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Gravitational effects in bubble collisions
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We investigate the effects of gravitation in the collision of two bubbles in the very early universe,

using the thin-wall approximation. In general, the collision of two bubbles gives rise to a modulus

wall and a phase wave. The space-time metric and all physical quantities possess hyperbolic O(2, 1)

symmetry. We derive a generalized Birkhoff's theorem to show that the space-time in different re-

gions must therefore be flat, de Sitter, pseudo-Schwarzschild, and pseudo-Schwarzschild —de Sitter,
respectively. As in the spherically symmetric O(3) case, the space-time is Petrov type D, and so there

is no gravitational radiation. Owing to the special symmetry of the space-time, the concentration of
matter does not suffice to cause any gravitational collapse to a singularity no matter how severely

the two bubbles collide. The modulus walls, viewed from the real vacuum region, eventually pro-

pagate outwards with kinks due to a series of collisions, in contrast to the situation in the absence of
gravity.

I. INTRODUCTION

In the very early universe at very high temperature, the
Higgs fields of any spontaneously broken gauge theory
lose their expectation values, and this results in a gauge-
symmetric phase. ' When the temperature drops below
that of the grand-unified-theory (GUT) and Weinberg-
Salam energies, the symmetric phase becomes unstable
and quantum tunneling effects cause bubbles of the stable
broken-symmetry phase to form within the false vacuum.
Coleman shows that, in Minkowski space-time, the for-
mation of a bubble may be thought of as an O(3, 1)-
invariant continuation from an O(4)-invariant "bounce" in
a Euclidean manifold. Once the bubble materializes, it ex-
pands with a speed asymptotically approaching that of
light, and the bubble wall, which separates the false-
vacuum phase from the real vacuum, traces out the hyper-
boloid

/

x /2 —ti=g2

where R is the original radius of the bubble. If gravitation
is present, one has to analytically continue the metric as
well as the Higgs fields. Coleman also discussed the ef-
fects of gravitation on the formation and expansion of a
bubble.

The collision of two bubbles in flat space-time was dis-
cussed by Hawking, Moss, and Stewart. They consider a
Higgs scalar field 4 which is in the fundamental represen-
tation of a Yang-Mills group G. In general, the value of
N in each bubble may be different, owing to the degenera-
cy of the global minimum of the effective potential V(C&).
Since it is always possible to find a U(1) subgroup 8' of G
to connect the two N values, one can, without loss of gen-
erality, restrict attention to a model in which a single com-
plex scalar field is coupled to an electromagnetic field,
with an effective Lagrangian

W= —~F (DN) (DN) V(N) .— —(1.2)

Here D is the gauge-covariant derivative, and the effective
potential V(@) which includes quantum and thermal
corrections has two minima, the false vacuum at +=0
and the broken-symmetric real-vacuum phase at

=Co (Fig. 1). In order that the so-called thin-wall ap-
proximation be valid, one needs the potential difference

V(0) —V(&p) =e (1.3)

FICx. 1. The effective potential.

to be much less than the height g of the potential barrier
between the two minima, since the initial radius of the
bubble is of order g 4oe, while the thickness of the wall
is initially of order —,

'
g ~Co.

When two bubbles are present, the O(3, 1) space-time
symmetry is reduced to O(2, 1), because of the preferred
axis joining their centers. The respective values @~, +2 of
a scalar field in each bubble are related through
e& ——e'~+2.

If a=0, then there is no electromagnetic field. The
walls of the two bubbles collide at the plane which perpen-
dicularly bisects the line joining the centers of the two
bubbles. In order that the eriergy be conserved, two
modulus walls are formed in the collision region, which
initially propagate outwards with almost the same speed
as that of the incoming walls. The region between these
outgoing modulus walls remains in the symmetric false-
vacuum phase, while the outside region is unaffected. The
pressure difference between the two phases and the wall
tension bring the outgoing modulus walls back to collide
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again and the process is repeated ad infinitum with the
period and amplitude of oscillation decreasing asymptoti-
cally to zero.

If a&0, then in addition to the modulus walls two
phase waves, which travel outwards at the speed of light,
will be created by the collision. These phase waves carry
off some of the energy of the incoming walls, thereby
reducing the velocity of the outgoing modulus walls. If
the phase difference is sufficiently large, then the modulus
walls will completely disappear. Hawking et al. argue
that the electromagnetic field which appears after the col-
lision with a&0, in general, does not play a significant
role, and for simplicity we shall ignore it below. But, it
seems straightforward to extend our discussion to include
the electromagnetic field.

In this paper we investigate the effects of gravitation in
the collision of two bubbles in the very early universe,
using the thin-wall approximation. In Sec. II we show
that before the creation of bubbles, the space-time is
described by a de Sitter metric which is of O{4,1) symme-
try. The existence of two bubbles reduces the symmetry to
O(2, 1). Any O(2, 1)-symmetric Einstein space must be flat,
de Sitter {A~ 0), pseudo-Schwarzschild, or pseudo-
Schwarzschild —de Sitter (A &0). There is a naked curva-
ture singularity in the last two cases.

Before the collision the metric in the false vacuum is de
Sitter while in the real vacuum it is flat. In Sec. III we
prove that the existence of the phase waves for the a & 0
case causes the vacuum region after them to become
pseudo-Schwarzschild with the metric parameter m deter-
mined by the energy radiated away at null infinity. It is
found that the collision always happens after the Killing
horizon of the pseudo-Schwarzschild space, and there is
no singularity for the whole manifold. The physical signi-
ficance of this phenomenon is that owing to the noncom-
pactness of the hypersurface of the O(2, 1) group transitivi-
ty, the concentration of matter does not suffice to cause
any gravitational collapse.

In Sec. IV, adapting Israel's method ' for spherical dust
shells, i.e., matching the extrinsic geometry of the
modulus walls through Einstein's equations, we derive an
equation of motion of a modulus wall. It is possible, in
principle, to determine the motion of the modulus walls
and the pseudo-Schwarzschild-de Sitter metric in the
false-vacuum regions after the collision by an iteration
procedure. Although inside the false-vacuum regions the
motion of the modulus walls jooks similar to the motion
in the absence of gravity, when viewed in the real-vacuum
region, the walls eventually propagate outwards with kinks
due to the series of collisions.

II. HYPERBOLICALLY SYMMETRIC SPACE- TIME
AND THE GENERALIZED BIRKHOFF'S THEOREM

Before the bubbles appear, the space-time is in the
false-vacuum phase, described by the de Sitter metric with
O(4, 1) symmetry. The cosmological constant is chosen to
be A =6~@ . When a single bubble materializes, the
space-time inside must be flat because of the spherical
symmetry, while the outside remains de Sitter. The
whole space-time is therefore of O(3, 1) symmetry. For
two bubbles the existence of the preferred axis (say x axis)
through their centers reduces the O(3, 1) symmetry to

and

+e 2p(s, x)(d82+ Slrlh28 dy2)

d12=e2a'(s, x((dS +dX2)

+e2i"(s x'( —d8 +cosh 8dp ) .

(2.1)

(2.2)

For flat space-time one has a=a'=0, P=P'=Ins. To
derive the de Sitter space-time metric in this form we
proceed as follows. It is easiest to visualize the space-time
as a hyperboloid

2 3—v +m +x +y +z =a, a =—
A

in a flat five-dimensional space with metric

dI 2 dv 2 +d~ 2 +dx 2 +dy
2 +dz 2

If
~

v
~

&
~

rv +x
~

'~ one can introduce coordinates
(s,8, q&, (() ) on the hyperboloid, defined by

v =a tans coshO,

m =a tarn sinhO cosy,

x =a tans sinhO sing,

y =a secs cosP,

z =a secs sin(I) .

The metric then takes the form

dl =a sec s( —ds +dP )

+a tan s(d8 +sinh 8d(p ), (2.3)

where 0&0&+ oo, 0&p&2m. , —~/2&s&m/2,
0&4&2~ If II'I &1~2+x2I'" the»n a»mi»r way
the metric can be expressed as

dl =a sech s(ds +d()) )

+a tanh s( —d8 +cosh 8dy ), (2.4)

where 0 & ()( & 2', 0 & y & 2', 0 & 8 & + oo, —Oo & s & + oo .
In the following we concentrate our attention on the re-

gion described by the metric (2.1). If we take 8 to be pure-
ly imaginary, and exchange the time and space coordinates
s,x,

0~i 0',
x~t,
s —+r, (2.5)

the metric (2.1) becomes

dl2=e (dr dt ) —e ~(d8 +sin —8'dP ), (2.6)

which possesses spherical symmetry. Clearly Einstein's
field equations for the metric (2.1), which has O(2, 1) sym-
metry, can be derived from those for the O(3) metric (2.6).

O(2, 1), i.e., hyperbolic symmetry.
In general, this O(2, 1)-symmetric space-time can be

covered by four incomplete coordinate patches, using the
two metric forms

dl2 e2a(sx((ds2 dX2)
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In fact, under the substitution (2.5) we have the following
correspondence:

O(2, 1)~O(3),
Goo

Goo

G22 ~ G22

633~—G33,

Goi Goi

(2.7)

Following this procedure, we find that the metric coeffi-
cients a and p in (2.1) must satisfy the following.

(i) Time development equations:

—G I ———e ~ 2e— ap+2e ap+ 3e 2 p 2

or

S

m

s

dl = 1 — +-'As2m

S
ds

1 — + —,As dx
2m
s

+s 2(d 8 + sinh 8 dP )

ds

(2.13)

e 2aa~p—i e
—2apt2

= —Scapi,
G
2
—=e (a —a"+p' —p )+e

=4~( l2+P i+P—2+P3)

(2.8)

(2.9)

+s ( —dg +cosh gdg ),
except for two special cases

dl =
i
A '

~
( —dB +cosh gdg

+dg' +sinh 8'dg' ) (A &0)

(2.14)

(2.15)

(ii) Constraint equations:

Go e
—2P+2e —2ap" 2e

—2aa'p'+ 3e —2ap'2

~ 2—2e Pa —e P

(2.10)

Go ——2e (P'+ PP' aP' —a'P) =—8m'q . (2.1 1)

Here p is the energy density, p =(p„p2,p3) is the pressure,
q is the energy flux, an overdot denotes 8/Bs, and a prime
denotes 8/Bx.

Formulas (2.5) and (2.7) imply that all arguments appli-
cable to the O(3) space-time will have a corresponding
analog in the O(2, 1) space-time, and the vice versa.

A form of Birkhoff's theorem states that the only
spherically symmetric vacuum space-time with cosmologi-
cal constant A is Schwarzschild —de Sitter space

Ar2 dt2

+ 1 — ——Ar
2m I 2

r

+r (18 +sin Bdg )

or S X (2 —d ) de Sitter space

dl =A '(dg cosh Bdg—
+dg' +sin 8'dP' ) (A&0) .

(2.12a)

(2.12b)

Thus the following generalized Birkhoff's theorem is self-
evident: with a cosmological constant A, any C solution
of Einstein s equations in vacuum, which is of O(2, 1) sym-
metry in an open set, is locally isometric to part of the
pseudo-Schwarzschild —de Sitter spaces

III. SPACE-TIME METRIC

We shall now use the results of the previous section to
investigate gravitational effects in two-bubble collisions.
In the absence of gravity, Hawking et al. use a hyperbolic
coordinate system to describe the space-time

dl = —ds +dx +s (dg +sinh gdg ), (3.1)

where the x axis passes through the center of each bubble,
and the origin of the coordinate is at the midpoint of the x
axis. Because of the O(2, 1) hyperbolic symmetry, the

and S X(2—d) de Sitter space (2.12b). Neither of these
cases are relevant to the rest of this paper.

As in the case of spherical symmetry, the hyperbolically
symmetric space-time must be Petrov type D. Solutions
(2.13) and (2.14) are not new. They were given by
Kinnersley' and Plebanski and Demianski. " As in the
O(3) case there is no gravitational radiation in these
space-times.

In the Schwarzschild solution (2.12), the Arnowitt,
Deser, and Misner (ADM) mass' measured at spatial in-
finity, and the Bondi mass' measured at null infinity, are
equal and take the value m. The collapsing of a thin
spherical shell of matter with energy Am per solid angle
singdgdg measured at infinity will cause the parameter
m to increase by 4mhm. ' In the pseudo-Schwarzschild
case, null infinity is a noncompact two-hyperboloid in-
stead of a compact two-sphere as in the O(3) case. Under
the correspondence (2.5) and (2.7), the pressure p~ of a
matter shell per unit pseudosolid angle sinhgdgdg mea-
sured at infinity s=ao will contribute to the pseudo-
Schwarzschild parameter m in a similar manner.

The Penrose diagrams of Schwarzschild space and
pseudo-Schwarzschild space are drawn in Fig. 2, for com-
parison. One can see that for O(2, 1)-symmetry case, the
Killing horizon s =2m is no longer an event horizon, and
the curvature singularity s =0 becomes naked.
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I'=0 (singularity) (x b—) s—=R (b =const) (3.4)

r= Q (singularity)

const

onst

as expected, which is exactly the same form as that found
by Coleman. The two bubbles will collide at
s=s~ =(b—R )'~, x=0 with a Lorentz factor y=b/R,
while the wall thickness is reduced from @p /2o. to
Np /2oy because of Lorentzian contraction.

In the presence of gravity, the O(3) Birkhoff's theorem
implies that before the collision the space-time inside the
bubble must be flat, while the outside remains de Sitter
space with A = 8me . The O(3, 1) symmetry implies that,
viewed from the real-vacuum region inside the bubble, the
wall must move along a hyperbola. Its motion will there-
fore be described by the same curve (3.4) as in the absence
of gravity. The only effect of gravity is to reduce the ra-
dius of the inital bubble to

-S=2m

S=O
singularity S=O

singularity

FIG. 2. (a) The Penrose diagram of Schwarzschild space.
Each point represents a two-sphere except for r=0. (b) The
Penrose diagram of pseudo-Schwarzschild space. Each point
represents a two-hyperboloid except for s =0.

physics is independent of 0 and P, while by the reflection
symmetry, only the region x &0 needs to be considered.
In the thin-wall approximation the energy-momentum ten-
sor takes the form

T' = —e g' 8(x(s) —x)
g~ —VoV )~l+(V~) j ' 5(x(s)—x),

(3.2)

where x(s) denotes the position of the wall, o = —,g @0 is
the surface energy density of the wall, which may be de-
rived using Coleman's minimum-action principle, ' and
V' is the unit vector normal to the wall. The first term
represents the energy-momentum density of the false vac-
uum. Integrating the energy conservation equation, one
finds

R=
2m' +A/24m

(3.5)

but we defer the derivation of this formula from general
relativity and all details of the motion of the modulus
walls after the collision until the next section.

If the phase difference a is zero, then by local conserva-
tion of energy, as viewed from the false-vacuum region,
two modulus walls are formed by the collision and initial-
ly move outwards with the same speed as the incoming
walls. The modulus walls will be brought back to collide
again at s =s2, at s =s3, and so on (Fig. 3). They will col-
lide with shorter and shorter periods, because of the ex-
pansion in the s direction.

The region outside the modulus walls remains real vac-
uum, and because of the O(2, 1). symmetry it can be
described by a pseudo-Schwarzschild metric with an ap-
propriate parameter m. Because the real-vacuum region is
flat before the collision, it must, for consistency, also be
flat after the collision, and therefore m must vanish.

For the a&0 case, two additional phase waves are creat-
ed which propagate outward at the speed of light and car-
ry away energy from the collision region (Fig. 4). If
+&a, =I, the creation of the phase waves reduces the
velocity of the outgoing modulus walls, while for a & a,
the phase waves will take up all the energy of the incom-
ing bubble walls and therefore no modulus wall will be
created. For the a &a, case, the energy per unit area in
the phase wave is E

~
=—2

~
b,N

~
/d, where b,4= —,a@0,

and the thickness of the phase wave is almost the same as

x '=+
( 2+ 2) 1/2

where

a = 3, , ( )'—= ( ) (so ——const) .
(3cr/e )s, i)

s —sp Bs

(3.3)

BROKEN
PHA$E

Equation (3.3) determines the motion of the bubble wall.
If we set sp ——0, then a =R =3o./e is the size of the initial
bubble, and Eq. (3.3) integrates to

-b

FICx. 3. The motion of the modulus walls in the absence of
gravity (a =0).
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„S from a simple calculation in special relativity. The energy
of the phase wave measured in the de Sitter region can be
obtained by a Lorentz transformation using y„,

4ms, 'E, =m[y„+(y, ' —1)' ] . (3.10)

By Eq. (3.6), m can be written as

FIG. 4. The collision of two bubbles with a&0 in the absence

of gravity.

477$) cx opd

y„+(y 2 —1)'/2
m=

4fPs i 0'fd

+(y 2 1)1/2

(a &a, ),

(a)a, ) .
(3.11)

After a tedious calculation one can prove that for both
cases

If a & a„ the energy of phase wave is equal to that of the
incoming walls. One has therefore

r

a o.yd (cx &a, ),
(3.6)

oyd (a&a, ) .

The real-vacuum region to the future of the phase
waves must be pseudo-Schwarzschild and its m parameter
represents the pressure p~ of the phase wave within 4m

pseudosolid angle at the null infinity (in our case, the same
as the energy). In order to determine the parameter m,
one can approximate, at first stage, the phase wave as a
dust shell which propagates outwards at very high speed.
When the speed tends to that of light, the energy-
momentum tensor of the dust shell will take the form of
that for the phase wave, so that as far as their graviational
effects are concerned, this replacement of the phase wave

by a dust shell of light speed is reasonable. From Israel's
result ' on collapsing spherical dust shell and using the
substitution (2.5), we have

47Ts cTd =const (3.7)

along the propagation of the shell, where o.d is the total
mass energy per unit proper surface area, as measured by a
"comoving observer. " The energy of the dust shell within
4m pseudosolid angle can be expressed as 4~s o-d V', where
V' is the 8/Bs component of the four-velocity of the dust.
Letting the velocity of the dust shell tend to that of light
while keeping the energy finite at null infinity, we have

m = lim (4ms'o. ,V') . (3.8)

What remains to be done is to connect the energy of the
phase wave measured in the flat-space region with that
measured in the static frame of the de Sitter region. The
relative I.orentz factor of the flat region to the de Sitter
region 1s

(3.9)

that of the incoming walls d =4O /2cry. In the presence
of gravity, one must take the Lorentz factor with respect
to the de Sitter region, and y is reduced to

' —1/2

(R 2+s 2)1/2 1 + s A
3

si &2m . (3.12)

m 2
47TS ] 0pd o

(1—2m/s) )
(3.13)

One can check that for a )a„ formulas (3.11) and (3.13)
are consistent. All the results can be obtained by using
junction conditions along the null hypersurface of the
phase wave. "

If s~ &&2m, one can simply ignore the difference of the
energy of the phase wave between the collision region and
nuH infinity, and take

4ms i o y~a (a &a, ),
4+s) o.yd (a&a, ) . (3.14)

In the preceding paragraphs we have examined the
pseudo-Schwarzschild region which occurs in the case
a&0, and have established the value of the parameter m

[Eq. (3.11)]. For the region of false vacuum R&, R2,
R3,. . ., which exists after the collision if 0 &a &a„ it was
shown in Sec. II that the appropriate metrics must be
pseudo-Schwarzschild —de Sitter, parametrized by m i,
m2, m3, . . . , The method of determining parameters mi,
m 2 g m 3,. . . 1s discussed 1n Sec. IV.

In the absence of gravity, the initial velocity of the out-
going modulus walls is reduced to the phase waves

Rx'= 1—
b2( 1 a2)2

()'= ().8
Bs

(3.15)

In the presence of gravity, local conservation of energy
causes the velocity of the modulus wall to suffer a jump in
the collision region:

If a & a„no modulus wall will appear, so at s =s&, the
direction 8/Bs in the pseudo-Schwarzschild region is iden-

tified with that in the de Sitter region. One can use the
following simpler method to determine the parameter m.
The energy measured in the static frame of the pseudo-
Schwarzschild region is

m

(1—2m /s, )'/

where (1 —2m/s~)'/2 can be explained as the "red-shift"
factor, and
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" —1/2
s1 A

+ ds

dl
1/2

2m& s1 A ds1—
s 1 3 dl

=a yg, (3.16)

The metric in the pseudo-Schwarzschild region V out-
side the modulus wall X and the pseudo-
Schwarzschild —de Sitter region V inside can be
represented by

dl =f+ 'dx +s (d8 +sinh Ody ) f+—ds

where o is assumed to be continuous that + ( —) labels
terms after (before) the collision.

The significance of the restriction s»2m becomes ap-
parent when one tries to draw the Penrose diagram (5b)
for the case s& &2m. The space-time would then include
the part of the singularity shown in Fig. 2(b). However,
owing to the special symmetry of space-time, the surface
of the group transitivity is noncompact, so that the con-
centration of matter does not suffice to cause any gravita-
tional collapse to a singularity no matter how severely the
two bubbles collide [see the Penrose diagrams 5(a) and
5(b)].

IV. MOTION OF THE MODULUS %'ALLS

In this section we shall use the thin-wall approximation
to investigate the motion of the modulus walls by adapting
Israel's method dealing with a collapsing spherical shell of
dust."

FINITY

where

2mf =1—

and

s A +2m

3 $

Since the intrinsic geometry of the modulus wall is the
same viewed from either V+ or V, we must have

s+ ——s at X, but in general x+&x . The unit normal n

of the wall (directed from V to V+) is everywhere space-
like. The surface energy-momentum density of X takes
the form

S' = —og' (a,b =1,2, 3) . (4.2)

Before the bubble walls collide ci is constant, owing to the
O(3, 1) symmetry; we can prove below that it remains con-
stant even after collision. Because it has a nonzero surface
energy density, the hypersurface X is singular. Therefore,
the extrinsic curvature of X on either side of the wall will
not be equal. They are defined by K,~ ———n — (Be,/Bgs),
where e, are the orthonormal tangent vectors to X, and g
are the intrinsic coordinates of X.

Einstein's equations take the form in V+ and V
respectively, '

G"„=——,
'

( R+KabK+ —K+ )= .
0, (4 3)

G";=+(K~
~

KT;)=0, —
G' = G' (K'+ —5' K+) —K+—K+J J J J —,n j

(4 4)

pseudo-Sc hwarzsc hild - de S it ter

INFINITY

—5' A
(4.5)0,

where R, G'z, and the derivative symbol
~

refer to the
three-surface X. To discover the effect of the surface
energy-momentum density of X on the space-time
geometry, one should perform a "pill-box integration" of
Einstein's field equations across X:

+X
lim f G Itdn =8mS p. (4.6)

Define

+
Vab =Kab Kab ~

+
Kab = TKab+ 2 Kab

(4.7)

(4.8)

b
de Sitter

Pseuda - Schwarzschild —de Sitter

FIG. 5. {a}The Penrose diagram for the collision of two bub-

bles with a=0. (b) The Penrose diagram for the collision of two

bubbles with a&0.

The "pill-box integration" of (4.5) and (4.4) implies

7 b gab) = 8WSab

and

(y —5 y)~

(4.9)

(4.10)
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From Eqs. (4.9) and (4.10) one obtains

s
i

=0=(—o'g )
i

=—o'

i.e., cr indeed remains constant as expected. By combining
Eqs. (4.3) and (4.9), we find

f+ .. 1 df+
Y+ 2 ds

f —.. 1 df
2 ds

= —2u'u "K,b, (4.19)

b AE,bg' =
8m'

(4.1 1)
f+ .. 1 df~
Y+ 2 ds

f ..-1 df+ $ ——
2 ds

Let the motion of the modulus wall be parametrized by

x~ =x~(r), s =s(r),
where v. is the proper time measured along 0=const,
y=const. Its tangent vector is

4n—o . (4.20)

After a short calculation, one finds the components of
the extrinsic curvature of X to be

use =s(s' f~ '—}'~2,-
u+ —— =(Y+,0,0,s), ( )'= ( ) .

dV O'T

Using n —u ~ ——0 and u —u ~ ———1, one finds

n =( —s,0,0—, Y~ }

(4.12)

(4.13)

1/2

K~~ ——ssinh 8 s —f~' (4.21)

and Substituting Eqs. (4.11) and (4.21) into Eq. (4.19), we find

Y =+(f 's f+)'", — (4.14)

where the symbol + in front of the square root denotes the
velocity direction and it must change during the evolution
of the modulus wall. The sign convention used below is to
describe the wall motion before the collision. Differentiat-
ing u —+u ~ ———1, we have

f+ 1 df~s-
Y+ 2 ds

1/2
2 .2 1+—s f+

1 df
2 ds

1/2
1

T

+ $
2 2

s

+ 5ug 5x~
0=u - =f~ 'Y~ fls-

d +

where the 5 means covariant derivative. Therefore,

~ 5u~ 5 x+ 52s

(4.22)

One can easily check that in flat space-time the equation
of motion for the modulus wall (4.22) reduces to that of
Hawking et al. , derived solely from requiring energy con-
servation. One can verify that Eqs. (4.20) and (4.22) pos-
sess the following first integral:

where

52s .. 1 df+
dr + 2 ds

sg m+s—
3 2 '

ms-
s 2

(4.15)

(4.16)

—1 (fi ' f ') —sc (c—=2m.o),
4sc

or equivalently

Y+
(

2 f —1)I/2
+

—1
(f~ ' —f ')~sc (c=2mo) .

4sc

(4.23a)

(4.23b)

Let A' be an arbitrary three-vector in X:

A=A'e; .

Then one can easily verify that

~A i~ i. =A. e; —AI(;.n.;J i iJ

We can discuss the following cases.
(i} A&0, m~ ——0 (which describes the expansion of one

bubble before the collision):

(s —1)'i =—(R =const),
R

where R is the initial size of the bubble, one can show that(4.17)

Using Eq. (4.17) we find that the four-accelerations of the
modulus wall, as measured in V+ and V, are

R=
2m.cr ~A/24m

(4.25)

5u = —u'K, j—u Jn
d T +

Equations (4.15), (4.16), and (4.18) imply

(4.18)
which is the same result as Coleman derives from the
minimum-action principle.

(ii) A~O, m =0, m+&0 (which describes the motion
of the modulus wall with a =0 after the collision):
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+ (s —1) =2~rso +.2 1/2 1 sA ™+
Smo.s, 3 s

1/2
s2A 2m+

3
+ s —1—

(4.26a)

1= —27TSO +
Snos

s A

3

2m+
(4.26b)

After the first collision at s =s1, the region R1,R2, . . . of
false vacuum can be described by pseudo-
Schwarzschild —de Sitter metrics with suitable parameters
m1,m2, . . . . At s =s1,s2, . . . the fact that the velocity of
the outgoing modulus wall measured in the false-vacuum
regions with respect to the symmetry plane remains the
same as that of the incoming one, by requiring energy con-
servation in the local collision region, yields

X

FIG. 6. The observer inside the real-vacuum region sees the
modulus walls traveling outwards eventually with kinks due to a
series of collisions.

(f+2 1)1/2(f+2 1)i/2t- i+ (4.27)

s 2p 2mi.
1+ — ——=0,

3 $

for the same reason we gave at the end of the last section.
If viewed in the real vacuum, the modulus wall comes

to rest at one moment during a bounce, i.e., x =0, Eqs.
(4.14) and (4.26a) imply

s'W 2m (0
3 $

at this moment. When this wall comes to rest, viewed
from the false vacuum, i.e., x+ ——0, then it follows from
(4.14) and (4.26b) that s A/3 —2m;+/s&0. Since the
quantity on the left-hand side of the above inequality in-
creases monotonically with s during any interval between
collisions, this must occur at a time which is later than the
time at which the wall appears to be at rest viewed from
the true vacuum. Because of the expansion of the space-
time along the s direction and the conservation of energy,
the oscillation magnitude of the modulus walls decreases
and the wall velocity, viewed in the false-vacuum region,
will eventually vanish. The left-hand side of (4.26b) over

2
1/2

s A1+

M,+ is related to M~+ i through (4.26) and (4.27), and by
such an iteration procedure the motion of the modulus
walls and the metric of the whole manifold are deter-
mined.

It is not possible for any false-vacuum regions
81,R2,. . . to commence before their Killing horizon

' 1/2
2m+s A1+

3 $

must tend to 0 as s~ Oo. It follows that m+ cc O(s ) as
s~ao (it should be mentioned that Coleman's argument
in Ref. 4 is based on the condition implicitly: 48tr2o & A)
and the difference of the two terms of its right-hand side
is of lower order than O(s) then. Thus, for sufficiently
large s the right-hand side of (4.26a) will never vanish and
according to our sign convention the modulus wall must
travel outward from the real-vacuum region. Briefly,
viewed in the real vacuum, the modulus wall eventually
propagates outwards with kinks due to a series of col-
lisions (see Fig. 6).

(iii) A&0, m+&0, m &0 (which is the most general
case of collision with a&0): One can use similar methods
except that at the first collision the velocity of the
modulus walls suffers a jump due to the phase waves. The
argument of the last paragraph of case (ii) can still be ap-
plied to this general case.
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