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Anisotropic Bianchi types VIII and IX locally rotationally symmetric cosmologies
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We present a class of exact cosmological solutions of Einstein-Maxwell equations, which
are anisotropic and spatially homogeneous of Bianchi types VIII and IX, and class IIIb in

the Stewart-Ellis classification of locally rotationally symmetric models. If we take the elec-

tromagnetic field equal to zero, a class of Bianchi types VIII/IX spatially homogeneous an-

isotropic cosmological solutions with perfect fluid is obtained.

I. INTRODUCTION

The present importance of spatially homogeneous
anisotropic cosmological models is now related to
the discovery of the anisotropy in the 3-K back-
ground radiation, which can be an indication that
these models are a more realistic description of past
eras in the history of the actual Universe. From the
theoretical point of view, anisotropic models have a
greater generality than isotropic solutions of the
Einstein equations for the cosmological problem.

We present here a class of cosmological solutions
of the Einstein equations with perfect fluid, which
are spatially homogeneous and anisotropic, and be-
long to the types VIII and IX in the Bianchi classifi-
cation. These are the first known anisotropic Bian-
chi types VIII/IX cosmological solutions with per-
fect fluid. Some preliminary results have been com-
municated in Ref. l. Electromagnetic fields (solu-
tions of Maxwell's equations in the cosmological
background) can also contribute to the curvature of
the models, and we examine their effect on the solu-
tions. Other anisotropic spatially homogeneous
models of Bianchi VIII/IX types have been obtained
later, with perfect fluid and electromagnetic fields
also. Collins et al. presented some Bianchi type
VIII models —solutions of the Einstein equations
without the cosmological constant term —whose
matter content is a perfect fluid but without elec-
tromagnetic field. From their solutions only one is
guaranteed to satisfy reasonable energy conditions,
namely, the mass-energy density p is positive, the
pressure p is always negative but

~ p ~
(p. Lorenz

derived cosmological solutions of Bianchi types VIII
and IX, with source-free electromagnetic fields and

a perfect fluid whose equation of state is p =p. In
Sec. II we describe the geometry of the models; we
use a two-parameter line element which describes
five different classes of geometries, for different
values of the parameters. Curvatures are calculated
and a detailed examination of the scalar curvature of
homogeneity sections t =const is done. In Sec. III,
we describe the matter content of the model by the
energy-momentum tensor of the perfect fluid;
Maxwell's equations are solved for a special class of
source-free electromagnetic fields and the corre-
sponding energy-momentum tensor is constructed.
Einstein's equations are calculated for the given
geometry with the energy-momentum tensor of per-
fect fluid plus electromagnetic fields. Under certain
assumptions the problem is reduced to solving one
second-order differential equation for one metric
function B(t). The remaining sections are devoted
to describing the explicit solutions for all cases, the
properties of matter-energy density p and pressure p,
and the behavior of the kinematic quantities associ-
ated with the four-velocity lines of the fluid.

II. THE GEOMETRY OF THE MODELS

Taking (X,g, p) as local coordinates on the homo-
geneity sections t =const, we choose a tetrad field
e ' ' (x ) such that the line element can be expressed
RS

dS ='rjg2i& g

(gO)2 (gl)2 (g2)2 (g3)2

where the g"=e' 'dx are given by
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8'=dt,
O'=A (t)[dX+4m (8)dye],

Oz=B(r)K(8)dO,

8 =B(t)K(8)sinOdy .

The functions m (8) and K(8) satisfy

(2.2)

geneous Bianchi type VIII models. For A, = —1, we
take K(8)=1 in (2.4) and we have from (2.3)

—A, icosO

2

We can express the line element as

4m dm

K sinO dO

1 dK
K dO

d K
dO

(2.3)

+cotO —K =AK, (2.4)
dK
dO

where A, ~ and A, are constants, A, being proportional
to the curvature of the two-dimensional surface
with line element

7?1
2

1 +cosO
cos

up to an additive constant. Defining the coordinate
8= —ln(cosO), 0&8& ac, we can express the line
element of the manifold as

ds =dt A(t)(dX+ 2k—rcoshO dip')

—B2(t)(d8 +sinh Ody' ), (2.&)

which has the standard form for spatially homo-

dX =K (8)(dO +sin Odp ) .

We remark that for A&B there is a preferred local
spatial direction determined by the one-form O'. We
have models of Bianchi II, VIII, or IX types ac-
cording to A, =0, 1, —1. For A,&0, A,

~
——0, spatially

homogeneous models of the Kantowski-Sachs
type ' are obtained. The case A, =O, A, ~&0 without
electromagnetic fields was examined by Collins and
A, =O, A, »0 with electromagnetic fields was dis-
cussed by one of us. All cases covered by the line
element are summarized in Table I.

In this paper we shall treat cases A, =+1 only.
For A, = 1 we take for (2.4) the solution K(8)=tan8
and (2.3) can be integrated to

ds =dt A(t)—(dX —2A, icosOdqp)

—B (t)(dO +sin Ody ) (2.6)

which has a standard form for Bianchi type IX spa-
tially homogeneous models.

Besides the respective Bianchi type VIII/IX
groups, the line elements (2.5) and (2.6) admit one
additional isometry generated by the Killing vector
c)/BX. The solutions thus admit a G& acting transi-
tively on the t =const sections, and are locally rota-
tionally symmetric models belonging to class IIIb in
the Stewart and Ellis classification scheme. '

The components of the Ricci tensor for the
geometry (2.1) are given in the Appendix. We now
discuss some interesting features of the models, con-
nected to the sign of the scalar curvature' ' R of the
three-dimensional hypersurfaces of homogeneity
r =const. We obtain

A

g2 B
(2.7)

where the scale functions A (t) and B(t) are calculat-
ed at t =const. For Bianchi types II/VIII (A, =0, 1,
A, ~&0) and for Bianchi type I (A, =O, A,

&
——0) cases,

we have ' 'R &0 and ' 'R =0, respectively, and the
homogeneity sections are open. For the Bianchi
type IX case (I,= —1, X~&0) we have ' 'R &0 if
B &A, A ''R=O if B =A)A and ''R&0 if
B &A, ~

A —the sign of the intrinsic curvature '3'R

changes along the evolution of the model. In case of
isotropic expansion (A =B) the sign of ' 'R can be
positive, zero, or negative according to A,» 1,
A, &2 ——1, or A. &z&1. However, the Einstein equations
for isotropic models (A =B) with perfect fluid re-
quire that A,

&

———,, and ' 'R &0 always" —in which
case we have the closed Robertson-Walker-

TABLE I. Cases covered by the line elements (2.1)—(2.4).

Bianchi
type

I

Bianchi
type
II

Bianchi
type
VIII

Bianchi
type
IX

Kantowski-
Sachs

1

+0
~0
0
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Friedmann model. For the anisotropic Bianchi type
IX class for solutions presented here, ' 'R changes
sign due to the anisotropy in the expansion, but the
homogeneity sections t =const are always compact.
For the anisotropic Bianchi type VIII class of solu-
tions ' 'R &0 always and the homogeneity sections
are open.

The relevant fact here is that the sign of ' 'R is
not in general connected to the topological proper-
ties (closed, open' ) of the homogeneity sections; also
the knowledge of ' 'R ~ 0 at a given time t does not
determine the future sign of ' 'R in the model, con-
trary to the case of Robertson-Walker-Friedmann
models. ' Detailed observational consequences of
this fact will be examined in a future publication.

III. THE MATTER CONTENT
OF THE MODELS AND THE FIELD

EQUATIONS

The matter content of the models is a perfect
fluid plus eventually source-free electromagnetic
fields. In the local Lorentz frame determined by
(2.2) we assume that an observer comoving with the
fluid has four-velocity

1E = (X(cos2A, (t+Xzsm2A, (t),g2

1H = (X(sin2A, &t —Xzcos2A, (t ),g2

(3.6)

where X =X( +Xz,' for a given value of 8, X is
proportional to the intensity of the electromagnetic
field.

Einstein field equations for the model
1

RAB ——,V)ABR +AzlAB

=k[TAB(perfect fluid)+ T„B(e.m. )]

reduce to the set of independent equations
2

where X( and Xz are integration constants. For (3.6)
the electromagnetic energy-momentum tensor

TAB(e m ) FAcF B + 4 /ABFcDF
1 CD

has non-null components

X2

Too ———T(( ——Tzz ——T33 —— (E +—8 )=2 28' '

(3.7)

uA=5Ao (3 1) Roo+3R»+ ~ +2A=2kp, (3.8a)

and we denote, respectively, by p and p the density
of matter energy and pressure of the fluid, as mea-
sured locally by the observer (3.1). The energy-
momentum tensor for the fluid is then expressed as

TAB (P+I )uA uB I IAB (3.2)

The source-free Maxwell equations are expressed as

e ((P(FQR) ~P+ 2FA [R1 PQ)

e(P) D (P FADE P FPB3 D
p P AP PB

(3.3a)

(3.3b)

From spatial homogeneity and the existence of a
preferred direction determined by 8' (for A &8) we
restrict the electromagnetic tensor FAB to the form

Roo —R(( — —2A=2kp,g4 (3.8b)

R ((+ g4
—Rzz ——0 . (3.8c)

A =A,B'"
and Eq. (3.8c) reduces then to

(3.9)

We consider Eqs. (3.8a) and (3.8b) as defining p and
p. Equation (3.8c) is then one differential equation
for the two metric functions A and B. Instead of
imposing an equation of state p =p(p), we assume
here a relation between A and 8, and from (3.8a) and
(3.8b) we have p =p(p). ' We take

Fo( = —F&o =E(t),
Fz3 ———F3z H(t), ——

(3.4) 8 3 8—+—8 2 8
8Ao A(

g3
2kX
84

2~ —082

(HB )' —2EAA, ( ——0,

(EB )'+2HAA, (
——0

(3.5)

all other FAB ——0. For (2.2) and (3.4), Maxwell equa-
tions (3.3) reduce to

Defining a new variable t by

dt =8 dt,
Eq. (3.10) can be expressed as

8"—8Ao A, ( 8—2A,Bz—2kXz=0,

(3.10)

(3.1 1)

(3.12)

and introducing a new variable t defined by
dt=AB dt we obtain the independent solutions

where a prime denotes the t derivative. Equation
(3.12) has as first integral
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(8') = A—B +8A A, 8 +4kX 8+C,
(3.13)

or
' 1/2

2mb,+ (t —tp)

where C is an integration constant which must be al-
ways greater than or equal to zero, in order to have
real physical solutions [cf. also (5.1) and (5.2)].

IV. SOLUTIONS AND PROPERTIES
OF THE MODELS

The solutions are defined only for B(t))0, so
that the coordinate t assumes only real values [cf.
(3.11)] and the signature of the metric remains unal-
tered [cf. (3.9)]. The singularities of the models
occur for 8 =0 as we shall see. We remark that the
class of solutions with X=O corresponds to cosmo-
logical models with perfect fluid only.

Equation (3.13) can be expressed in the standard
form which defines Jacobi elliptic functions, and
which have trigonometric and hyperbolic functions
as limiting cases. For a complete treatment of ellip-
tic functions and integrals, as well as of Eq. (3.12),
we refer to Davis, ' Erdelyi et al. , '6 and Abramowitz
and Stegun. '

We have obtained explicit solutions 8(t) for the
case C =0 in (3.13), which we describe now.

A. Bianchi type IX models (A, i+0, A, = —1, C =0)

Equation (3.13) takes the form

(8') = —, 8 [8—e(1+—b,)][B—e(1—b, )],
where

~=3k, , Ap, b. =(1+3kX /e )'

(4.1)

(4.2)

Considering 0 &8 & e( 1+6 ) as the physical domain
of 8 (t), we can see that the electromagnetic intensi-
ty parameter X affects the amplitude B,„of the
model, since 8 =e(1+5) is the maximum of 8(t).
In case of perfect fluid only (X=O), the amplitudeB,„has its lowest value 8,„=2m.

Defining

(4.3)

where —eh & b & e, (4.1) reduces to

(b') = —,(b —~)(b' —e'b'),
and introducing the new variable

t (b+~h)/e(1+ &)]' dz
0 [( I —22)( 1 2 2)]1 2

(4.6)

is the modulus of the elliptic integral. We have
from (4.6)

1/2
b +eh
e(1+b, )

1/2
2eh=sn + (t —tp)

and solving for B(t) [cf. (4.3)],
r 1/2

2mb,
(t —tp)8(t —t, ) =e(1+5)cn'

(4.8)

where we have used the properties cn( —x)=cn(x)
and cn (x)+sn (x)= 1. Jacobian elliptic functions
sn(x) and cn(x) are periodic functions —namely,
sn(x+4K)=sn(x), cn(x+4K)=cn(x) —and the pe-
riod is determined by the complete elliptic integral

1 dz
(q) =

P [( 1 z2)( 1 q2z2) ]1/2 (4.9)

which is obviously a function of the modulus q of
the elliptic integral of Jacobi (cf. Refs. 17 and 18 for
numerical values). Figure 1 represents the solution
(4.8), restricted to the interval (between two succes-
sive singularities)

1/2
2mb.—K&

u [iisj

This is the Jacobi form for elliptic integrals of the
first kind, where the parameter

1/2

(4.7)

z=, 0&z &1z b +eh,
e 1+

we obtain

(4.4)
-K

K=l, g =0

"v'~s (t-i )

(z')2= (1—z )(1—q z )
3

(4.5)

FIG. 1. Graphic representation of Eqs. (4.8) and (4.10):
The presence of electromagnetic fields (X&0) reduces the
period of Bianchi type IX models.
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since 8 (t)=0 corresponds to the singularities of the
models. '9

The solution (4.8) in fact contains a solution of
the Kantowski-Sachs type for I, ) ——0. In this limit
Eq. (4.8) reduces to

1/2

8 (t —to) =Men

then expressed as

where

(4.15)

(4.16)

where W =3kX . In this case we have q = —, and
now the period is exactly deteiiiiined as K( —,) and
the electromagnetic intensity parameter X affects
only the amplitude B,„of the model (B,„=u ).
We remark that solutions with field and matter, for
the present case, exist only if X&0. The corre-
sponding Kantowski-Sachs (A, ) ——0) solutions for the
Bianchi type VIII case do not exist.

For perfect fluid only (no electromagnetic field
present), X=O, b, = 1, q =1, and the function cn(x)
(elliptic cosine) becomes the hyperbolic secant; our
solution (4.8) takes the form

and we have

1/2
e(1+5)

3
(t to—)

(Bj[B+e()—5)l) dz
0 [( 1 —Z2)( 1 —q2Z2)])/2

or

sn [e(1+5)/3]'~2(t —to)8 (t) =e(1—5)
cn [e(1+6)/3)'~ (t to)—

8 (t —to) =2@sech (t t,)—(4.10) (4.17)

(see Fig. 1).
The Bianchi type IX models evolve between two

pointlike singularities, starting from one singularity
and expanding continuously until the half-period of
the models, and then contracting back to the other
singularity. The period of the model, 2E, is deter-
mined by (4.9) and depends on the modulus of the
elliptic integral (4.7)—in other words, the presence
of electromagnetic fields (X&0) affects basically the
period of Bianchi type IX models.

B. Bianchi type VIII models (A, I&0, A, = I, C =0)

In this case Eq. (3.13) assumes the form

(4.18)

which corresponds to 0 (8( oo. '

For X=O (perfect fluid only) the solutions are in-
tegrated directly in the variable t. Using (3.11), Eq.
(3.13) is expressed as (recall C =2=0)

/

dB 4 8+2@
dt 3 8

Figure 2 shows the behavior of this solution, where
the period of the elliptic functions involved in (4.17)
is deteimined by (4.9) for q given in (4.16). The
solution (4.17) is restricted to the domain

' 1/2
e(1+5)0& (t —to) &E,

(8') = , B[B+e(1+5—)][B—e(1 —5)],
where e=3Ao A, ) and

' 1/2

(4.1 1) whose integral is given in parametric form by

8 (g ) =2~ tan 21, (4.19)

3X)'Wo'
(4.12)

0&kX (3l, ) Ao

For X&0, we introduce the variable

(4.13)

In order to have real roots for (8') =0, the elec-
tromagnetic intensity parameter X must be restrict-
ed by

-2K ',

I

I

I

I
I

I
I
I

I

I

I

I

I
I

I

I

''-K
I

I

I

I
I

t

. '0

I

I

I

I

I

I

t
I

I

' '...K
I

I

I

I

I

J6(l I)(t-t )

3

Z (4.14)8 +e(1—5)

with 0(z &1 for 0&8 & oo. Equation (4.11) is

FIG. 2. The function (4.17) is represented by a solid
line. The dashed line represents sn(x) and the dotted line
cn(x).
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t(g) =e~3[secg tang —ln(secg+tang)] .

For g=0 we have 8 =0, t =0, and for g~n/2 . we
have 8~ oo and t~ oo.

The evolution of Bianchi type VIII models starts
from the singularity 8 =0 and expands continuously
to 8= oo, for all cases. The presence of electromag-
netic fields (X&0) affects basically the rate of ex-
pansion of the model.

V. THE MASS-ENERGY DENSITY
AND PRESSURE. KINEMATIC

QUANTITIES

The behavior of the mass-energy density p and
pressure p can be completely described in terms of
B(t). In fact, from our definitions (3.8a) and (3.8b)
of p and p, and using (3.9) and (3.11)—(3.13), we ob-
tain

kp-eB, in the neighborhood of the singularities
8 -0. They assume their lowest values

kp= +A, kp = —A
5

24m 24'
for 8,„=2@. To have the pressure positive definite
we choose 0 & A & 5/24' . It then follows that p & 0,
p & 0, and p/p & 1. Near the singularity we have the
equation of state p-p/5; dp/dp & 1 for the allow-
able domain of t.

(b) C =0, X&0: in this case

kp= —,[ 8+3@—+ —,e (5 —1)B '+ , A83]8—

kp = ,
' [8+—3.+ ', "(~'-l )8 —' 3A-B'—]8 3, -

where 0&B (e(1+6) [cf. (4.8)]. The densityp and
5

pressure p behave like kp- —e (b, —1)8 and
3 2 2

2

kp —2e (b 1)B n—ear the singularities 8-0,
with the corresponding equation of state plp- —, .
They reach their lowest values

+ 8CB —'+AB' 8 (5.1)

5 1

6 e (1+5)
116,—1

6e (1+6,)

kp = ——8 +3A, 'A, ,'+ —,kX'8

+ 8CB 2 AB3 8— (5.2)

For 8~0 we can see directly that the density and
pressure diverge, which actually corresponds to a
singularity in our models. To have physically
significant solutions we must guarantee that p &0
(positivity of energy) and that

~
p/p

~

& 1 and

~
dp/dp

~
& 1, for values of t for which 8 (t ) & 0.

The condition p & Q holds for all cases and the others
can also always be satisfied, and we discuss each
case separately.

A. Bianchi type IX (A, = —1, A, ~&0)

The possible solutions of (3.13) for A, = —1 are
periodic and bounded functions [cf. for instance
(4.8)], and we select only a period between two suc-
cessive zeros of 8 such that 8 & 0 in this interval. If
C =X=0 the singularities are located at t =+ oo [cf.
(4.10)]. Consider the following.

(a) C =X=0: in this case

kp = —,( —58+ 15m+ 3AB')8

kp= —,(8+3@—3AB )8

where e=3Ao A,
~ and 0&B &2e. The density p and

pressure p have their behavior kp —5'

for B,„=e(1+6). We choose A=(115,—1)/
6e (1+6,) to have p =Q at 8,„, in order that
pip & 1 always. For the allowable values of t, p & 0,
p &0, and dp/dp & 1.

(c) X&0, C&0: In this case p —8CB
p —8CB near the singularities with equation of
state pip-1.

Large values of X and C could imply p &p at
8 =8,„. We then choose A such that p =0 atB,„and we have p &0, p & 0, pip & 1, and
dp/dp & 1.

B. Bianchi type VIII (A. =1, A, ~&0)

In these models, the solutions 8 increase mono-
tonically from 8 =0 and we have p&0 always.
From (5.2) we see that for large 8 the occurrence of
negative values of pressure is inevitable,

1

p ———,8 . For these Bianchi type VIII solutions
we take A =0; the results

~ p ~
&p and

~
dp/dp

~
& 1

can be verified immediately.

C. Kinematical parameters

The expansion of the model is anisotropic,
can be measured by the total averaged (over angles
of the observational sphere) expansion 8 of the
congruence (3.1) of comoving observers,

ro ~= —+—2—.
A 8

B
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Using (2.7), (3.9), and (3.11)—(3.13) we obtain

0 = —, ( —,A, +8AD A, ) 8
+4kr 8 +CB )8 (5.3)

We obtain for our solutions

v3
15

(5.4)

VI. CONCLUSIONS

The anisotropy can be measured by the shear of the
congruence (3.1),

2

singularity 8 =0 and expand monotonically to infi-
nite volume. Electromagnetic fields (solutions of
Maxwell equations on the cosmological background)
can also contribute to the curvature but do not
change the basic evolution features of the models,
their presence modifying only the period between
two singularities (Bianchi type IX case) or changing
the expansion rate of the models (Bianchi type VIII
case). The metric function B(t) depends critically
on the parameters C (integration constant) and X
(electromagnetic intensity parameter), as does the
thermodynamic behavior of the fluid near the singu-
larity: for C&0 the equation of state is approxi-
mately p =p, while for C =0 and X&0 we have
p-3p/5; for C=O=X, p-p/5. For all cases, the
relative anisotropy in the Hubble expansion is a con-
stant, hH/H =v 3/15 [cf. (5.4)].

The models described in this paper are the first
known cosmological solutions of the Einstein equa-
tions with perfect fiuid, spatially homogeneous of
Bianchi types VIII and IX, and anisotropic. The Bi-
anchi type IX solutions evolve between two pointlike
singularities, starting from one singularity and ex-
panding continuously until reaching a maximum
volume and then recontracting towards the other
singularity —a behavior analogous to that of the
Friedmann closed universe. The curvature of the
three-dimensional homogeneity sections t =const
changes sign along the evolution, although these sec-
tions remain compact.

The Bianchi type VIII solutions start from the

APPENDIX

28 AB 8 A,R =R
82

2A A|
g4

in the local Lorentz frame determined by (2.2).

For the metric (2.1) the Ricci tensor Rzz has
non-null components

A 8R = ———2—,00 8
2A Al

A AB 84
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