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We show that Srnarr's calculation of the zero-frequency limit of the energy spectrum for the grav-

itational radiation produced during the scattering or collision of two particles is a linearized approxi-
mation valid only when the radiation is weak. In particular, it cannot be applied to the head-on col-

lision of two black holes, so Smarr s conclusions concerning the isotropy of the radiation emitted

during the high-speed, equal-mass, black-hole collision have no firm foundation.

I. INTRODUCTION

A paper by Smarr' appeared in the Physical Review
some years ago, discussing the zero-frequency-limit tech-
nique, which purports to be able to predict exactly the
zero-frequency limit (ZFL) of the gravitational radiation
spectrum produced by a scattering process for which the
asymptotic trajectories of the colliding bodies are known.
In other words, by following the algorithm in Ref. 1, one
is supposed to derive the zero-frequency limit of
dE/dcudQ, the energy radiated per unit frequency per
unit solid angle as gravitational waves. One can show that
the energy spectrum is flat as co~0 (Ref. 1) [i.e.,
(d/dco)dE/dco d 0

~ „o——0], so by crude extrapolation
from co=0 one obtains some idea of the angular distribu-
tion, and polarization, of the radiation at nonzero frequen-
cies. In addition, by introducing a cutoff frequency ~„
determined by the physical parameters of the problem, one
obtains an estimate for the total energy radiated during
the collision, namely,

dE
Etotal =~c

dco dQ o

which should certainly be of the correct order of magni-
tude, if the ZFL formula is correct.

In particular, Smarr applied the ZFL method to the ax-
isymmetric high-speed, equal-mass, black-hole collision
and found that apart from some detailed structure very
near the axis 8=0,sr, dE/dcodQ

~ „o is isotropic. He
conjectured that dE/dcodQ is also isotropic at nonzero
frequencies, and that therefore the isotropic part of the
news function calculated by O'Eath is in fact the full
news function. This would mean that in the high-speed
collision, gravitational waves are generated with an effi-
ciency of 25go, well below the upper bound of 50% placed
on the efficiency by the arguments of Penrose (which rest
on the assumption that cosmic censorship is valid).

We show here that the ZFL formula in Ref. 1 is in fact
a linearized approximation, valid only when the gravita-
tional radiation is weak, and which cannot predict the
strong-field radiation generated by fully nonlinear gravita-
tional interactions. Thus it cannot be applied to the ax-
isymmetric two-black-hole encounter, so Smarr's conjec-
ture concerning the isotropy of the radiation generated by
this collision has no firm foundation.

II. THE EQUAL-MASS, AXISYMMETRIC COLLISION

(2)

Here M(u, 8) is the mass aspect of the system, and
t)c(u, 8)/t)u is the news function. In the Bondi metric, M
appears in

2M (u, 8)
guu =1- +r

while

ggg=r 1+ + '''2c
r

gyp =r sin 0 1 — + ' ' '2c
r

(3)

(4)

M is thus a generalized mass suitable for nonstatic sys-
tems. The mass aspect of a particle of rest mass m, mov-
ing with speed v [and Lorentz factor y= (1—v 2)

=cosh'] in the 8= tr direction is (Ref. 4, Appendix 3)

M(8) =
(cosh', +cos8 sinhA, )

We shall now demonstrate explicitly that for the ax-
isymmetric collision of two bodies of equal mass coalesc-
ing to form one body at rest, the ZFL formula in Ref. 1 is
incorrect. We do this as follows. First, we show that a
knowledge of dE/dcodQ

~ „0 is sufficient to determine
exactly the mass of the body formed as the product of the
collision. Then we show that the explicit form (2.16) for
the ZFL predicts that the mass of the final Schwarzschild
field will be equal to the incident energy of the colliding
particles (we use dimensionless units, G=c= 1). Since
gravitational waves carry away energy, it is therefore
predicting that no gravitational waves will be produced by
the collision: that is to say, there will be no "news. " But
if there is no news, then dE/dcodQ

~ o must vanish.
This is a contradiction.

Since this system is axisymmetric and reflection-
symmetric, we may use the results of Bondi et al. In par-
ticular, we shall make use of the supplementary condition
[Eq. (35) in Ref. 4]

2
Bc 1 8 Bc Bc+— +3 cot8 —2c
BQ 2 BQ Qg
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Reexpressing this in terms of U, we find

m(1 —v)~M=
(1+u cos8)3

(6)

simply the linear superposition of M~ and M2.

M(u = —oo, 8) =Mi+Mp . (8)

Let the rest mass of each body be m. Before the collision,
we have one particle moving with speed u in the O=O
direction, while the other moves with the same speed in
the O=m direction. The respective mass aspects of these
two particles are

On the axis O=O, m, the news function Bc/Bu and its first
angular derivative (i)/80)Bc/Bu must both vanish, to en-
sure the regularity of the metric. Thus on the axis, Eq. (2)
becomes

m(1 —u ) m(1
(1—u cos8) (1+u cos8)

(7)
BM 1 8 c} c 3c+3 cotO
au . ..=2 au qO

+' '
aO

In the distant past, the total mass aspect of the system is Integrating over retarded time, we find

=1 a'
[M(oo, 0)—M( —oo, 8)]

~ e 0
——— +3cot0 [c(oo,0)—c( —oo, 0)j

BO BO
(10)

The initial mass aspect is known: it is given by (8). After the collision, the nonspherical perturbations will die away and
the field will approach the Schwarzschild field asymptotically. This means that the final mass aspect of the system will
be isotropic, and equal in magnitude to the mass of the body formed by the collision: M(oo, 0) =mr, „,i, independent of
angle. Hence

1
mr„, i

——M( —oo, 8) ~e 0 + — &+3cot0 [c(oo,8)—c( —oo, 8)]2 ()O2 BO

Thus to calculate mr„,i, we need only know c(oo,8)—c(—oo,8). However [see Eq. (24) below]
1/2

dEc( oo, 8)—c( —co, 8)=2m.
dco dA

where the sign of the square root must be chosen ap-
propriately (in fact, in Ref. 1 hjk ~

is calculated direct-
ly, so there is no ambiguity). Therefore the ZFL alone is
sufficient to determine the final mass. From Eq. (2.19) in
Ref. 1 [or directly from (2.15)], we find

III. THE SUPERTRANSLATION FREEDOM

In Ref. 1, the ZFL formula is derived using standard
linearized theory (see Misner, Thorne, and Wheeler ).
Here we use instead the entirely analogous news-function
method of Bondi and Sachs. Using this approach, the
error in the derivation of the ZFL formula (A10) in Ref. 1

is more readily apparent.
The gravitational radiation in an asymptotically flat

space-time is described by a complex function (the so-
called "news function" ' )

sin Oc( oo, 8)—c( —oo, 8)= —2ymv z z(1—v cos 8)
(13) gc(u, 0,y) BA+(u, 0,$) . BA x(u, 0,$)+i

Bu Bu Bu
(17)

A brief calculation yields

Q2
+3cot8 [c(oo, 8)—c( —oo, 8)j2 O2 BO

where u is retarded time, and 0 and P are the polar and az-
imuthal angles, respectively. BA+/Bu and BA~/Bu are
the amplitudes of the two polarization modes of the radia-
tion field. The energy flux per steradian is

Also

(14)
(1—v )

dE 1 ac
'

du dQ 4' Bu

2
BA

au

M( —oo,0)=my(1 —v ) 3+(1—u) (1+v)

(15)

Thus the total energy radiated per steradian is
'2 2

dE 1 ~ BA c}A

a + du

Substituting (14) and (15) into (11), and simplifying, we
find that

m finaI (16)

Thus Smarr's formula for the ZFL predicts that the final
mass of the system will be equal to the initial energy of
the colliding bodies, which cannot be correct.

Define a+(co) and a~(m) by

aw
a (co)=(2m) ' e' "du,

Bu

ajaxax(oi)=(2m) e' "du .
Bu

Using Parseval's theorem, we find that

(20)
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d 0 2m. f [ I
cz+ (co)

I
+

I
ci &((co) I ]dao . (21)

Clearly co is to be identified with frequency, and so the en-

ergy radiated per unit frequency per steradian is

dE
dco dQ [ la+(~}I'+ lux(~} I'].2'

At zero frequency

~+(0)=(2ir) ' (A+ I
„„—A+

I
„„),

a„(0)=(2'} ' (Ax
I
„„—A&( I „„).

Thus the ZFL of dE/den d0 is

(23)

d dndc' dQ

I
c(+ ~,O, y) —c( —~,O, y}

I

'.
(24)

Equation (24) is entirely equivalent to Eqs. (A8) and (A9)
in Ref. 1, since

c'=c ——,
'

sinOb, [(sinO} 'ha], (28)

where E=B/r}8+ i(sinO) '8/BP. It is true that for each
particle there will exist a set of coordinates for which the
h&„ induced by that particle has the explicit form (26).
However, a priori there is no reason why these individual
coordinate systems should be in the same supertranslation
state. In general they will not, and there will exist no
coordinate system in which the h&„ induced by every parti-
cle has the explicit form (26}. When this happens, the for-
mula (A10) for the ZFL will be incorrect.

IV. THE LINEARIZED APPROXIMATION

It is significant that the ZFL formula (A10) predicts
that there will be no mass loss in this collision, rather than
some other result. It is exactly what one would obtain if
one assumed that the gravitational radiation was so weak
that all nonlinearities could be neglected. For computa-
tional simplicity, let us consider the example of the two
equal-mass black-hole collision. Let us assume, although
we know it to be false, that the radiation produced by the
collision is very weak (

I
Bc/r)u

I
«1), so that the non-

linear (Bc/Bu ) term in (2) can be neglected. Then

))hJ'ke+ &
~ x / hjke x2& 2r 2V 2r

(2S)
1 a a'c

+3 cotO —2c
Bc

Bu 2 Bu QO2

4PPZQPQ Vp v

—k u
(26)

where k=(
I

x —x ' I,x —x ') is the null vector joining x
and x'. From (26) one deduces that in the gravitational
scattering of X particles (incoming and outgoing particles
are counted separately), the change in the transverse-
traceless metric perturbations induced at x, between the
initial and final states, is

and the argument is certainly correct up to this point.
The crucial question now is whether or not, in some

scattering process, one can calculate the total change in
c(u, 8,$) [or equivalently hjk (t, r, O, P)] in going from the
infinite past to the infinite future, knowing only the
asymptotic four-momenta of the gravitating bodies. In
Ref. 1, it is assumed that the metric perturbation hz in-
duced at a space-time point x, by a particle of rest mass m
at x', moving with four-velocity u„, necessarily has the ex-
plicit form (A2), i.e.,

Integrating (29) over retarded time, we have

M(u, O)
I
"„=— +3 cotO —2 [e (u, O)

I
"„].

2 $82 BO

(30)
Under this assumption there is no loss of mass, since it is
the nonlinear term which carries away the energy. There-
fore the mass of the residual black hole formed by the col-
lision will be equal to the initial energy. Equation (30)
may be thought of as a second-order inhomogeneous dif-
ferential equation in c (u, O)

I

. The source term
M(u, O)

I
"„is known, since

~( O) my( 1 2)2
(1+U cosO) (1 —U cosO}

hke x
" —— lim

i x~i oo, VN

Pv +N
p (X)+

kN. N

(27)

M( oo, O) =2my .

The boundary conditions

c(u, O)
I

Bc(u, O) =0

(32)

(33)
where k =(

I
x —x~ I,x —x~), P is the asymptotic

four-momentum of the ¹hparticle, and gN
——+ 1 ( —1)

for incoming (outgoing) particles. The ZFL formula
(A10) in Ref. 1 follows directly from (27). However, we
know from the work of Bondi and Sachs that c(u, 8,$)
(and hence hJP) has no invariant significance, and in fact
can be changed by an arbitrary amount by making an ap-
propriate supertranslation. More explicitly, if we change
our origin of retarded time, letting u =u'+ a(8,$), then
c(u, 8,$) transforms as

—oo 8=0,m.

are sufficient to uniquely determine the solution. Smarr's
formula for c

I

" is given by (13). By substitution, one
may easily verify that the explicit form (13) for c

I „ is
the solution to the differential equation (30). We are led
to conjecture that Smarr's formula for c

I
is in each

case the solution to the linearized version of the supple-
mentary condition (2), or its nonaxisymmetric generaliza-
tion (we shall confirm this below). If there is strong-field
gravitational radiation present in the space-time
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(
~
Bc/Bu

~
=1), inclusion of the nonlinear

~

tie/flu
~

term
will clearly lead to a different c

~

. However, when the
radiation really is weak (

~

t)c/Bu
~

&&1), the quadratic
term will be very small, so (A10) will be very close to the
true ZFL. It seems that the presence of strong-field radia-
tion somehow induces a supertranslation between the ini-
tial and final states, as viewed from W+, spoiling the sim-
ple formula (A2). However, it is not possible to quantify
this statement. ,

It is well known that general relativity is equivalent to
the quantum theory of a massless spin-2 field in Min-
kowski space, if one sums over all tree graphs (Deser,
Deser and Boulware ). The ZFL formula in Ref. 1 was
originally derived from the quantum approach (see refer-
ences in Ref. 1). The argument is briefly as follows. To
find the total amplitude for the generation of low-
frequency gravitational radiation, one sums the amplitudes
for all Feynman diagrams representing emission of soft
gravitons by the collision. One finds that the only contri-
bution to the sum is from those diagrams in which the
soft gravitons are emitted from external particle lines.
This is why the total amplitude (2.1) in Ref. 1 depends
only on the asymptotic momenta of the colliding bodies.
However, (2.1) completely neglects the contribution to the
total amplitude from soft graviton emission by external
graviton lines. The effective coupling constant for the
emission of a very soft graviton from an external graviton
line with energy E is proportional to E (Weinberg ). If
there is a large quantity of gravitational radiation present,
such as in the two-black-hole collision, then a large pro-
portion of the outgoing momentum will be carried by
gravitons of nonzero energy E. Soft graviton emission
from these gravitons of nonzero energy will then make a
significant contribution to the ZFL amplitude. Thus one
cannot calculate the zero-frequency part of the graviton
energy spectrum without knowing the entire spectrum it-
self. This provides a nice parallel to the classical picture,
in which, because of the supertranslation freedom, one
needs to know the entire news function Bc/Bu before one
can calculate its zero-frequency part c

~

%'e see that in the quantum picture, we obtain the for-
mula (2.1) for the emission amplitude only if we neglect
all contributions from graviton-graviton interactions.
However, it is well known that if one ignores gravitational
self-interactions in the spin-2 quantum field theory, so
that in calculating amplitudes one includes only those
Feynman diagrams which have no graviton-graviton ver-
tices, then one obtains a theory in which particles interact
exactly as in linearized general relativity. This shows that
Smarr's formula for the ZFL, which follows directly from
the quantum amplitude (2.1), will in each case provide,
through Eq. (24), the solution to the linearized supplemen-
tary condition, confirming our conjecture. It also explains
why in the gravitational scattering of two bodies with a
large impact parameter, in which gravitational self-
interactions are unimportant, Smarr found such good
agreement between his ZFL calculation and the more ela-
borate investigations of previous authors.

V. CONCLUSIONS

Even when nonlinear effects are important, the ZFL
formula (A10} should still be able to give an order-of-
magnitude estimate of the total energy carried off by grav-
itational waves. Inclusion of the f co term in (30) will
of course change c ~, but one expects the exact c

~

"
to be of the same order of magnitude as the linearized
c

~

. Thus the estimate (1), using (A10}, should still be
reasonable. The angular distribution and polarization of
the true ZFL may of course be quite different from that
calculated in Ref. 1.
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