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Construction of states for quantum fields in nonstatic space-times
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We set out the problem of constructing states for quantum field theories in nonstationary
space-time backgrounds. We stress that this problem is a fundamental one, not to be con-
fused with the inessential question "what is a particle. " We present a formalism, related to
that of Ashtekhar and Magnon, in which the problem can be attacked more easily than at
present. By way of illustration we express the ansatz of "energy minimization" in our for-
malism and thereby find its general solution for noninteracting scalar fields.

I. INTRODUCTION

The process of "quantization" of a classical field
theory yielding quantum dynamical equations and
an algebra of quantum operators is not sufficient to
determine a quantum field theory. Even if the prob-
lems of factor ordering and renormalization were
solved, it would still be necessary to find a general
procedure for constructing a space a of physical
states.

Such a procedure is essential for the extraction of
physical inforiiiation from the formalism of the
quantum field theory. For example, one may follow
Schwinger' and relate all physical quantities to S-
matrix elements

S(t2,kz, ti, ki)=(O(t, ),k,
~

O(t, ),k, )

Here O(t) is a "fundamental observable". That is,
(i) O(t) is constructed solely from field operators

in an infinitesimal neighborhood of the instant t,
and from locally determined c numbers,

(ii) O(ti) and O(t2) at different instants are con-
structed in an analogous way, and

(iii) the spectrum of O(t) is preserved by the
dynamical evolution.

~

O(t), k ) is the kth eigenstate
of O(t) We shall pa. y no attention to the question
whether k ranges over a discrete or a continuous set;
thus we shall use the symbol gk to denote any ap-
propriate summations and/or integrations and 5t,k

1

to denote the corresponding 5 function.
In asymptotically static space-times (see below),

O(t) may be taken to commute with a particle-
number operator N(t). This gives the states

~

O(t), k) a simple interpretation as many-particle

states. This has sometimes led to an unfortunate
identification of the problem of constructing states
with the problem of defining what particles are.
The latter is a subsidiary problem of nomenclature
and interpretation which will arise in quite a dif-
ferent form in nonstatic backgrounds since, as we
shall see, the correct O(t) will then not commute
with N(t) and the latter may not exist.

One reason why S matrices (1.1) with a temporal-
ly local (i) form, rather than the more general

(A[4],k2
i
8[4],ki ) (1.2)

are customarily used to make contact between
theory and experiment may be that mostgractical
measurement apparatuses select states

~

A[iIi],k ),
where the function A has effective support over only
a small (space)-time domain. A large body of ex-
perience and understanding has been built up for the
interpretation of (1.1), and hardly any for (1.2).
Nevertheless, we may eventually be forced to aban-
don the requirement (i) and embrace (1.2) with all its
interpretational difficulties.

The physical content of requirement (ii), that a
fundamental observable be constructed in an analo
gous way at each instant, is that it should corre-
spond to measurements made with the same ap-
paratus at different times. In this paper, we shall
follow the usual practice of assuming that an inter-
pretation with this property exists whenever (iii) is
satisfied, so we shall ignore (ii) henceforward. We
note in passing that the physical intuitions motivat-
ing (i)—(iii) may not be appropriate to a nonstatic
expanding universe. For example, the spectrum of
the (smeared) field operators would not be constant
if the volume of the universe changed.
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For noninteracting fields in Minkowski space-
time, the fundamental observables 0 ( t) may be
chosen to be the particle-number operator N(t) and
a set of operators commuting with it. [The con-
struction of N(t) is discussed in Sec. II.] In this
case, N(t) is of course constant and the conditions
(i)—(iii) are trivially satisfied. If interactions and
space-time curvature of a reasonably regular nature
are introduced, but confined to a compact space time-
region, then the same construction applied in either
static region yields a particle-number operator N(t)
which is no longer constant but, as Wald3 has
shown, still satisfies (i)—(iii). Wald s result holds in
any space-time which is static in the remote past
and future and where the interactions and nonstati-
city have effectively compact support. Thus parti-
cle production and related phenomena in such
space-times are in principle completely understood:
The S matrix S(+ oo, k&, —oo, kp) is the amplitude
that a system initially in a state with past-attributes
kp evolves into one with future-attributes k&. Our
inability to extract from a quantum field theory
physical information inside the compact interaction
region causes no practical problem. at the present
state of technology, though it should be borne in
mind that in principle the amplitudes S(+ oo,
k&,

' —oo, kp) do not express the entire physical con-
tent of a quantum theory.

When dealing with general cosmological space-
time backgrounds (say, for the sake of argument,
recollapsing models with no static region and no
event horizon), it is not yet known how to construct
the space of physical states. This problem is
separate from that of the ambiguities arising when
horizons are present. No fundamental observable
with the properties (i)—(iii) is known. In particular,
no generalization of the static particle-number
operator is known to satisfy (i)—(iii) in nonstatic
space-times. Since (iii) implies that corresponding
elements of the state spaces constructed at different
times are related by a unitary transformation, i.e. ,

(i) Q S(t),k), t kpp&)S*(t) k &t 2kp)=p5g ~
k()

(u) QS*(t)&k)&tp&kp)S(t„k&, tp&k2)=5p g
k)

(1.3)

the failure of a particular construction to satisfy
(i)—(iii) is sometimes referred to as nonexistence of
the S matrix or a lack of unitary equivalence be-
tween state spaces at different times. We shall call
it the "Fulling pathology, " since Fulling was the
first to give a detailed account of the difficulties
generally encountered in trying to make the ex-
istence of a particle-number operator at each instant
consistent with (i)—(iii).

Several related fornialisms have been used by vari-
ous authors to express procedures for constructing
states for noninteracting fields. Three of these are
directed towards specifying a complex structure on
the space V of real c-number solutions of the
dynamical equations. This is used to distinguish be-
tween "positive-frequency" and "negative-fre-
quency" complex solutions which in turn (at least
via canonical quantization), deteriaine a (Fock)
space of states. These three foiirialisms are dis-
cussed in Sec. II and their equivalence demonstrated
in Sec. III. They are as follows. (1) The specifica-
tion of a set of physical positive- and negative-
frequency modes in terms of some reference set.
Such expansions are called Bogoliubov expansions.
They are useful only when the space-time contains a
region, such as a static region, where a "preferred"
complex structure exists. (2) Ashtekar's J, a linear
operator on V such that —,(1+iJ) are projection
operators for positive- and negative-frequency func-
tions. This is cumbersome in practical calculations
since J must satisfy the constraint J = —l. (3)
Boundary conditions imposed on some spacelike hy-
persurface W, . This is the method which we are
elaborating in this paper. Generalizing the method
of Brown and Dutton, we specify the linear opera-
tor M on a suitable function space on W, for which
positive-frequency functions 4&~ satisfy

[n„V"4g (x) MN—g (x)]
~ „~~ =0

where n„ is the unit future-pointing vector field nor-
mal to 5,.

It is appropriate to mention two approaches to the
construction of states which do not necessarily lead
to Fock spaces. Qne is to specify sufficient boun-
dary or other conditions to fix the Feynman Green's
function

(O(t2), vac
~

T@(x)@(x')
~
O(t~), vac)

G (x,x')=i
(O(tz), vac

~
O(t&),vac)

(1.5)

where T is the time-ordering symbol and the points
x and x' are at the instants t and t', respectively.

The other is to construct the direct sum of Fock
spaces, each based on a different complex structure.
Under such constructions no particle-number opera-
tor exists although physically measurable quantities
all have finite matrix elements.

In this paper we shall restrict ourselves to single
Fock spaces, although our M foi-iiialism can also be
used to express these wider constructions.

If ~ is to be a Fock space the problem of con-
structing states reduces to finding a general criterion
for distinguishing between positive and negative fre-
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quency. Many such criteria have been proposed,
most' in the hope (to date, vain) that they might
satisfy conditions such as (i)—(iii). By "general" one
means geometrical and applicable in arbitrary
space-time backgrounds.

Parker's suggestion of an "adiabatic definition of
states, " a temporally nonlocal construction, can un-
fortunately be applied only in spatially homogeneous
cosmologies. However, the physical motivation of
Parker's construction does give simple physical in-
terpretations to his states, so if he is right in advo-
cating the abandonment of requirement (i) and the
interpretation of the theory via amplitudes such as
(1.2) rather than (1.1) it is necessary to seek a gen-
eralization of his adiabatic construction to general
space-times. We do not attempt that in this paper,
though the formalism we set up in Sec. II provides
tools with which one could attempt it.

The procedure to which we shall be devoting most
of our attention (though more as a testing ground
for our formalism and general approach than be-
cause we especially advocate it) is energy minimiza-
tion. The idea here is that one considers the renor-
malized instantaneous expectation value of the
Hamiltonian operator (or some other total-energy
operator) in the vacuum state of the Fock space gen-
erated by each possible construction of states. The
choice which minimizes this value is then supposed
to be the physical state space. The difficulty here is
that all known versions of this method in general
generate a different space for each instant and thus
suffer from the Fulling pathology.

Ashtekar's criterion, a "correspondence principle"
requirement that the energy of a one-particle state
should be equal to its classical energy, yields the
same complex structure as energy minimization in
the case of minimal coupling (see the next section).

II. FIELD QUANTIZATION
AND COMPLEX STRUCTURES

For simplicity we shall consider only the real
(Hermitian) free scalar field ixi(x) propagating in a
curved globally hyperbolic space-time ~. Thus the
problems of alternative quantizations in space-times
with horizons, though interesting and important in
themselves, will not concern us. The stationarity of
the action functional

where t is a parameter labeling the hypersurfaces
and the x label points in W, .

The canonical commutation relations for 4(x)
may be expressed as follows:

(i) [gIi(x'), n.VgIi(x)]
~ „~~=i5(x,x')1

(ii) [4(x'),k(x)]
~ „„~~=0

(2.4)

We now solve (2.2) subject to (2.4). To this end
consider the auxiliary c-number field equation

(II).„"—(m +JR )/=0 (2.5)

Because of the Cauchy completeness of M every
solution (I[(x) of (2.5) may be identified with its Cau-
chy data on some W„

i'(x)~I P(t,x),n VP(t, x) I (2.6)

Let Uk(x ) be any complete and orthonollllal basis
for real functions on W„ in the sense that

(i) g Uk(x)Uk(x')=5(x, x')
k

(ii) f Uu, (x)Uu, (x)dx=gu, u,
t

(2.7)

where dx is the covariant volume element on W, .
If Mkk is any complex matrix whose anti-

1

Heriiiitian part has a negative spectrum, then the
functions

uk(x)~g [i (M Mt)]-
k2

X Uk, (x),QMk k Uk (x)
k)

(2.&)

foriii a set of solutions of (2.5), complete and orth-
noi-iiial according to

Qk X n' Qk X

where m is the mass of a field quantum and g is the
1

conformal coupling constant, g= —, for the new im-
proved scalar field, which transfoi-iiis as a density
under conformal transfoiinations and /=0 for the
minimally coupled scalar field.

Let ~ be foliated by a family W, of spacelike hy-
persurfaces with normals

(2.3)

S[S]= ——,f [k.„@'u~(m '+JR )@']g'i'd'x

(2.1)
—uk(x')n. Vuk(x)] i „„~~=5(x,x') (2.9)

4.„"—(m +JR)C)=0 (2.2)

with respect to infinitesimal c-number changes
5$(x) in the foi-in of 4(x) implies the dynamical
equation

and

(i) i f uu u ()uu dx=gu u

(ii) i f uu u Vuu dx=0
t

(2.10)
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Alternative sets of solutions Iuk(x)I and Ivj, (x) I
constructed via different Mkk 's may always be ex-

1

pressed in terms of each other by a Bogoliubov
transformation

vk)(x) = g[akk)uk(x)+ pkk uk (x)]
k

If these also satisfy (2.9) and (2.10), then

kk akk Pkk Pkk ) ~k k
k

(ii)g (akk Pkk Pkk akk
k

(2.11)

(2.12)

The quantity Mkk determines a so-called complex
1

structure on the space V of real solutions of (2.5)
(some restrictions on Mkk will be discussed in the

1

following section). It is to be thought of as a geome-
trical object on W, . It is convenient to consider it
both in the k representation, as Mkk, and in the x

1

representation, as M, a linear integral operator on a
suitable function space on W, .

Since 4(x) is Hermitian, the general solution of
(2.2) is

k(x) =g [akuk(x)+ak uk (x)]
k

(2.13)

and (2.14)

(ii) [ak, ,ak, ]=[ak, ak ]

Everything we have said so far is independent of
the properties of the physical states, the construction
of which has been reduced to the choice of a repre-
sentation for (2.14), to which we now turn. As is
well known, " there exist uncountably many such
representations not related by unitary transforma-
tions. From an algebraic point of view it might
seem natural to require that the construction of
states be invariant under changes in the choice of
basis functions uk(x) or of M, since these were in-
troduced apparently only as technical aids in the
solution of the dynamical equations. Although such
constructions are possible, ' they have not been
widely explored and their interpretation (nonparticle
states) is problematic. In this paper we are con-
cerned almost entirely with the conventional Fock-
space or many-particle-states construction. To this
end, consider a single choice M of complex struc-
ture, and let ak be the operator coefficients in the
expansion (2.12) of 4(x) in ternls of the correspond-
ing solutions of (2.5). Then it is easily verified that

where the operators ak are chosen so as to satisfy
the commutation relations (2.4), which amount to

(i) [ak, ak, ]=&k,k, i

the formal operator

N M =gak(M)ak(M)
k

(2.15)

In this case the N- and M-Fock spaces are unitari-
ly equivalent; that is, they are the same space (qua
Hilbert space) with different nomenclature for the
states.

As we shall see, M is a most convenient character-
ization of the complex structure. In the following
section we demonstrate the equivalence of our
M formalism with the other formalisms.

III. FORMALISMS FOR EXPRESSING
COMPLEX STRUCTURES

In this section, we elaborate on the connection be-
tween the three characterizations of the complex
structure, namely our M, Ashtekar and Magnon's J,
and Bogoliubov transformations. We first obtain
the operator J corresponding to a given M.

Let @(x) be a real solution of (2.5) with Cauchy
data IN(x), II(x)I on a chosen hypersurface W„
where xEW, . Then the complex structure J may
be thought of as a real linear operator on the space
of all real pairs of functions If(x ),g(x ) I:

JIf(x),g(x )] = t Af (x)+Bg(x)

Cf(x )+Dg(x ) I (3.1)

The positive- and negative-frequency parts of 4(x)
are defined to be

@+—(x)= —,(1+iJ)4(x)=P+@(x)—(3.2)

has in virtue of (2.14) a non-negative-integer spec-
trum. The requirement that NM exist is sufficient
to determine uniquely a space of many-particle
states on which N M is the particle-number operator
and ak(M) and ak(M) are, respectively, creation and
annihilation ~oerators for M-particles of type k. We
call this the M-Fock space.

The Bogoliubov relations (2.11) between sets of
solutions corresponding to different complex struc-
tures imply the following relation between the corre-
sponding creation and annihilation operators:

(i) ak(M)=g[akk ak (N)+gk ak (N)]
(2.16)

(ii) ak(N) =g [ak, kak, (M) —Pk, kak, (M)]
k,

Thus the condition that N M and N N exist
simultaneously is

(M, vac iN N i
M, vac) = g Pkk, Pkk, & Oo

k, k1
(2.17)
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where P +a-re the positive- and negative-frequency
projection operators. In order that P +be—projection
operators, J must equal —1, or equivalently,

In view of the identity

M '= i—(1+i I 'R)(1+ I 'R I 'R) ' I

(i) A +BC=—1

(ii) D +CB=—1

(ii) AB+BD=O

(iv) CA+DC=O
@+has Cauchy data (on W, )

(3.3)
(3.10) and (3.12) are equivalent to

(i) A= —I 'R

(ii) B= I

(iii) C= —( I+R I R)

(3.13)

(3.14)

I —,(1—iA)N(x ) ——,iBII(x )

—,
'

(1—iD)ll(x) ——,
' iCe(x) I .

In teinIs of the M formalism,

n.V4+(x) i„~~ =M@+(x)
~
„~~

Therefore,

(1—iD)11(x ) i CN(—x)

=M[(1 i A)@—(x ) —iBII(x )]

(3.4)

(3.5)

(3.6)

(iv)D=RI

Thus J has been expressed in terms of M.
There are two further conditions on J which fol-

low from the requirement that Ci+(x) be a one-
particle wave function with positive classical energy,
which we shall now translate into constraints on M.
They are

f d),V„@,dX" f~ d&,V„=@,dX" (3.)5)
t

and

Since N(x) and II(x) are arbitrary real functions, or a 0 (3.16)

(i) —iC= M(1 —iA)
(3.7)

In tei-II|s of our real basis functions Uk(x), these
conditions are

(ii) —iMB = 1 iD—
which can be solved for M to give

M= —iC(1 —iA) (3.8)

(ii) C=iM(l —iA)

(iii) D= —M A M

Now, writing M=R+i I, where

(i) R= —,(M+M *)

(ii) I = ——,i(M —M *)

(3.10)

(3.11)

and demanding that J should map real functions
into real functions, we obtain

Thus we have obtained the M corresponding to a
given J. More convenient forms can be obtained
from (3.14) below.

Substituting the above in (3.7 ii) and equating real
and imaginary parts leads to

(i) 1=—C(1+A2) 'B
(3.9)

(ii) D=CA(1+A ) 'B

We may now solve (3.3) for B, C, and D:

(i) B=—(1+A )C '=i (1+iA)M

(i) f Uq, (x)I 'RUq, (x)dx

k, x RI 'Uk, x x

(ii) f~ Uq, (x)( I+R I 'R)U~ (x)dx

x I x x, . 7

(iii) f Uk (x)I 'U„(x)dx

x I k x x
t

and

(i) f Uq(x)I 'Uk(x)&0

(ii) f U~(x)(I+R I R)Uq(x)&0

These imply that R and I are symmetric and that I
is negative definite.

This completes our discussion of the connection
between the J and M characterizations of the com-
plex structure.

In order to discuss the relations between Bogo-
liubov transformations and J, we require properly
norrIIalized positive-frequency functions, that is,
given J, we wish to find the real solution Nk(x)
whose positive- and negative-frequency parts, viz.

A= —I 'R (3.12) @k (x)= —,(1+iJ)@k(x) (3.19)
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satisfy the orthonormality relations (2.10). It is
necessary and sufficient to have

(i) f~ 0&„,V„@~dX" 0=
and

(ii) f d&q V~JC&k dX"=25q k

(3.20)

We may identify @k(x) with its Cauchy data
OI1 Wi

uk* &uk X"= E uk &uk

then

peak, = (f—llkV„ilk dX" 0=

We have

uk „uk

(3.26)

(3.27)

g j,4,kUk, (x» Pk, k Uk, (x) j
k)

(3.21) , i [Q—(@k,Nk ) —Q(J@k,J@k )

where Uk(x) are the real basis functions on W, pre-
viously described.

Then the real coefficients Akk and Pkk will de-
1 1

pend on the real linear operator J. Equation (3.20) is
equivalent to

iO—(@k,J@k ) +i A(@k,J@k)]

where the "symplectic structure" is defined by

Q(l(l, l(l )= f l(l V. „l(lldX"

But in view of (3.3) and (3.15),

(3.28)

(3.29)

(I) g (~kk)Pkk2 Pkk)~kk2)
k

g (~k k Ckk"4"k +~a'k Dk'k"Pi "k
1 2 1 2

k', k"

Pk'k ~k'k "~k"k
1 2

(3.22)

Pk'k +k'k "Pk "k ) ~k k
1 2 1 2

Equation (3.22) admits many solutions for A, and P.
For example,

(i) Akk~ =0, Pkk( =2( —8)kk~

Q(J@,J4& )=Q(N', @ ) (3.30)

Equation (3.27) follows.
We now determine the Bogoliubov coefficients re-

lating mode functions corresponding to two distinct
complex structures J' and J .

The positive-frequency functions, i.e., uk and uk
are constructed as in (3.19). Since both jiik j and
[uk j are complete and orthonormal, the Bogoliubov
coefficients akk, and pkk which connect (uk j and

[ Iik j according to

Iik(X) =g [Cik, k Uk, *(X)] (3.31)
k)

(ii) Akk) =2Cik, Pik =0 (3.23)

(I) @k,(» g (4k, Uk(X»Pkk, Uk(X) j

We now prove that all such solutions lead to iden-
tical definitions of positive frequency (connected to
each other by trivial Bogoliubov transformations
with pkk

——0).
To this end let

are given by

(i) a„„,=i f ill,'"'0„ill', dX"

(ll) Plk = —I f lly0l lll, dX~

or, in terms of real solutions C)k and C&k,

(I) ~kki 4 I [+(Ck~@k()+&(J'C'k, J'@k )

iQ(@k,J N—k )

(3.32)

r [~,Uk(x ) Pkk, U (x ) j
k

(3.24)
+i Q(J'Nk, @k )]

(3.33)
(») Pkk, = ——,i[A(Ck, 4 „)—n(J'qk', J'@'k )

(i) uk (x ) = —,(1—iJ)C&k (x)

(ii) uk (x)= —,(1 iJ)@„(x)—(3.25)

are the corresponding positive-frequency solutions,
where

where both pairs [A, ',P j and [A, ,P j are solutions to
(322). We now show that if

The inverse problem to the above is essentially
that of determining J given a complete set jiik(x) j
of positive-frequency solutions. Since an arbitrary
real solution 0'(x) can be expressed in the form
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%(x)=g[Akuk(x)+Ak uk (x)]
k

(3.34) &u = —( f„y&uuu d &u
t

(3.35)

where
the effect of J on such a function is easily calculat-
e

r r

JW=Q((duuu —lr(u u)u=g fy 'y(y)Vruu(y)dXu(y) uu(x)+ fy 'y(y)Vru„(y)dXu(y) uu(x)
k t

(3.36)

IV. GENERAL SOLUTION OF THE ANSATZ OF ENERGY MINIMIZATION

A historically important approach to the problem of constructing fundamental observables was "Hamiltoni-
an diagonalization. " The most physical way of stating this criterion is that the space of physical states be a
Fock space W;„whose vacuum state has the lowest possible total energy. This approach now appears to be de-
funct. All known versions of it suffer from the Fulling pathology in general space-times. However, it is a
useful testing ground for our M formalism, as we shall now demonstrate by calculating the general solution of
the energy-minimization ansatz —indeed of a wide class of related criteria of which the historical one is a spe-
cial case.

The renoririalized stress-energy tensor T"„"„for the scalar field 4(x) of (2.1) is formally given by

T"„,"„(x)=2g '~ — S[k]—T""(x)1=g" [(2$—
2

)C). 4' +2/44. ——,(m —gR )4~]
pv

+ ( 1 2g)4 '"4—'" 2/@4 '""—gR ""4 —T"„"(x)1—

The counterterm T""(x) is a formally infinite c
number. The total energy which we shall wish to
minimize is the spatial integral of the expectation
value of an energy density constructed from (4.1),

E„„=,vac T"„„x,vac
t

(4.2)

where d X„=n „dx is the (future-pointing) volume
element on W, . If W, is not compact, (4.2) is to be
understood as the result of some formal procedure
to factor out the infrared divergence in E„,„due to
an infinite volume of W, . 1"(x) is some timelike
vector field. Different choices of 1" correspond to
different definitions of total energy. Unconvention-
al choices of 1" await exploration in the literature.
The conventional ones are (i) I"=n", which makes
T&„1"n"the local energy density for observers at rest
in W, ; (ii) 1" is some timelike Killing vector field,
which makes E„,„a conserved total energy; and (iii)
1& is noririal to the hypersurfaces of homogeneity (if
such are present). To obtain the minimum E„„we
set

Eren =O
5M

(4.3)

Because the expectation value of T"" 1 is formally
independent of M, E„„will attain its bona fide
minimum when the divergent quantity

E = f (Mvuc( T""(Mvuc)ludX„(4A)
t

attains a formal stationary value with respect to
variations

M~M+5M (4.5)

When /=0 the energy E is formally a sum of
squares, and may be considered non-negative defin-
ite. It follows that a formal minimum with respect
to variations (4.5) will exist at some value of M.
When g&0 (and, in particular, for the conformally
invariant case g'= —,) this need no longer be the case.
As we shall see, in a general background geometry,
and for a general hypersurface W„ the ansatz of en-
ergy minimization possesses no solution for /&0
scalar fields. We now obtain the solution for the
class of cases where it exists.

We have

(M, vac
~

T""(x)
~
M, vac) = lim [(2g——,)g""(g V~V~ +m +JR)+(I 2$)g" V"V~—

X ~X

g(V"V"+—g" g"s VVs )+ , 'g(R" g "+g" R"—)]gul, (x)uk(x') . (4.6)
k
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Now we use the field equation in the form

(n V') uk(x)=uk +n"n" „u.k Jn—.V'uk(x) —(m +g'R)uk(x)
ja ~p

where the vertical bar denotes the covariant derivative with respect to the intrinsic metric

hp~ =gp~+ npn~

of the hypersurface W, and

y p=h„h„13n"'

is the second fundamental form on W, (X=X ), to eliminate all second-order time derivatives.
Next we set

(4.7)

(4.S)

(4.9)

M=R+i I

with R and I Hermitian [in view of (2.10) we may in fact take them both real and symmetric] and write

(4.10)

(4.11)

where Tr denotes a trace over space coordinates

E = —
4 Tr(l&n(") I [D D —m —gR +2/(l&n") '(l&n")

~

~ g(l&—n") '(21&n "n "n~ „+21&.n~'"+lzg"P)
~ p

+2((l&n") 'l„n„R""]I ' —2g'XI 'R —2g'XRI ' —RI 'R —I I

Trf (x,x') = f~ f(x,x )n„dX"

Under a variation 5M =5R,

5E= —, Tr(lan")(2(X I '5R+2$+5RI '+5R I 'R+R I '5R)

whence we infer that E is stationary when

R=R;„=—2/+1

and the stationary value of E is

E= —, Tr[ —,(Qb, +ZQ)I '+QI]
where

(4.12)

(4.13)

(4.14)

(4.15)

Q=l„n"
DD +m +g—R —2(Q 'Q

~

+gQ '(2Qn "n~ „+21"n~.„+.1"g„~)~~
—2$Q 'lan„R""—4+7

(4.16)

Under a further variation 5M = i5 I,

5E= ——, Tr[ —, I '(Qb, +b, Q)I '5l —Q5I] (4.17)

Hence E is stationary when

2 —1/2( Q)
—1/2[( Q)

—1/2( Qg gQ)( Q)
—1/2] —I/2( Q)

—I/2 (4.18)

It is easily verified using the connecting relations (3.14) that in the case 1"=n" (and setting g'=0), the com-
plex structure (3.1) coincides with that of Ashtekar and Magnon.

The solution (4.13) exists whenever the square roots exist, which they will if and only if the operator 2 has a
positive spectrum. When /=0 it always does, regardless of the geometry of the space-time, hypersurface W„
and the vector field 1". When $~0 the positivity of 2 depends on all these things.

In order to verify that the value (4.15) is indeed a minimum (and not a saddle point), we evaluate the second
variations



CONSTRUCTION OF STATES FOR QUANTUM FIELDS IN. . . 1915

5R 5Ikok 1 k2k3 R . , I

5E
3 min' mi

5Ik()k[5Rk2k3 R

I-2

I4 (Qk()k3 mink]k&+ Qkok3 mink[k&)
kokl k2k3 R mjgy f mj

(4.19)

at the turning point (4.14) and (4.18). Considered as a matrix with clumped indices (kok]) and (k2k3), the
second variations are positive definite whenever I;„exists and is negative definite. We conclude that the turn-
ing point is always a minimum.

In the case when ~ is a Robertson-Walker space-time. with metric

gq„——a (t)gpv
2 (4.20)

(gz„ is the metric of Minkowski space-time) with the W, chosen to be the hypersurfaces of homogeneity and
1"=n ", we have

Mf(x)=(2a) f fd kd y ex)e[ik (x —y)] —6ta/a ——[ke+m +6t(l —6g)(a/a) ]'~ f(y)
(4.21)

This agrees with the results of Brown and Dutton
and others ' for energy minimization performed
directly. The resulting construction of states suffers
from the Fulling pathology. It is conceivable that
different choices of W, might remove the patholo-
gy, though this possibility must be viewed with little
confidence since such choices would necessarily
violate the symmetries present in the space-time.
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