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Conformally flat Einstein-Yang-Mills-Higgs solutions with spherical symmetry
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We solve the Einstein-Yang-Mills-Higgs equations in a conformally flat metric with spherical
symmetry. Two solutions are obtained corresponding to magnetic monopoles in the Higgs vacuum
and outside of it.

I. INTRODUCTION 2

(2.5)

The problem of Yang-Mills-Higgs solutions in a curved
space-time remains of central interest for the understand-
ing of the solutions of a future quantum theory of gravita-
tion. The Higgs mechanism with its spontaneous symme-
try breaking is going to be explored as the mass source in
cosmological models. ' The coupling constant of Yang-
Mills theories was related to the cosmological constant
and remarks were Inade about the vanishing of the latter
by the use of the fields in a Higgs vacuum. ' We work
here in a conformally flat space-time with spherical sym-
metry. The first of the solutions which we found
represents a magnetic monopole in the Higgs vacuum,
analogously to the solution found by Kasuya" in a
Reissner-Nordstrom metric. The second one represents
also a magnetic monopole but outside of the Higgs vacu-
um. We observe that this last solution reduces to the first
one by a special choice of the vacuum expectation value of
the Higgs field. Further, this solution suggests that the
assertion that all finite-energy solutions in flat Minkowski
space-time of this problem are in the Higgs vacuum '
cannot be extended to the problem in a curved space-time.

II. THE FIELD EQUATIONS

We start from the action of a SO(3) Yang-Mills-Higgs
theory in a curved space-time,

g = f V —g d x — (R —2A ) —, F„'g,""—
,
' g""D„P'D P, —A, V—(P), (2.1)

where

Fp A„~~ —A~ +e—e—b,AI A', a =1,2, 3 (2.2)

D„p'=p'
~
„+ee'b, A q

p' (2.3)

are the Yang-Mills (YM) fields and the internal covariant
derivative, respectively. The last term in the integrand of
Eq. (2.1) is the Higgs potential

(2.4)

is the vacuum expectation value of the Higgs field, which
is associated with mass creation, according to the Higgs
symmetry-breaking mechanism.

We are looking for a spherically symmetric conformally
flat static solution. We take for the line element

ds =e '"'( dt +d—r +r dO +r~sin28dy~) .

The YM potentials and the fields can be written as

A,'=(Jjer)r,', A„'=0,

A g = [(K—1 ) Ie]» ~, A ~
= [( 1 —K ) /e] sinOr $,

F„', =(J/er)'r „', Fs, =(KJ/er) r g,

F~, =(KJ/er) sinOr ~,
Fs& ——[(K —1)je]sinOr „, F+„——(K'/e) sinOr e,
F„'g (K'/e)r ~,——

and the Higgs fields

P'=(Hjer) r'„,

(2.6)

(2.7)

(2.8)

where r„, rs, and r~ are the components of the unit radial
vector

r, =( sinOcosgr, sinO sing, cosO),

re (cosOcosy, co——sOsiny, —sinO),

r~=( —sing, cos@,0) .

(2.9)

5S =O~Rpv 2 g&vR +Agpv =kTpv,
6g„„

(2.10)

D„(& gF,"")+& gg~ee,—b, p D„p'=0,—
8 (2.1 1)

(2.12)

The ansatz above may be easily deduced by the methods
developed by Forgacs and Manton.

The Einstein, Yang-Mills, and Higgs equations are
given by

where where the energy-momentum tensor of (2.10) reads
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T„„=—F&,F'„+ „'g&—F'pF, ~ D—&P'D P, + , g&—„g ~D P'Dttctp, +g&„A,V(P) .

tz—2' + 1 zcTI
2 +2'

~
+

r

Using Eqs. (2.6) to (2.8), we can write the nonvanishing components of the field equations (2.10), (2.11), and (2.12):
T

+2 2
(t t)~2o" +—o '+cr' —e A= ——e — +2e + , e —L —kate V(P),4

2

(rr)~ ——o'' —3o ' +e A= —e +kAe V(P),r r

(2.13)

(2.14)

(2.15)

2 2 +2 $
2

(gg)~ —2r o" 2rcr—' rcr—' +r e A= —e
k 2~K J 2cr I2 2o—(—e K —e
gz r 2 r

2 2

+2r e
2

+kke' r'V(P), (2.16)

K J—2 =0,
I IJr

r r

KJ K(1—K )+r2 r2
EH

r 2

(2.17)

(2.18)

e rZ 2 H
r

E H e4X—2 — e — (H' Cr H)=—0er (2.19)

where L stands for

—4' K' (K' —1)'
2 +2 +

r r r4
—zcT +202

+2 (2.20)

and

2
Cz 2P (2.21)

The primes represent differentiation with respect to r. Let us observe that Eqs. (2.14)—(2.16) and (2.18) are not all in-
dependent. We have

( t t ) + ( rr )~2o"—2o ' =——2e
k 2~@ J

2 r4

I2K
2

(2.22)

(88) „,2 2cr '

(rr ) ~2cr" —2cr ' ——
r r

I 2J
e

r

K'—e
r 2

K2g2 (K2 1 )2 H2K2—2' + —2CT

4 4 r4

(t t)+ (88)
2

—2(T—e

I 2

r4 r4 r r 4

(2.23)

(2.24)

Using Eq. (2.18) in (2.24) and subtracting Eq. (2.23) from
(2.22) we get identical results. So we have to solve only
Eqs. (2.17)—(2.19), (2.22), and (2.24).

where a and b are integration constants. Equation (2.24)
turns into

III. THE TWO SOLUTIONS
k (1+a )

e' r4 (3.2)

J(r)=a+br, (3.1)

A. A magnetic monopole in the Higgs vacuum

Owing to the complexity of the equations above, we try
to get nontrivial solutions by simplifying them. Examin-
ing the ansatz (2.7), we see that a nontrivial choice will be
K =0. Equation (2.17) gives then, after integration,

which after integration gives

(1+a')
r 2 (3.3)

where P is an integration constant and y =k/(2e ). Using
Eqs. (3.2) and (3.3), we can write for Eq. (2.22)
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23y' 1 H2+ 22 =y
r p+ y/r r (p+ y /r')'

(3.4)

H =Dr, (3.5)

where D is a new integration constant.
The only equation which remains to be solved is (2.19).

After substituting Eqs. (3.3) and (3.5), it turns into

In order to have a Bertotti-Robinson —type solution
we take p=O in Eq. (3.4). For p=O, the left-hand side of
Eq. (3.4) vanishes and we have

fl, =4'+i . —e—.b.4'DI O'D.0' (3.14)

where P' are the unit Higgs vectors. Now calculating the
fields given by Eq. (3.14) in the asymptotic orthonormal
rest frame, ' we have for the surviving component

(3.15)

We observe that we have only a constant magnetic field of
a magnetic monopole.

B. A magnetic monopole outside
of the Higgs vacuum

(D —C D)=0.'y'
E' r

A nontrivial solution will be given by

(3.6) Another nontrivial choice to be made in order to simpli-
fy the field equations will be J=0 arid K=A where 3 is a
constant. Then Eq. (2.18) gives

V(P) = —,
' (P'(I), —a ) ——,'a (3.8)

(3.7)

It can be seen that this solution corresponds to the
minimum of the Higgs potential, Eq. (2.4), which can be
written as (e )' k (1 g 2)2 g 2H2

r4 r4

e H =1—A

Equation (2.24) turns into

(3.16)

(3.17)

We have for solution I, by using Eq. (2.21),

2

(P)=—,—a ——,a = ——,a(I) I C 2 ~ 4 ~ 4
4 2 4 4

(3.9) (3.18)

Substituting Eq. (3.16) into (3.17), we get after integration

(1—A )e =p+y

By a direct calculation, we obtain

(3.10)DpP'=0

for this solution, which means, together with Eq. (3.9),
that the field configurations are in the Higgs vacuum, be-
cause we can define as the Higgs potential the first term
of Eq. (3.8). In this case, the energy-momentum tensor
will become traceless and the cosmological constant will

be zero. In the general case, we consider Eq. (3.8) as the
definition of the Higgs potential. By returning to the sys-
tem of Eqs. (2.14) to (2.19) after the substitution of the
solution found above, we have that Eqs. (2.14) and (2.15)
become identical, or

Equation (2.19) is then satisfied if y is given by

(3.19)

A (2e —A)+A,

(1—A )Aa e
(3.20)

Comparing Eq. (3.20) with y=k/(2e ), we can find for
the constant 3,

where p and y have the same meaning as in Eq. (3.3).
Equation (3.18), with p=O, and the function H(r) calcu-
lated from Eq. (3.16) satisfies identically Eq. (2.22). We
have

1+ A=1+a — ak , Xk2 4

2E 8E

Equation (2.16) turns into

—1+ A= —(I+a ) — ak 2 A,k 4

2E' 8E

(3.11)

(3.12)

(3.21)

We observe that this solution does not correspond to the
minimum of the Higgs potential. We have, by using Eq.
(3.8),

e
k 1 H =+Ear, E=0,

2E' r

J=br, A= —
4 kXa

(3.13)

The electric and magnetic fields are characterized locally
and gauge invariantly by the 't Hooft tensor, "or

These last equations are for determining a and A as func-
tions of the known parameters k, E, A., and a. We can
write then the solution

1 (1—A )Aa
4 A (2e —A, )+A,

(3.22)

Calculating the internal covariant derivatives, we have
that the field configurations related to this last solution
are not in the Higgs vacuum for 3&0, since Eq. (3.10) is
not satisfied in this case.

We can go back to Eqs. (2.14) to (2.19) in order to deter-
mine the cosmological constant as a function of known
paraineters. Equations (2.14) and (2.15), after substitution
of the last solution, become identical, and we have
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1+ 2(1—A )A=1+A + 2(1—A ) ——a
2e2 2' k

Equation (2.16) is now

(3.23)

E(I)
e 2e ro

1 —A "+ (1—A 2)2(1 —a2k )2 I 262

(4.5)

—1+ (1—A2)A= —1+A2+ (1—A2) ——a2

(3.24)

k(1 A2)
(3.26)

Adding up these last equations, we can determine the
cosmological constant A. Our solution has the final form

1/2
k (1—A) 2

e H=+e — r,
2E.2 &2

(3.25)
E=3, J=O, A= —

2 Aa

where A is given by Eq. (3.22).
Calculating the electric and magnetic fields in the

asymptotic orthonormal rest frame' by using the 't Hooft
tensor (3.14), we get for the surviving component

A, & 26 (4.7)

(4.6)

If we choose a particular value of the vacuum expecta-
tion value (VV) of the Higgs field, namely a =2/k, we
put the last solution in the Higgs vacuum by defining the
Higgs potential as the first term in Eq. (3.8), and, as we
saw above, we arrive at the first solution. Solution I
seems to be a particular one compared to solution II. Ac-
cording to Eq. (3.21), to each value of the VV of the Higgs
field, there is associated with it a value of A, which corre-
sponds to a solution of class II. Let us observe that we
have introduced spherical shells of radius ro and Ro in
which we consider the magnetic charges to be uniformly
distributed. These cut-off radii are considered to be of the
order of the Planck length. '

Owing to the criterion of positive definiteness of the en-

ergy density (T', )0), we have a bound on the coupling
constant of the Higgs field,

IV. DISCUSSION AND CONCLUSIONS

First of all, we observe that the two solutions found
above are identical for A =0 (a =2/k), since the com-
ponents of the vector potential may be gauge related. We
have

0=3, =A, —D,a(II) a(I) (I) a (4.1)

b~, b b,r„—&p ~, +me'&, r—,p'=—0, (4.2)

which may be satisfied by

(4.3)

The field energy is given by

where p' means the parameters of the gauge transforma-
tion. Substituting here the solutions found in Sec. III, we
get

The only remaining components of the Riemann tensor,
calculated in the orthonormal rest frame, are

(II) (II) 26'2
R- - =R-

k(1 —A )
(4.8)

We get the components for the first solution by setting
simply A =0 in Eq. (4.8), as was explained above. Equa-
tions (3.26) and (4.8) characterize the magnetic-monopole
field configurations.

As a final remark, we want to observe that we got a
finite-energy solution for A&0, outside of the Higgs vacu-
um. Hence, the solution II does not allow the well-known
assertion ' in flat Minkowski space-time that all static
finite-energy classical solutions to spontaneously broken
gauge theories must be in the Higgs vacuum to be extend-
ed to a curved space-time.

The search for finite-energy solutions outside of the
Higgs vacuum with other symmetries is in progress.
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