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Nonminimal coupling and Bianchi type-I cosmologies
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Bianchi type-I exact solutions are obtained in two models involving nonminimal coupling of grav-
itation and other fields.

I. INTRODUCTION

The Lagrangian for interacting gravitational and other
fields is generally constructed using the minimal-coupling
principle. Only such terms are included that give unambi-
guously the curved-space generalization of the flat-
Minkowski-space form of the equations of motion for
nongravitational fields. Terms that contain the curvature
of space-time are usually disregarded. The validity of
such an assumption is open to question.

Recently, Fr@yland' and the present group of authors
have considered a model of a massless conformally invari-
ant scalar field interacting with gravitation in a non-
minimal manner. Static as well as Bianchi type-I cosmo-
logical solutions were obtained.

In this paper we obtain Bianchi type-I cosmological
solutions for the following cases.

(i) The coupled Einstein-Maxwell —conformally-
invariant-scalar field equations with minimal coupling be-
tween electromagnetic and gravitational fields.

(ii) The gauge-dependent theory involving nonminimal
coupling of the electromagnetic vector potential with
gravity.

The order of presentation is as follows. In Secs. II and
III, we solve and discuss the above models, Sec. IV
presents the conclusions.

Here G"„ is the Einstein tensor, and 8" and 7" are ordi-
nary and covariant derivatives. The stress-energy tensor
of the electromagnetic field is given by

EP — (FP~F ~ + F~IiF ) (2.6)

Using (2.5), Eq. (2.1) can be written conveniently as

G~,f(y ),( „~yap+,'n a ya-y)

+O'„V V f VV'„f aE"— —(2.7)

where

f(4') =1——0'.
6

(2.8)

By forming the trace of Eq. (2.8) and using (2.3), one ob-
tains

R=0. (2.9)

We can now use this relation to rewrite Eqs. (2.8) and (2.3)
in the forms

where the stress-energy tensor of the conformally-
invariant-scalar field is given by

Si' =a"pap 2$'„a—Q—a p+ 6[8'„&—& (p') 6"p—'] .

(2.5)

II. COUPLED EINSTEIN —MAXWELL-
CONFORMALLY-INVARIANT-SCALAR FIELDS and

R"„f=8'„u u 4u "u, +2uu&—, ~E" (2.10)

The system of coupled Einstein-Maxwell-conformally-
invariant-scalar fields can be described by the Lagrangian

I, =& g 1 — — R+-a y a~y FF~—-1 a.P 1

2K 6 2 p 4 p, v

u .p
——0,P

where
1/2

K
u =

6

(2.11)

(2.12)

(2.1)
and

R~, ,' g"„R= ~(S"„—+—E"„), — (2.2)

where R, P, and F„„denote the curvature scalar, the scalar
field, and the electromagnetic field, respectively.

The equations of motion may be written as

f=1—u'. (2.13)

We take the metric corresponding to the Bianchi type-I
model in the form

F ~.p ——0, F ~.
p ——0, (2.3) d$2 dt2 g 2dx2 B2dy2 C dz (2.14)

where A, B, and C are functions of t only. We assume
that u and FI' share this symmetry of space-time.
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Now u =u(t) and (2.1) give

K2

ABC ' (2.15)

where K3 is an integration constant. Here we are consid-
ering the positive root only. The sum of (2.21) and (2.23)
yields on integration

where the overdot means d /dt.
Next, introducing the vector potential W& by

[ln(V f A)+ln(v fC)]' =— K4

fABC ' (2.25)

+pv= Wwp Wp;v ~ (2.16)
where K4 is a constant of integration. Also the sum of
(2.22) and (2.23) gives on integration

the equation for "F"' becomes an identity. Also from
(2.10) we see that E",must be diagonal too.

Equations (2.5) then lead to three possible cases:
[ln(v fB)+ln(v fC)]' =—

fABC ' (2.26)

(i) F01 F23~

(ii) F02 F31~0

(iii) F03 F12&0 .

(2.17)

where K5 is a constant of integration.
If one knows the solution of (2.24), then one can deter-

mine A and 8 from (2.25) and (2.26). To obtain the solu-
tion, we introduce a new function g such that

Without loss of generality, we may consider only case (iii),
F03,F12&0. Also, since the electromagnetic stress-energy
tensor is duality invariant, we can choose F]2——0. From
(2.3) we have

C= (f+K1 /g)f
Substituting (2.27) into (2.24) gives

(2.27)

F = —V 2K, /ABC . (2.18)
(in')' =K3/fABC . (2.28)

Substituting (2.18) into (2.6) gives the following nonvan-
ishing components of the stress-energy tensor of the elec-
tromagnetic field:

Using (2.28), one then obtains easily from (2.25) and
(2.26), respectively,

+K1 ') K, /K,
(2.29)

K0 1 2 3E = —E, =+E = —E
g 2+2 (2.19)

and

Substituting (2.14), (2.15), and (2.19) into (2.10), one ob-
tains the following explicit form of the field equations: 2K3 Vf (2.30)

(2.20)

f[(A /A )
' +A /A (A /A +8 /8 +CIC ) ]= u f(A /A )—

f(A/A+8/8+C!C)= —3u +f(A!A+8/8+CIC)
K)

g 2@2 3K) +K2 —K4K5 ——0 .

From (2.15) and (2.28) one obtains after integration
—K2//K3

(2.31)

where K6 and K7 are integration constants. Using (2.27),
(2.29), and (2.30) in (2.19), one finds

Ki
+K 3 8 ~K2/K3 K2/K3-+

(2.32)

ABCf[ln~f C]' =(K3 KK1 fC )'—(2.24)

(2.21)

f[(8/8 )' +8/B(A /A +8/8+ C/C)] = u f(8/8)—
K

g 2+2

(2.22)

f[(C IC)'+ C/C(A /A+8/8+ C IC)]= u f(CIC )—
K)

3 8
(2.23)

Equations (2.20)—(2.23) are, however, all not independent
owing to Eq. (2.9). To obtain the solution we consider the
set of equations (2.21)—(2.23). Using (2.15), one obtains
after integration

where we have taken the constant of integration equal to
l. Using (2.32) in (2.17), (2.29), and (2.30), one obtains

A= (P ' ' f ' ')(P K 2t ')1t ' ' (233)

b(f 2 3+/ 2 3)(/+K 2g)
—1)g 3 3

C=c(q ' '+q ' ')(/+K 1ij ') ' (2 35)

(2.34)

pa+ I ++1 qa —1 yP 1—
+ +K) +a+1 /3+1 a —1 P—1

(2.36)
a,P~+1,

K2+K4+K5
K3

—K2+K4+K5
K3

where a, b, and c are constants. Using (2.33)—(2.35) in
(2.28), one obtains after integration

p~+e= f [4 +—P~+K1'(4 '+4~ ')]d4
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p =abc and q is a constant of integration. From (3.3) one
gets, using (3.19)—(3.21),

+2K,Fo3

(y 2 3
y

2 3)3(q K 2q —1) 4 5 3

(2.37)

The set of Eqs. (3.19)—(3.21) with (3.18), (3.22), (3.23), and
(3.17) gives the complete solution of the
Einstein —Maxwell —conformally-invariant-scalar field.

The solutions (2.33)—(2.35) correspond to the spatially
homogeneous anisotropic Bianchi-I universe having a
conformally-invariant-scalar field and the electromagnetic
fields as the energy source. The role of each field is easily
distinguishable.

For Kz ——0, one finds from (2.36) that the scalar field
vanishes and a=13. One obtains then the Bianchi-I elec-
tromagnetic universe, the detailed discussion of which is
given by Carmeli, Charach, and Malin.

For Ki ——0, one has a conformally-invariant-scalar field
only as an energy source. This problem has been treated
by us in a previous paper. When both E) ——K2 ——0, Eq.
(2.36) yields

Friedmann-type universe, through the quasi-isotropic in-
termediate stages.

III. NONMINIMALLY COUPLED
ELECTROMAGNETIC FIELD

L =v' —g —(1+A Wq W„gl'")R —,' Fi"F—„„,(3.1)
K

in which

Fpv: ~v, p ~p, v (3.2)

where A, is a constant with the same dimensionality as
Einstein's coupling constant ~.

The equations of motion for g&, and E„„obt ai ned from
(3.1) are

(1+AW )(R„„—,'gp R—) ACIW g—„„+AW

+A,RWpW = Eq, —(3.3)

Nonminimal coupling of the vector potential with grav-
ity in the spatially homogeneous cosmological models was
investigated in an interesting paper by Novello and Salim.
A special case of their Lagrangian is

a+1

u+ 1
= 2+x+ Tg' (2.38) F" . = ——R8'" .

K
(3.4)

when a = (K4+K5 )/K3. Substituting (2.38) into
(2.13)—(2.15), one easily gets the metric

The trace of (1.3) gives

R = —3A, 8' (3.5)

ds =dt —a&t dx —a2t dy —a3t dz2 2 2p
& 2 2p2 2 2p3

where

(2.39)

p i
——(K3 +.Kg ) /(K3 +K4+K5 ),

p2 ——(K3 +K5 ) /(K3+K4+K5 ),
p3 ———K3/(K3 +K4+K5 )

Since

Pi+P2+P3=PI +F2 +73 = 1
2 2 2

(2.40)

Eq. (2.39) with (2.40) represents the well-known Kasner
metric.

For the combined electromagnetic and conformally-
invariant-scalar field, the structure of singularities de-
pends on the field parameters I( &, K2, K3, K4, and K5. As
t~ 0, u ~ 0, g~ 0, the volume V of the t =constant
three-dimensional hypersurface~ 0. The electromagnetic
field becomes the dominant energy source. As the
energy-momentum tensor of the electromagnetic field is
spatially anisotropic, the expansion factor C along the
electric field decreases while those along the orthogonal
directions increase. At this stage the model has Kasner-
type behavior. As t~ 00, u~+1, P~ ~, V—+ oo. At
this limit, the scalar field is the dominant energy source.
The energy-momentum tensor of the scalar field is spatial-
ly isotropic and the expansion factors tend to an isotropic
limit. The model tends to the open Friedmann type. The
model thus evolves from an initial Kasner-type elec-
tromagnetic universe to the final isotropic open

The wave equation for the vector potential Wl' is given by

3A2&W"+Ri' W (W" „)~= — (W. ')W~
K

(3.6)

S' =0. (3.7)

Using Eq. (3.7), the field equations (3.3) take a very simple
orm~

QR" +Q'".„=—(cE"

where

Q=1+8",
and the wave equation (3.7) reduces to

ClW" +R"~W~ (W". )'"=0 . —

(3.8)

(3.9)

(3.10)

Equation (3.4) goes over to the usual Maxwell equation

(3.1 1)

However, in their analysis of particular models, they con-
sidered the case when both the electric and magnetic vec-
tors are null. In other words, their vector potential 8'l" is
curl-free. Still, the nonminimal coupling is found to be
responsible for a Friedmann-type cosmos with a minimum
radius.

In this paper we investigate the effect of this non-
minimal coupling when the vector potential is not curl-
free, but the Maxwell equations remain linear.

Since the Maxwell equations are linear, we set R =0,
which implies that
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K2

ABC ' (3.12)

For the Bianchi type-I model, the calculations are simi-
lar to those in the previous section. Using the same nota-
tion as in Sec. II for the electromagnetic field, we gei

4K 4K 3K4 +3JK2 —0 (3.25)

where K& and E6 are constants of integration. The equa-
tions (3.19), (3.29), and (3.24) will satisfy Eq. (3.14) if
R =0 is satisfied. From R =0 one obtains the relation of
constraints,

A B C
Q —+—+—= —A-

A B C
KE

A B
(3.13)

From Eqs. (3.12) and (3.20) we obtain 0 explicitly as

K~/KQ=u =u (3.26)

A AB AC" A+AB+AC

B BA BC" B+BA+BC

C CA CB
C CA CB

2KE]= —0—
AAB

KK]= —A —+B+A2B2

~ C= —A ——
A 'B'

(3.14)

(3.15)

(3.16)

Since 0=1+k@' ~ 1 as A, ~O, we have chosen E2 ——A,

and the constant of integration equal to 1. It is worth not-
icing here that the coupling constant is independent of the
constant K~ related with the electromagnetic field. To
complete the solution we determine the function u(t) from
Eq. (3.20), using (3.23), (3.24), and (3.26) as

+at+13= I du u
' ' (u+K& u '),[2(K, +K4 —K)—X]/2K

Equations (3.13)—(3.16) are all not independent due to the
relation

A=0. (3.17)

Thus when we work out the solution we can omit Eq.
(3.13).

Equation (3.16) can be expressed, using (3.13), as

(C3/n)'
C~n

2K

AB

which on integration yields

Qv' — = [K ~K (C3/Q—) ]' (3.18)

K is a constant of integration. We take here only the posi-
tive sign before the radical. To integrate further we make
the substitution

(3.27)

2(K, +K, +K)p=
2E ~ —2, 0

or p= —2,0.
When A, =O, the solutions correspond to the Bianchi

type-I electric universe. When K] ——0, the electric field
vanishes. In this case the four-potential 8'z is the gra-
dient of a scalar field. %'e shall consider all possible cases
here.

Case I. p&2, 0: Then, from Eq. (3.27), one obtains

]/( +2) 2K/[2(K3+ K4+ K)—A. ]u-t " =t (3.28)

where 13 is a constant of integration.
The system of equations (3.20), (3.23), and (3.24) with

Eq. (3.27) completely determines the model. Equation
(2.18) specifies the electric field.

As is evident from Eq. (3.27), there exist different possi-
ble models depending on

K3(~ v n) (c~n)
W~n a~@ v' —gn '

~—1/3( +K 2u —I
)
—I2K)

K

where u=u(t).
Substituting (3.19) into (3.18) gives

K
u v —gn

Equations (3.14)—(3 16) give

(3.19)

(3.20)

(3.21)

2(K3 +K ) —A. /[2(K3 +K4+ K ) A ]A-t
2(K4+ K ) —A. /[2(K3 +K4+K ) —~ ]B-t

(3.30)

(3.31)
—(A, +2K)/[2(K3+K4+K) —A, ]C-t 3 ' . 332

When A, —+ 0, Eqs. (3.30)—(3.32) correspond to Kasner's
models. If we write

Equation (3.26) yields

2A, /[2(K3 + K4+K )—A, ]

From Eqs. (3.20), (3.23), and (3.24), we find, using Eqs.
(3.28) and (3.29),

(B~Q)' (Cv Q)'
&~A Av 0 v' —gn ' (3.22)

where K3 and K4 are constants of integration.
One gets from Eqs. (3.20)—(3.22), after further integra-

tion,

p (
——2(K3 +K ) —A /[2(K3+K4+ K ) —A ],

p, =2(K4+K) —A, /[2(K3+K4+K) —k],
p3 — (A + 2K)/[2(K3 +K4+K) —A ]

p4 ——2A, /2(K3+K~+K) —g .

(3.33)

AAC =Esu

K4/K

(3.23)

(3.24)

Then, one finds that, using (3.25),
4

Xp =Xp'=1 (3.34)
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atU-e
(A,a/2K)t

( I +K3/K)atA-e
( I +K4/K )at8-e
—[(A,+2K ) /2K]at

(3.35)

The expansion factor along z depends on the coupling con-

Novello and Salim found an equivalent solution using a
Kasner-type ansatz.

If K3 —K4 ——2K= —k/2, one obtains t =constant hy-
persurfaces conformally flat.

The model corresponds to the flat Friedman-type with
isotropic expansion.

Case 2. p = —2: In this case, from Eq. (3.27) one gets

stant A, , while those along the orthogonal directions are in-
dependent of I,.

The case p =0 does not occur when I( I
——0.

IV. CONCLUSION

Bianchi type-I cosmologies for nonminimal coupling
between gravitation and other fields were obtained for two
models. The physical consequences in each case have al-
ready been discussed in the earlier sections.

ACKNOWLEDGMENTS

The authors thankfully acknowledge financial support
from Conselho Nacional de Pesquisas, Financiadora de
Estudos e Projetos and the Conselho de Ensino para os
Graduados of the Universidade Federal do Rio de Janeiro.

'J. Fr@yland, Phys. Rev. D 25, 1470 (1982).
2A. J. Accioly, A. N. Vaidya, and M. M. Som, Phys. Rev. D 27,

2282 (1983).
3C. G. Callan, S. Coleman, and R. Jackie, Ann. Phys. (N.Y.}

59, 42 (1970).
4C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 525

(1957).

~M. Carmeli, Ch. Charach, . and S. Malin, Phys. Rep. 76, 109
(1981).

E. Kasner, Am. J. Math. 43, 17 (1921).
7M. Novello and J. M. Salim, Phys. Rev. D 20, 377 (1979).
M. Novello and J. M. Salim, Report No. CBPF-Notas de

Fisica-001/82 (unpublished).


