokker-Planck generating functional)
from which the correlations (4) can be derived in the usual
fashion:

51Z FP[J]
((t'7/(x 1rl ) Ng(xlrl ) ~7J 5J x)rp). . . 5J(x(ri)

This can be easily done retracing steps (i), (ii), and (iii) of
Sec. I. Z" [J) becomes

[J]=~f ~P~ "I)P(P(0))5(P Pz)exp ——f JP dr' exp —f (9)

p„ that appears in (9) is the solution of the Langevin equation (2), solved with some initial probability p(y(O)) ~ is a
Ãnormalizing constant and Vp=hm~ +, p&p, where p, are the field configurations at the time r;, having sliced

l

the interval 0 to ~ in X infinitesimal parts e with ~; =i e. This measure is a product of the usual four-dimensional pa
integral measures. The 5(p —pz) in (9) is a "formal" expression that we can write as

5(p —p„)=5 p+
ay

where
~
~5r)/5$

~ ~

is the Jacobian of the transformation q~p, that is,

6 =det 8,+, 5(r—r')a's
BP(r)5$(r')

With well-known manipulations we can write this as

=exp trinal, 5(r—r')+ill

where (B~) is just to indicate the Careen's function G(r —r') that satisfies

B,G(r —r') =5(r r') . — (12)

The solutions are G(r —r') =8(r r') if we choose p—ropagation forward in time, or G(r —r') = —8(r' —r) for propaga-
tion backward in time. It is also possible to choose G(r r')= —,[8(r—r') ——8(r' —r)] but we will concentrate on the
first two. In the first case, propagation forward in time (that is, the one chosen by the Parisi and Wu), we get

=exp tr InB,+ ln 5(r r')+ 8(r r')— —

5s=exp(tr InB, )exp tr ln 5(r r') +8(r r')— — (13)
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The term exp(trinal, ) can be dropped, as it cancels with the same term in the denominator of (9), once we normalize

Z[J]=Z [J]/Z [0]. So in (13) we are left with

5g =exp tr ln 6(r r'—)+8(r r'—)
6

Doing the usual expansion for the ln, we obtain

BS

5S BS 5S=exp dr8(0) + f dr'drO(r r')0(—r' r)— , , +
&P'(r)

The second term in this expression is zero because 8(r —r')8(r' —r) =0 and the same for all the subsequent terins. The
only one left is the first term and choosing 6(0)= —,

' (Ref. 6) we get

, BS=exp —,
' f dr'

0 (jp.

Inserting (14) and (10) back into (9) and performing the r) integration, we have

1 BS '

Z" [J]= f &QP(P(0))exp —f —,
' P+ —— dr' —f JP dr'

BP 2 (A/2

(14)

(15)

If we want also to specify that we are interested only in the correlations at the same 5th time r&, we have just to choose
J(x, r') of the form J(x,r') =J(x)5(r' ri), ri —& r

Expression (15) then becomes

FP aS 1 a'SZ [J]=f &QP(P(0))exp —f —P+ —— dr' J(xr, )P(x—r&) . .
4 BP 2 gy2

In all this we have to remember, of course, that once we send r&~ cc we have also to extend the interval of integration
from f to f In (1.5) we are neglecting the normalizing constant ~ and all the usual four-space integration. It is

easy, anyhow, to reinstate them when necessary. The Lagrangian in the exponent of (15), which we call the FP Lagrang-
ian, does not seem to have any relation to the Hamiltonian in (7). It is easy, anyhow, to see the connection: let us first,
in the action of (15), perform the integration of the term f —,

' P(BS/BP)dr'= —,
' [S(P(r))—S(P(0))] (Ref. 7) and second,

let us rescale the time r'~r'/2, so that we get
2r 2TZ" [J]=f WP(0)P(P(0))e+ '~' " &(P(2r))e '~' " O' "/exp —f W" dr' —f Jgdr'

0 0
(16)

where

N —1

& "P= lim
N~ oo

The only difference from (17) is in the sign of the third
term. The corresponding Hamiltonian has been known in
the literature for a long time as the Kolmogoroff-Fokker-
Planck backward Hamiltonian:

r 2

H Fp 1 ~ 1 M 1 BS
backward 2 gy2

+
g ~~

+
4

(17a)

Going back to the derivation of (15) we want to stress
what has been done: We have integrated away the g and
replaced the role it plays in the I angevin equation with a
sort of "effective" action W"P. This Lagrangian might
look very complicated but it contains only the field P as a
dynamical variable (Fokker-Planck dynamics). In the
Langevin equation the dynamical variables were both t)t

and g on the same ground and they were interlocked in a
dynamics (Langevin dynamics) that only apparently
looked simpler. With the generating functional (15) we

2

f ~FPd, f ~ /2
1 BS 1 8 S

o o 8 Bp 4

Now it is clear why we called W" the Fokker-Planck La-
grangian. It is a sort of "Euclidean" Lagrangian for the
Hamiltonian H" in (7), and for this reason we also call
Z" the generating functional of the Fokker-Planck
dynamics.

If in (13) we had made the choice 6 (r r')—
8(r' r), then —the act—ion in (17) would have been

Fp, 1 2 1 BS 1 8 Sf W"'dr'= f —&2+ — +— dr' .
2 8 BP 4
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can, of course, develop perturbation theory using the
Feynman rules dictated by W" . This perturbation
theory is the parallel of the one' that has been developed
starting from the Langevin equation. Differently from
that we do not, anyhow, have to integrate over the q at
the level of Feynman graphs, as this is already done at the
level of Z" . The number of graphs is very large in both
approaches: In our case the high number comes from the
extra vertices contained in —,

' ((lS/(}P) —
~ (} S/BP .

Before concluding this section we want to make a re-
mark concerning the Jacobian (11). All the steps from (9)
to (16), that we have done to derive the generating func-
tion Z", are possible only if the Jacobian is not identical-
ly zero. If this happens the Z" itself is zero. The same
Langevin equation, starting point of the stochastic quanti-
zation, loses all its meaning. In fact,

~
~52}/5/i

~

=0 means
that there is no field associated, through (2), to a particu-
lar g. In technical language this can be expressed by say-
ing that the winding number of the transformation 2)~(t&
is zero. This number called 6 has been studied in great
detail in Ref. 9 in connection with supersymmetry and it
is known as the Witten index. Our conclusion is that, in
case b =0, the stochastic quantization does not hold any
more. In this case, anyhow, the same traditional method
of quantization [given by (1)] does not hold. In fact, it has
been shown in Ref. 9 that b =0 implies non-
norrnalizability for e i; that means the "quantum"
probability e cannot be used in (1) any more.

III. VACUUM-VACUUM GENERATING FUNCTIONAL

Of the random process (3), we have used, up to now,
only the property that it is gaussian. The action (15) that
we have obtained is a consequence of this. Besides this

I

(y„( ) y„( ) &„ (17b)

manifest this property. The answer is generally no. In
fact the averages that we perform are not only in g, but
also on the initial configuration P(0) for which we give
the P(P(0)). It is the form of this P((t&(0)) that deter-
mines if (17b) is a function only of (~; —rJ }. The choice
of Parisi and Wu was P{P(0)}=5{&)I&(0)—P) } (with &)(&) a de-
finite configuration) and the perturbative calculation done
by them (for details see Ref. 1) showed that their choice of
P{P(0)) does not make (17b) stationary. To find out
which is the right one, let us start supposing (17b) is sta-
tionary:

((t'q(x)r)} Aq(xl rl) &&),p(&))(0))

—5(71 72 72 73 . . r —T 1)

where we use the notation ( &„p(~(0)) to remind us of the
average over both 2) and lt&(0). From (18) we see that, if
we rescale all the ~; of a quantity T, nothing changes on
the right-hand side, so

4„(xl.l ) &„,P(y(0))

= (Pq(x l, r) + T) . . 0'q(xl&&1+ T) &q p((((0)) .

Let us first put on both sides ~] ——T2
' ' =7I,

property there is another very interesting one: the sto-
chastic process (3} is stationary. By stationary' we mean
a process whose "momenta" c (r) r2 . rl ),

c(, , ) —= (ri( ) 2)( ) &„,

are functions only of the differences (r; —rJ). The pro-
cess (3) has exactly this feature. A question that arises
naturally is if also the correlation functions

(Ng(x(rl}(t'&)(x2 1} Ng(xl& r)) &&),P (&)t'&)(x) &'r)+ T)pg(x2&&(+ T) $&)(xl&r) + T) &„P

and second let us take the limit of T~ ~,
lim (pz(x(r))pv(x2r)) . . lt)z(xlr)) && p ——lim (p&(x(, r)+T)pz(x2, r)+ T) . . (t)z(xl, r)+ T) &z p .T~ ce T~ (x)

((t'&)(x (0}4&)(x20} eq(xl0} & 7), p

x, e

e
—S(P) (20)

The left-hand side does not depend on T, while the right-
hand side of (5) is the "quantum" correlation function [see
(5)], so we have

(W„(x 1 r( }4„(x2r1 )

x, e'«'
(19)

e —S(P)

As the left-hand side is stationary, we can rescale all the
fields backward of r(, that means

(eg(x)0}4'g(x20) ' ' &&t'g(x10) &g, p

—(4'q(x(rl }4'g(x2rl } 0'7J(xi+1 }&7),p

and using (19) we conclude

I

From this expression we can explicitly derive the form of
P($(0)): the left-hand side of (20) is at &=0, so we do not
have any random effect caused by g (g has not been
switched on yet), the only average is with respect to
P(P(0)); that means the left-hand side of (20) is

0 P 0 xi 0 . . xi 0

Comparing with its right-hand side we get
—S($(O) )

P( (0))=
J ~y(0)e —s((()(0) )

From (19) we can derive a second conclusion: for that
particular form of P(&)I&(0)), for which the correlation
functions are stationary, we do not need to take the limit
~i~oo. At every finite ~], we have that the stochastic
average is already the quantum one. The physical mean-
ing of this is very clear: From the beginning we put the
system in the equilibrium distribution P(P)=e (~' and
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the presence of the Langevin dynamics (()=—(}S/(}(()+g
does not modify this. On the contrary, in the case of the
choice' P(P(0)) =5((()(0)—(t () we started with every field
in configuration ((), and then the Langevin dynamics was

I

able to spread them to the equilibrium form at time
V~~ 00.

Inserting (21) back into (16), the new generating func-
tional looks like

Z FP p] f ~y(0) s(p(0) )/2~~( )
s(pl(r—) )/2~ »y exp f

vacuum

%'e like to call this the "vacuum-vacuum generating
functional. " The reason is clear if we remember that the
ground-state (vacuum) of H" is 0'o ——e

Another way (less transparent) to get stationary correla-
tion functions is to start from (15) and take the limit of

1 1
integration from to . What happens is that the
Fokker-Planck dynamics builds up a probability between
—oo and 0 equal to e '~'; that means equal to the one
we inserted at r=0 by (21).

Before concluding, a word of caution is needed: Sto-
chastic quantization does not compel us to choose (21).
Any normalizable form of P(P(0)) is acceptable: the re-
sult, the limit of r(~ oo, is independent of P((()(0)).

The particular choice (21) has the advantage that it
avoids step (iii) of the Parisi-Wu prescription.

Somehow this Z„".,„„ is another method for represent-
vacuum

ing the traditional quantum generating functional
Z= f &(()e (~), and in Ref. 11 its connection to the
new functional method recently proposed by De Alfaro,

I

I

Fubini, and Furlan' has been shown, using nonperturba-
tive techniques.

IV. HIDDEN SUPERSYMMETRY

A. General notation

En this section we want to study another form for ZF .
The expression for the Jacobian that we derived in (14) is
not the only manner in which to write it. Another way to
do so is by using anticommuting variables (tj, g:

BS= f &f& /exp —f (t), + )t/ dr'
(}r'

(23}
With this form for the Jacobian and rescaling the time
r'~r'/2 the generating functional Z" becomes

(24)
1 BS

Zss = f &$9'(7P((()(0)}exp —f —(t+ — +f () + — g dr' —f Jgdr'
2 2 (}$ 2 $$~

The reason for the notation SS is that, with a proper choice of P((t (0) ) and of boundary conditions for (t), f, this system
reveals a hidden supersymmetry recently discussed in Ref. 13. Let us choose P(P(0)) =5{/(0)—(()(2r)). Then Zss can
be written as

'2 c'

1 ~
2 1 BS 1 ()S

Zss ——f '&(t '&()'/'&()'/exp . —f —p +— +f (), + —
li/ dr' .

2 8 BP
' 2 (}y' (25)

with

'&P= lim + &(t, .
X—+oo;

The Lagrangian that appears in Zss is
'2

1 BS~ss = 24'+ — +(tj ().+—
8 (}(t

'
2 ()(t2

The corresponding "Euclidean" Hamiltonian
t'

FP 1 5 1 BS 1 — 8 SHss= —
25 2+8 8 +4[00] ~

(27)25' 8 8 4

is well known in the literature and it has been studied in
great detail in Ref. 14. It manifests a sort of nonrelativis-
tic supersymmetry whose conserved charges are

1 BS
Q(( =

(28)
6

1 as
Qp (T) mp+ ———

I

The symmetry transformations generated by them are

1 BS5/=op mp+—
2 BP

(29)

1 BS
5$=Ep mp

——
2 (}(t

H ss =
2 I Qp ~ Q(( I

We can even bring the notation a step further with the use
of superfields. ' Let us first rewrite (24) with an auxihary
field co (that in statistical mechanics is known as a
response field)

where e~ and e~ are infinitesimal anticommuting parame-~ FIters. H ss itself can be written, in perfect supersymmetric
fashion, as
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~ 1 BS
ZFP[J]= f '~p'~~'Nf'9'/exp + f, ~ +~ p+ 2 &

a 1 a'S (30)

Second let us introduce the superfield +,
@=/(x)+ 8/+ 8/+ 88co,

where 8,8 are elements of a Grassmann algebra. Then the
action in (30) can be written, in a very compact form, as

A [@]—= f [ ,'(Dg@—)(Ds@) S(&b—)]drd8d8 . (31)

where a„are the eigenvalues of the equation

1 B~S
8,+—

2 Qp~

The solutions of (33) are

(33)

S is the usual action of the system (1) from which we
started, but whose argument in (31) is the superfield N
and D~ ——B~—OB& is the so-called covariant derivative. '

As we can see S plays the role of a sort of "potential" and
in supersymmetric jargon its proper name is superpoten-
tial. The "space" over which the Lagrangian in (31) is in-

tegrated is r, 8,8, and it is the supersgace' of our system.
The symmetry (29), under which Wss is invariant, can be
seen as a transformation on the fields P, g, g induced by
the following "supertranslation" in superspace:

50=op,

58=a~,
5r= —(8eg —ey8) .

B. Forward and backward Fokker-Planck dynamics

The manner in which we wrote
~
~5g/5p

~ ~

in (23)
deserves a deeper analysis. Being

~
~5q/5p

~ ~
nothing else

than a determinant (11), we can think of evaluating it as
the product of its eigenvalues, that means

1 BSV„=%exp dw' a„——
0

where E is a normalizing constant) (from now on we will
call the extreme of integration r and not 2r, for conveni-
ence).

If we impose, following Ref. 16, antiperiodic boundary
conditions,

+„(r)= —+.(0),
we have

i (2n +1)m 1
&n= +-

r r 0 2 QP~

Unfortunately we cannot make this choice in our case.
Our system is supersymmetric and the choice of periodic
boundary conditions on the bosonic variable induces the
same boundary conditions on the P, P. If we had chosen
antiperiodic ones, we would have broken supersymmetry
explicitly (for more details see Ref. 9).

Taking %„(~)=%„(0)we have

= f &$9'/exp —f g, + 2ni~ 1 &, 1 BS+— d7—
2 (jp~

(34)

and, substituting this in (32), we get

n =—00

i2nm 1 1 BSd,+— — dr'
2 BP~

n =—oo

l 2n7T

&1 BS
dT

0 2 QP2

1 '1 BS, f —,2(BS/BP )d '

1+
0 2 gy~ 2~ni

f '
,'(a' S/ay-')dr'

0

277nl

(II' is to indicate that we exclude the term n =0 from the product)

=c slnh 4 0 ()P~

c' ) BS BS
2

exp 4 d'7 —exp —
4 0 QP2

d7'

(c' is a constant). Inserting this expression into (25), we get

(35)
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2r

Zss —— '&rt expFP C

k

1 as 1 as
8 ap 4 aftt2

2
as 1 a's d,

8 aQ 4 a/2

I

the other one,
r

—f '&&exp. (36)

+S/2

cannot be accepted. This is equivalent to saying that su-

persymmetry is unbroken (see Ref. 14).
We can thus conclude that the request that the tradi-

tional quantization holds implies for the hidden supersym-
metry of Zss be unbroken.Fp

The presence of both dynamics in Zss is very amusing
but it may bother the careful reader who knows that the
prescription of Parisi and Wu' is to choose the forward
one. It should be remembered, anyhow, that in the sto-
chastic quantization we have to take the limit of integra-
tion r in (36) to infinity. In this limit only the Zf, „d is
left in (37). In fact,

SS [ 1= fo~ard[ ]+ backward[ ]) .
2

In this case the right-hand side, besides the notation,
would not have been supersymmetric.

This nice interplay of forward and backward FP
FPdynamics is also evident at the level at H ss (27). If we in

fact represent ftr and p as 2)& 2 matrices (see Ref. 14),

01 00
00' ~ 10

g =P =0, IQ, /I =I,
~ FpH ss can be written as

lim Zss [J]= lim (Zg, ~ard —Zbapckward )

H FP ~ —HFP
forward tr backward

EN Ell
forward + g backward

V~ 00

We see that the first term on the right-hand side is the
usual ZF studied in Sec. II, while the second term is the
generating functional corresponding to the backward
Kolmogoroff-Fokker-Planck Lagrangian presented in
(17).

We can indicate this in a compact way as
I

ZsS [J]= (Zforward[J] Zbackward[~])
2

(37)

where the notation is self-explanatory.
If we had chosen antiperiodic boundary conditions for

g and g, we would have gotten

Fp 1 8 1 BS
2 ay2 8 aft

1 BS
4 ap2

= lim Zf", ,„d[J] . (39)

FP
~~ forward

~ FP
~~ backward

(38)

where H f, „d is the expression in (7) while H b„k„„d isFP ~Hp

the one in (17a). Both of these Hamiltonians are positive
semi-definite: in fact, H f, „d———,QQ
H b„k „d———,

'
Q Q with Q =a/af() —1/2aS/ap. As we

said in Sec. I, the ground state of H f, „d is at Ep-——0 and

and is %p" "——e+, but we have to be cautious about
this state. If we assume, in fact, that the Vo' "——e
is normalizable [and we have to assume that for the tradi-
tional quantization (1) to hold], then Vo"" '" ——e+~~2 is
not normalizable and cannot be accepted as part of the
spectrum of H b„k „d. This means that there is no physi-FP

FPcal state for Hbackward at Ep=0: All its states are at
E„)0.

These conditions can also be expressed using the
language of supersymmetry: there is only one ground

A. FPstate for H ss, that is

e —S/2

0

(All the Eab„k„,„d are positive so the last term goes to
zero. ) (We have neglected the constant c' because we can
get, rid of it by properly normalizing Zss . )

The presence of this hidden supersymmetry can be fur-
ther exploited deriving, for example, the corresponding
Ward identities. This has been done in Ref. 13, but it does
not throw any new light on the problem. These Ward
identities only express the fact that correlations involving
the p and $, 17 fields can be reexpressed as correlations in-

volving only P fields. This is clear already in (37) where
we succeed in integrating the 1(r, g away, leaving only p
fields.

We want to derive some different identities here that
also stem from the hidden supersymmetry.

Let us define the following generating functional:

Z[ss) —( ]+~)st j i i I

where S ~ is a supersymmetric action and a is a parame-
ter. It has been shown in Ref. 17 that, if supersymmetry
is unbroken, then

=0
BA'

that means Z is independent of a. Let us write this
down for our Zss in (24):
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1 BS
Z(a)ss

' ' exp —1+o Sg —1+a r'+ d 7
0 2 gy2

(4O)

where Sz is the bosonic part of the FP action (26),

If we make the following rescaling in the fermionic part of the action f~v'1+a ttj=g', g —+v'I+a P:—tt
' we get

Z"' = f ex —(I+a)S"' f'y a + —' 'S
q2 tjp2 I+a

Performing the integration in lt', g', we obtain

Z(a)ssNFP

—( 1+a)SB +S2, , —( 1+aS~ —S2'mp e

2(1+a)

with

BSs, = —,
' f0 (1/2

This Z" is independent of a, so we can set its derivative
equal to zero. What we obtain is the following relation:

f (1+5~ )exp —f Wr, „ddt'

CONCLUSION

In this paper we have put the basis of a functional-
integral approach to stochastic quantization. We have
done this, not to merely develop once again perturbation
theory, but with the goal of having a new tool to study the
rich nonperturbative content of field theory. The tradi-
tional generating functional has proved, in the last 20
years, to be a very powerful instrument. We hope that our
Z" [J]can at least complement this.

Note added. After this work was completed, I was in-
formed of past and recent works on the functional ap-
proach to stochastic problems: F. Langouche et al. , Phy-
sica 95A, 252 (1979);Y. Nakano, University of Alberta re-
port, 1982 (unpublished); M. Namiki et al. , Prog. Theor.
Phys. (to be published); C. M. Bender et al. , Nucl. Phys.
B219, 61 (1983).
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