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Origin of the quantum observable operator algebra in the frame of stochastic mechanics
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In previous work the approach to stochastic quantization, originally proposed by Nelson, has been
formulated in the frame of the stochastic variational principles of control theory. Then the
Hamilton-Jacobi-Madelung equation is interpreted as the programming equation of the controlled
problem, to be associated with the hydrodynamical continuity equation. Here we point out explicitly
the canonical Hamiltonian structure of these equations, by introducing a suitable symplectic struc-
ture on the underlying phase space in various representations. One possible representation leads to
the Schrodinger equation, which, together with its complex conjugate, can be recognized as a partic-
ular form of the Hamilton canonical equations in this frame. Then a suitably selected time-invariant
subalgebra of the classical hydrodynamical algebra, closed under Poisson bracket pairing, is shown
to be connected to the standard quantum observable operator algebra. In this correspondence Pois-
son brackets for hydrodynamical observables become averages of quantum observables in the given
state. From this point of view stochastic quantization can be interpreted as giving an explanation
for the standard quantization procedure of replacing the classical particle (or field) observables with
operators, according to the scheme p~(h/i)B/Bx, l~(h/i)B/BP, etc. This discussion shows also
the relevance of the canonical symplectic structure of the quantum state space, a feature which
seems to have been overlooked in the axiomatic approaches to quantum mechanics.

I. INTRODUCTION

In a recent paper, ' it was shown that it is possible to re-
cast the approach to stochastic quantization, originally
proposed by Nelson and further developed by other au-
thorsin , the frame of a stochastic variational principle of
the type introduced in control theory. The resulting pro-
gramming equation, for a suitable choice of the stochastic
action, is identical to the Hamilton-Jacobi equation of
classical mechanics with corrections coming from the ran-
dom noise and giving rise, for a proper choice of the dif-
fusion coefficient, to the terms present in the Madelung
equation of quantum mechanics. It is very well known
(see, for example, Ref. 5 and references quoted there) that
the Madelung equation and the continuity equation can be
interpreted as canonical Hamilton equations for a suitable
symplectic system with phase space described by the den-
sity and the phase action fields. The main purpose of this
paper is to investigate the structure of this symplectic sys-
tem in order to point out the origin of the quantum ob-
servable operator algebra from the more general hydro-
dynamical algebra. Therefore, starting from the observa-
tion that the wave function P can be introduced through a
particular canonical transformation on phase space, we
verify that the Schrodinger equation and its complex con-
jugate are the Hamilton equations for the symplectic
structure coming from a canonical Hamiltonian, which is
bilinear in the P representation and invariant under re-
phasing of the wave function as a consequence of the con-
servation of the total probability. This explains the linear-
ity of the Schrodinger equation and shows that the super-

position principle is, in some sense, a consequence of the
stochastic variational principle and the particular form of
the action. In fact, different choices of the stochastic ac-
tion may give rise also to nonlinear Schrodinger equa-
tions. In the linear case it is very natural to introduce the
subalgebra ~ of variables on phase space bilinear and
phase invariant in the representation P. Clearly any in-
variant phase-space variable can be approximated through
polynomials of elements in ~. Moreover, u is closed under
Poisson-bracket pairing and contains the Hamiltonian and
the generators of all geoinetric transformations on the par-
ticle configuration space. From this point of view u can
be interpreted as a germ for the algebra of all invariant
phase-space observables. The invariance of the algebra ~
under rephasing of the wave function is equivalent to the
fact that all canonical transformations having the genera-
tors in u preserve the total probability in the configuration
space of the controlled process.

Then it is amusing to see that the algebra u is in
correspondence with the operator algebra on the Hilbert
space generated by the wave function, while the value of
the Poisson brackets for two elements in u is expressed in
terms of the average of the commutator of the correspond-
ing operators. In particular, the geometric transforma-
tions on the particle configuration space give rise to ele-
ments of ~ associated with the usual quantum-mechanical
expressions for momentum, angular momentum, etc.

Therefore one can see that, in some sense, the superposi-
tion principle, the quantum operator observable algebra,
and the relevance of the linear representations of group in
quantum mechanics are all consequences of the stochastic
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variational principle and the particular form of the action,
which has been chosen in Ref. 1.

The organization of the paper is as follows. In Sec. II,
we briefly recall the basic aspects of the variational princi-
ple in the frame of control theory as explained in Ref. 1.
In Sec. III, we introduce the symplectic structure in phase
space and develop the canonical theory in various repre-
sentations. Section IV contains the main core of our re-
sults. We introduce the subalgebra ~, in connection with
rephasing invariance, and show its relations with the
quantum observable operator algebra. Section V is dedi-
cated to some examples dealing with geometric transfor-
mations on the configuration space of the controlled sys-
tem and their related symplectic and quantum generators.

Finally, Sec. VI deals with conclusions and outlooks for
possible extension of the results presented here.

II. STOCHASTIC VARIATIONAL PRINCIPLE
IN CONTROL THEORY

E(dw(t)dw(t)) =(A'/m)I dt (dt )0) . (2)

In (2), I is the identity matrix in R" and the diffusion
coefficient has been written in the form (irilm) for future
convenience. We assume that the process has initial densi-
ty p0( ) at time t0. Then the density p( , t) evolves ac.cord-
ing to

B,p = —V(v+ p) + (fi/2m)b p,
equivalent to

B,p = —V'(pv) (4)

if the current density U is introduced according to the stan-
dard definitions

v (x, t) =(v+ + v )/2,

We refer to Ref. 1 for a complete treatment. Here, for
the sake of completeness, we recall some of the main
features.

Let us consider a dynamical system with configuration
space R". In general, we could consider the more general
case of a Riemannian manifold (see, for example, Ref. 6),
but it is sufficient to use R" to show the main structural
aspects of our results. While we have in mind in general
the field case, where x ER" is the configuration in some
partial-wave representation for a strongly cut-off field
theory (n~oo at the end), for the sake of simplicity we
refer to R" as a "particle" configuration space. We con-
sider a class of controlled stochastic Markov processes
q (t) on R" satisfying the Ito stochastic equation

dq (t) =v+ (q (t), t )dt +dw (t),
where v+(., t) is some given control field and the Gaussian
random noise dw (t) is normalized by the expectations

v (x, t)= VS/m,

B,S+(()'S) /2m + V —(A' /2m)bv p/Wp=0 .

(7)

Therefore the constrained variational principle gives the
gradient form (7) for the velocity field and the Hamilton-
Jacobi-Madelung equation (8), which, together with (4), is
the starting point of our treatment.

Let us remark that the physical interpretation of p
forces us to assume the normalization

fp0(x)dx =1,
which will be preserved at all times as a consequence of
(4).

Finally let us point out that the stochastic variational
principle is equivalent to Nelson's original assumptions
given by (7) and the smoothed form of the second princi-
ple of dynamics.

III. THE SYMPLECTIC STRUCTURE
IN PHASE SPACE

For the moment let us forget the particle structure and
let us assume as basic variables the hydrodynamical fields
given by the density p(, t) and the phase function S(,t),
satisfying (4) and (8). It is immediately seen that (4) and
(8) are the canonical Hamilton equations for a suitable
symplectic phase-space structure and a particular Hamil-
tonian. In fact, let us assume a phase space I specified by
the generic fields p( ) and S( ), acting as canonical vari-
ables. Here the field label x HR" is the analog of the in-
dex specifying canonical variables in the discrete case (for
example q;,p;,i =1, . . . , s). On I' we introduce a sym-
plectic structure given by the two-form

coi(5p, 5S;5'p, 5'S)= f [5p(x)5'S(x) —5'p(x)5S(x)]dx,
(10)

where 5 and 5' are two generic systems of increments for
the phase-space variables. For generic functions
W(p, S),%(p,S) on phase space the associated Poisson
brackets are

[W,A J
=f [[5W/5p(x)][5%/5S(x)] — [dx,

E q t t

W(x, t) = —,
'

m (v+ v )(x, t) —V(x),

where V( ~ ) is some potential (more general cases can be
easily introduced).

Then let us consider the particular specifications of v+
for which the action A is stationary (5A =0) under small
variations v+~v++5v+ of the control subject to the
constraint 5p(, ti)=0. Then the results of Ref. 1 show
that some S(., t) must necessarily exist such that

u (x, t) =(v+ —v )/2=(R/2m)V'p/p .

In order to give a dynamical specification for the control
v+ (,t), let us introduce the stochastic action A in terms of
the Lagrangian W, [p(x),S(x') [ =5(x —x'), (12)

where the terms . . contain M and A exchanged so that
(, j is antisymmetric in its argument. In particular, we
have
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while all other terms vanish:

[p p]=0 lSSJ=o (13)

Equations (12) and (13) show that p and S are canonically
conjugated variables.

We would like to point out that the symplectic structure
(10) is not arbitrary, but strictly connected with the basic
variational principle for the action (6). In fact, let us re-
call how the symplectic structure is connected to the La-
grangian variational principle in classical mechanics.

To this purpose let us introduce for a generic trajectory
in configuration space tq(t) HR", to & t & ti, the classi-
cal action

ti. Notice that in (21) the integration fdx replaces the
sum g,. in (16). Clearly the two-form (10) is related to
(21) (as a differential) in the same way as (17) is related to
(16). This shows the connection between the stochastic
variational principle and the symplectic structure (11) and
(12), in analogy with the classical case.

Let us now introduce the Hamiltonian A as the phase-
space function:

A (p,S)=f ( —,'mu + —,'mu +V)(x)p(x)dx, (22)

where U and u are defined in (S) and (7). Notice that the
stochastic average of the Lagrangian at some fixed time
reads in the same notations

[ —,m [q(t)] —V(q(t)) Jidt .

By a variation 5q of the trajectory we have

t)
5A = —f [mq(t)+VV(q(t))]. 5q(t)dt

+[mq(ti) 5q(ti) —mq(to) 5q(to)] .

(14) ~(p, S)= f ( —,
' mU2 ——,

'
mu —V)(x)p(x)dx . (23)

As remarked in Ref. 1, this shows that the osmotic veloci-
ty term mu /2 acts like a potential energy; in fact, it
changes sign going from the Lagrangian to the Hamiltoni-
an. With the choice (22) the evolution equations (4) and
(8) have the canonical Hamiltonian form

Therefore we can introduce the one-form

cu&
——p 5q, p—=mj . (16)

d,p(x, t) = [p(x, t),A J =5% /5S(x, t),
a,S(x,t) = [S(x,t),~]= —5~/5p(x, t) .

(24)

Then the stationary-action principle 6A =0, under the
constraint that the variations 5q(t) must be such that the
cubi-form takes the same value at to and t, , gives the
Newton-Lagrange equations mij+ V V =0. In particular,
one can assume 5q =0 at to and t] but this is not neces-
sary. Then the two-form cu2 ——den& is

co2(5q, 5p;5'q, 5'p) =g(5q;5'p; —5'q;5p; ) . (17)

The cu2 form gives rise to the Poisson brackets

[q pj]=5J (18)

Then under arbitrary variations of U+ and po( ), we have

5A = fS(xi, t, )5p(xi, ti)dxi

—fS(xo,to)5p(xoto)dxo'
+f dt f (mu —VS)p 5U+dx, (20)

as can be shown by following the same methods as in Ref.
1, under the mild generalization that also the initial distri-
bution po can be varied. Formula (20) shows that in the
stochastic case the role played by (16) is now assumed by

coi ——fS(x, )5p(x, .)dx . (21)

For the validity of the stochastic variational principle and
the derivation of (8) it is enough to assume the less
stringent constraint that co& takes the same value at to and

By starting from the stochastic variational principle for
the action (6) and exploiting the same line of reasoning we
can arrive at (11) and (12). In fact, the constraint
5p(, ti)=0 can be substituted by a suitable Lagrangian
multiplier in the action in the form

fSi(xi)p(xi, ti)dxi . (19)

Therefore A acts as the generator of time translations ac-
cording to the symplectic structure.

In order to complete the Hamiltonian-Lagrangian struc-
ture, it should be shown that the fields S(,t) canonically
conjugated to p(. , t) can be uniquely expressed in terms of
B,p(, t) In fact, .p, S are suitable variables for the Hamil-
tonian formalism, while p, B,p are involved in the underly-
ing field Lagrangian structure. According to an old re-
sult, this can be easily shown. In fact, if S and S' are two
fields giving rise to the same time evolution for p accord-
ing to (4) and (7), then for the difference u =S'—S we
have V(pVu)=0. If we multiply by u, integrate over all
R " and then integrate by parts, we then getfp(Vu) dx =0. This shows that u must be constant all
over configuration space where p is nonzero. Since in any
case S is defined up to a constant, because only derivatives
of S enter in (7) and (8), we have that p and B,p determine
uniquely the essential physical content of S. While a
description of the Lagrangian type, in terms of p and B,p
is surely possible, as we have shown, nevertheless the
Hamiltonian structure, expressed in terms of p and S, has
some advantages, as for example the local nature of (4)
and (8) in the configuration space.

Since the physical content of the theory must be invari-
ant under uniform shifts of S, the corresponding canonical
generator, which is M =fp(x)dx, plays a special role. In
fact, all phase functions having a physical meaning must
be invariant under the canonical transformations generat-
ed by M (the rephasing group). Therefore M is a super-
selected quantity and its value, in this canonical frame,
can be normalized to be equal to 1 in agreement with the
interpretation of p given by the stochastic variational prin-
ciple outlined in Sec. EI.

Clearly A is invariant under the rephasing group. But
we can easily construct other invariant functions, as will
be shown in the following.
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%'hile the stochastic variational principle gives p and 5
as basic variables, some transformations in phase space are
useful to consider. For example, we can introduce the
canonical transformation

g &

——~p cos(S/A'),

g2 vp——sin(S /A')

with inverse

(25)

p = (1(t) ) + (Qp), tan(S/A') =fp/g), (26)

t pi(x), gp(x') I
=5(x —x')/2A,

Ifi 0i) =o I42 P2I

(28)

An equivalent representation can be introduced through
the wave function

/=V pexp(iS/A)

and its complex conjugate lij*. Now we have

fp 5S dx = ,
' i' f ($5$"—g'5$)d x,

—

I M, A j = f [ [5A/5$(x)]

(29)

(30)

&& [5&/51t'(x)] —
I dx, (31)

I g(x), f*(x') I =5(x x')/iA—,

[4 PI =o IP' 0*l =o.
It is important to remark explicitly that (29)—(32) show
that the appearance of complex numbers of quantum
mechanics is strictly connected with the underlying syrn-
plectic structure of the state space.

The great advantage of the $~, $2 or g, g" representa-
tions is that the Hamilton equations become linear. In
fact, let us introduce the Hamiltonian operator of the usu-
al Schrodinger theory,

H, p
———(fi /2m)b, + V, (33)

acting on the wave function g. Then the field Hamiltoni-
an A, defined in (22), can be' expressed, according to (29),
in the form

~—:~(g, f*)= (Q,H,pg) = f g"(x)(H,pg)(x)dx,

(34)

where (, ) is the Lebesgue scalar product in the Hilbert
space L (R",dx). This formula is quite remarkable. It

and easily check the following identity between one-forms:

fp5Sdx =A'f (g)5/2 —$25$))dx .

Therefore the symplectic structure associated to P&, Pz is
the same as the one introduced before in terms of p and S.
In fact, the Poisson brackets become

IM, A I
=

2 A'f I [5zf/5$, (x)]

X [5A /5/2(x)] —
I dx, (27)

in particular

Finally, we would like to point out that, while the
canonical transformation (29) is quite general, it is only
for the particular choice of the action (6) that we arrive at
the form (22) for the Hamiltonian and can prove that (29)
linearizes the Hamilton equation in the form (35). In gen-
eral, we can start from the different action, perform the
canonical transformation (29), and end up with a non-
linear Schrodinger equation, as is shown in Ref. 5, for ex-
ample. From a physical point of view it would be neces-
sary to explain for which reason quantum mechanics
selects the particular stochastic action (6), or, alternatively,
verify whether the nonlinear Schrodinger equations ob-
tained from a different choice of the action have an effec-
tive physical meaning.

IV. THE INVARIANT POISSON SUBALGEBRA
AND THE QUANTUM OPERATOR ALGEBRA

From the point of view of the field system defined by
(p, S), an observable is a function W of (p, S) on phase
space. A particular observable M generates canonical
transformations on the Poisson algebra of all observables
according to the following expression for infinitesimal
changes:

5%' =5m I A, WI, (36)

where 5e is an infinitesimal parameter. Of special physi-
cal interest are the observables invariant under uniform
shifts of S. In particular, the Hamiltonian A of (22) has
this property.

Let us introduce those observables in phase space,
which, when expressed in terms of the variables P, P", as-
sume a bilinear form of the type

~(p,S)=f fg'( x) A( , x)gx(x')d dxx', (37)

or are suitable limits of observables of this form. Since we
are interested only in real observables M, we must have

A*(x,x') =A(x', x),
so that we can introduce the operator A defined by

(Af)(x) = fA (x,x')g(x')dx'

(38)

(39)

and check, under suitable conditions on the kernel A (,.),
that it is self-adjoint. Since we allow limits in (37), any
self-adjoint operator can be obtained in this way. Obvi-
ously, in the case of unbounded operators, some care must
be devoted to domain problems.

Clearly (37) provides invariant observables W and any
phase-invariant observable can be obtained, or approxi-
rnated, through polynomials of bilinear observables of the
type (37). We will show that the algebra u, made of the

shows that the hydrodynamical Harniltonian A can be
written as the quantum average of the single-particle
quantum Hamiltonian H,&

in the state (p, S) expressed in
the P representation. As a consequence, the Hamiltonian
equations are linear and coincide with the Schrodinger
equation (and its complex conjugate). In fact, we have

B,g= IP,A ] =(1/i')[5A /5P'(x)]=(1/iR)H, „Q .
(35)
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bilinear observables defined by (37), is closed under
Poisson-bracket pairing. On the other hand, the Poisson
brackets of polynomials can be easily expressed through
those of multiplicands. Therefore we are motivated to in-
troduce the subalgebra u of the bilinear invariant observ-
ables as a germinal nucleus of the physically relevant alge-
bra of all invariant observables.

Let us point out some properties of the subalgebra ~.
On the basis of (37)—(39), any WH ~ can be written as

5p(x)=5a {p(x),HI
=5a (5H/5S(x))= —5a V'p

5S(x)=5a {S(x),H j

= —5a (5%/5p(x))= —5a VS,

(45)

in complete agreement with (43). But let us now express
(44) in terms of P,P', according to the canonical transfor-
mation (29). We immediately see that

H(p, S)= (g, (irih')VQ) . (46)

for some self-adjoint operator A.
Now we calculate the Poisson brackets of two elements

of ~. Exploiting the expressions (31) we have, through a
simple calculation,

{M, A I
= ( I /i A') ( f, [3,B]g ), (41)

where [., ] is the commutator of two operators. This
shows that {W,A I has still the form (40); therefore u is
closed under Poisson-bracket pairing, as stated before.
Formulas (40) and (41) give the basic connection between a
particular subalgebra u of the field symplectic structure
(p,S) and the quantum operator algebra. Notice that there
is equality in (41), while the standard connection between
the commutators of the operator algebra and the Poisson
brackets of the classical Hamiltonian particle theory has
more the value of an analogy.

An important consequence of (41) is the following. If
we consider canonical transformations generated by ob-
servables in u, then we can see that they are also unitary,
in the sense that they preserve the scalar product in
I. (R",dx) introduced in (34) and (40). Moreover,
transformation groups whose generators are in u can be
interpreted as a group of linear unitary transformations on
L 2

An interesting problem is to see whether the more gen-
eral canonical transformation on the symplectic structure
have some kind of physical meaning.

V. EXAMPLES OF OBSERVABLES

x~x'=x +a, a ER",
acting on the basic variables p, S as

p( )~p'( )=p( —a),

S( )~S'(.)=S( —a) .

(42)

(43)

The canonical infinitesimal generator is

H(p, S)= JpV'Sdx .

In fact, for infinitesimal 5a we have

(44)

In this section, we give some examples of observables in
the subalgebra ~ and show how they induce operator
counterparts on I. .

We have already discussed the case of the Hamiltonian,
for which (34) holds.

Let us consider space translations,

Therefore H has the general form (40) with

~=~CPope) Pop=(&«)V (47)

which is the usual postulated quantum-mechanical expres-
sion for the momentum.

The same considerations hold for general space
transformations. The resulting canonical generators are
associated to quantum operators, which are found to agree
with those constructed according to the usual operator
quantization prescriptions. In the case of groups of
transformations the Poisson Lie algebra of the symplectic
structure goes to the operator algebra of the quantum gen-
erators.

In particular, we recover the average position observ-
ables connected to generators of Galilei boosts

W= fpx dx = (P,q,pg), (48)

where q, p is the multiplication operator (q,pg)(x) =xP(x).

VI. CONCLUSIONS AND OUTLOOK

We have seen that the stochastic variational principle of
a controlled system in configuration space leads to a con-
tinuity equation (4) and a programming equation (8),
which can be interpreted as canonical Hamilton equations,
on a suitable phase space and for a particular Hamiltoni-
an. On this phase space a very important role is played by
a subalgebra of observables, minimally closed under
Poisson-bracket pairing and invariant under the rephasing
group. The Hamiltonian and the canonical generators as-
sociated to configuration-space transformations belong to
this class, which therefore is, in particular, invariant under
time development and geometric transformations in con-
figuration space.

Observables in this class generate canonical transforma-
tions which are also unitary transformations in a naturally
introduced Hilbert space of square integrable functions on
configuration space. The corresponding self-adjoint gen-
erators are the operators of the usual quantum observable
algebra. In general, the Poisson-bracket structure is strict-
ly connected with the commutator operator structure. In
some sense our results show that most of the peculiar
features of quantum mechanics can be obtained in the
frame of a stochastic variational principle with a suitable
choice of the Lagrangian. In particular, we can derive the
quantum operator algebra and the corresponding relevance
of unitary transformations and linear unitary representa-
tions of groups.
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Two areas of problems seem to suggest further expan-
sion to this program.

First of all, it is clear that our results critically depend
on the chosen form of the stochastic Lagrangian. Dif-
ferent forms may give rise not only to quantitative
changes, but also to a drastic modification of the overall
qualitative structure, in particular with a loss of the linear
character of the Schrodinger equation. Therefore it is im-
portant to investigate whether there is a deeper physical
motivation for the stochastic Lagrangian, which for the
moment we have chosen "because it works" on a very
pragmatic basis. On some alternative route one could see
whether there is a physical interpretation for the nonlinear
theories which came from a different choice of the La-
grangian.

There is another aspect which we would like to point
out. It is clear that both the symplectic structure and the
operator structure allow reductions to smaller observable

subalgebras, consequently the state space reduces because
some states become identified. For some examples of this
reduction procedure and its consequences we refer to Ref.
9. It would be very interesting to see whether in general
the reduced system also allows a formulation based on sto-
chastic variational principles for control problem on a
smaller configuration space. This would produce a very
powerful tool for the exploitation of stochastic methods
for systeins which do not allow a direct application of the
general methods of stochastic mechanics such as, for ex-
ample, fixed-spin systems. We plan to consider these is-
sues in a future report.
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