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Testing for a cosmological influence on local physics using atomic and gravitational clocks
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The existence of a possible influence of the large-scale structure of the Universe on local physics
is discussed. A particular realization of such an influence is discussed in terms of the behavior in
time of atomic and gravitational clocks. Two natural categories of metric theories embodying a
cosmic influence exist. The first category has geodesic equations of motion in atomic units, while
the second category has geodesic equations of motion in gravitational units. Equations of motion
for test bodies are derived for both categories of theories in the appropriate parametrized post-
Newtonian limit and are applied to the Solar System. Ranging data to the Viking lander on Mars
are of sufficient precision to reveal (i) if such a cosmological influence exists at the level of Hubble' s
constant, and (ii) which category of theories is appropriate for a description of the phenomenon.

I. INTRODUCTION

In the last few decades several theories have been pro-
posed which couple cosmology with local physics. One
characteristic which these theories have in common is that
they predict a variation of Newton's constant with cosmic
time, an effect usually referred to as "G dot. " In Secs. II
and III of this paper we discuss the fact that these theories
fall naturally into two distinct categories. In Secs. IV and
V we analyze each of the categories of theories in turn and
calculate equations of motion for test bodies in the post-
Newtonian limit. The major objective of this paper is to
discuss and compare the predictions of these two
categories of theories for the motion of Solar System
bodies. Such an analysis is particularly timely in view of
the recent acquisition of ranging data to the Viking lander
on Mars, which are an order of magnitude more accurate
than any Solar System astrometric data gathered thus far.
In Sec. VII, we find that this increased accuracy, together
with the larger time baseline of astrometric data, should
increase the sensitivity of the Solar System dynamic
model to G-dot effects by almost two orders of magnitude.
For the first time it should now be possible to directly and
unambiguously detect such a cosmic influence on local
physics if it exists at the level of Hubble's constant.
Moreover, these data will also allow one to distinguish be-
tween the two categories of theories discussed in this pa-
per on a purely observational basis.

II. MINIMAL COUPLING
OF COSMOLOGY WITH LOCAL PHYSICS

Every complete dynamical theory defines its own natur-
al set of units standards. For example, the natural time
unit of any gravity theory is the orbital period of a macro-

scopic body about a central mass, while the natural time
unit of quantum electrodynamics is the frequency of a
photon emitted in an atomic transition. Such natural gen-
erators of time-units standards are called clocks. A cen-
tral question of physics is whether or not all such funda-
mental clocks are mutually commensurable, ' i.e., wheth-
er or not the ratio of their rates is constant (for example,
independent of cosmic epoch). This question can be
answered directly by comparison of the time measures of
two such clocks. This paper provides a framework for
such a comparison.

If cosmology does directly influence local physics, then
one would expect the coupling coefficients between dif-
ferent physical fields to vary on a cosmic time scale, thus
making the fundamental clocks of Nature incommensur-
able. A minimal form of such incommensurability is one
in which all microscopic clocks, i.e., atomic clocks, nu-
clear clocks, etc., are commensurate with each other while
gravitational clocks are not commensurable. This choice
is consistent with the assumption that gravitation is the
only significant interaction on a cosmological scale. One
writes '

where dsE is a physical time interval measured with a
gravitational clock (Einstein clock or E clock), while ds„
is the same physical time interval measured with an atom-
ic clock (A clock). The natural time unit of an E clock is
called an E unit, while the natural time unit of an 3 clock
is called an 3 unit.

Constant y means that the two clocks are commensu-
rate, while variable cp means that the two clocks are not
commensurate. While the dynamics of y may be treated
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like a simple scalar field, as is done in some of the A

theories mentioned below, the dynamics of y may also be
so inherently complex as, for example, the dynamics of a
coefficient of friction. We make no assumptions con-
cerning the dynamics of y in this paper.

III. METRIC THEORIES

Analysis of Solar System astrometric data is customari-
ly carried out for "metric theories. " By definition, a
metric theory is any theory possessing a mathematical
representation in which (i) spacetime has a metric, (ii)
world lines of test bodies are geodesics of that metric, (iii)
nongravitational laws in any freely falling frame reduce to
the laws of special relativity. This is equivalent to the as-
sertion that in this representation one has u . u =0 and
T . =0 where u and T are the four-velocity and
stress-energy tensor, respectively. In this representation
the equation of motion for test bodies is the geodesic
equation

The geodesic equation (2) is not invariant under a
change of units. In the last section we introduced two
natural systems of units. Thus one must specify the par-
ticular system of units in which the geodesic equation is
assumed to hold. "A mathematical representation in
which world lines of test bodies are geodesics" is
equivalent to "a choice of units in which world lines of
test bodies are geodesics. " Consequently, all metric
theories can be separated into at least two categories,
namely, those theories geodesic in E units and those
theories geodesic in A units.

The Solar System is currently being used to test for the
subtle dynamical effects predicted by different metric
theories of gravity. Modern experiments model gravita-
tion in the so-called parametrized post-Newtonian (PPN)
formalism, a "theory of theories" in which terms appear-
ing in the spacetime metric depend on undetermined, di-
mensionless coefficients (parameters) whose values are ad-
justed to fit the existing Solar-System astrometric data
sets. When using Solar System astrometric data to test
metric theories in the PPN framework, one assumes the
equation of motion to be the geodesic equation. However,
one is also implicitly assuming an underlying set of units
standards, viz. , those units in which the paths of test bo-
dies are geodesics. Since Solar System timing data are
gathered using atomic clocks and therefore are in A units,
the equations of motion used in the Solar System model
will not be the geodesic equation for theories which are
metric in E units. This difference, as we discuss below,
will allow one to distinguish between the "geodesic in 3
units" and "geodesic in E units" assumptions using the
Solar System astrometric data as the basis for discrimina-
tion.

There is a similarity between the PPN formalism and
the formalism used in this paper to describe the cosmic in-
fluence on local physics. Just as the PPN formalism is in-
dependent of the details of the particular metric theory of
gravity (i.e., independent of the gravitational field equa-

tions), so too is this formalism largely independent of the
details of the particular model by which cosmology is cou-
pled to local physics. As we show below, for each case of
E theories or 2 theories, we find one additional parameter
to add to the PPN parameter set. Solar System as-
trometric data can now be used to search for the values of
these parameters in addition to the usual PPN parameters.
The values of these two parameters are a direct measure of
the amount of cosmic influence on local physics.

IV. A THEORIES

3 theories are defined to be gravitation theories whose
test bodies follow geodesics in A units:

A units: T . =0, u . u =0. (3)

In the last few decades several such theories have been
proposed, formulated in such a way as to couple cosmolo-
gy with local physics. The archtype is the scalar-tensor
gravity theory of Brans and Dicke, but examples of other
such theories are the scalar-tensor theories of Bergmann,
Nordtvedt, and Wagoner, the vector-tensor theories of
Hellings, Nordtvedt, and Will, ' and the tensor-tensor
theory of Rosen. " These theories do belong to the
category of A theories since they were all explicitly con-
structed to satisfy Eqs. (3) for test bodies, in 3 units. Al-
though the details vary, all these theories share one com-
mon feature. They each possess auxiliary fields in addi-
tion to the metric tensor field, and the asymptotic values
of these auxiliary fields are cosmological in origin. Since
the Universe evolves with time, these auxiliary fields vary
on a cosmological time scale.

The effect of these auxiliary fields on local physics is to
induce a renormalization of some of the parameters enter-
ing into the general PPN metric so that such parameters
become dependent on the asymptotic field values. This
means that these PPN parameters now vary with cosmic
time. Since the parameter entering at lowest order in the
PPN expansion is the product of Newton's constant G
with the mass M of the central body, the product GM can
acquire an induced variation with cosmic time. This in-
duced cosmological time variation is what is sought when
one seeks to "measure G dot." This is why measuring G
dot has become synonymous with "measuring a cosrnolog-
ical influence on local physics. "

An estimate of the expected magnitude of such cosmo-
logically induced effects can be made by noting that the
time scale of such effects should be determined by
Hubble's constant Ho. Thus the fractional rate of change
of a typical PPN parameter u is expected to be

Ho =5 & 10 h50 yr
A

(h50 ——Ho/[50 (km/sec)/Mpc]) . (4)

This places a severe constraint on the meaurement of such
an effect. Such effects are not detectable at the level of
laboratory physics.

For all the theories mentioned above the predicted value
of G dot [actually (GM) dot since this is the relevant pa-
rameter in the PPN expansion which is used to test these
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theories] can be written as

(GM)'
GM 0

5X 10-"~50 yr

However, from Eqs. (4) and (5) we expect f to be of order
unity. Therefore none of the theories mentioned above ad-
mit a cosmological influence at the level expected from
Eq. (4).

While all of the specific theories mentioned above cou-
ple 6 dot with the PPN parameters, it is conceivable that
a gravity theory of sufficient complexity may be formulat-
ed in which each of the PPN parameters has an indepen-
dent cosmologically induced time variation. It is this
point of view which has motivated previous G-dot mea-
surements. Qne takes the standard PPN metric with con-
stant parameters, sets each of these parameters to be an
unknown function of cosmic time, and then expands these
functions as power series in time. The net result of this
procedure is to introduce one more term into the PPN
analysis which is proportional to (GM)'. All other pa-
rameters such as P, y, etc. enter at higher order and can be

ignored. One then treats (GM)' as just one more free pa-
rameter to be determined by the Solar-System astrometric
data.

Such an analysis has been conducted in the past using
radar-ranging measurements to the inner planets. The ac-
curacy available at that time gave the upper bound'

(GM)'
X yr

which value is just above the relevant range of values indi-
cated by Eq. (4). As discussed below, new very-high-
precision ranging data from the Viking lander on Mars
are expected to provide a sensitivity of a part in 10" per
year, within the relevant range of values indicated by Eq.
(4).

where f is given in terms of the parameters of the theory.
For example, in the Brans-Dicke theory one has

1f-, M=O
co+ 1

with co being a free parameter of the theory. For all the
theories mentioned above the parameters defining f also
enter into the renormalized PPN parameters. For exam-
ple, in Brans-Dicke theory one has the PPN parameters

=1 co+ 1

co+ 2

with all other PPN parameters vanishing as in general re-
lativity. Because of this theory-dependent coupling be-
tween 6 dot and the other PPN parameters, a measure-
ment of the PPN parameters limits 6 dot, and conversely.
For all the theories mentioned above, current observation-
al limits on the PPN parameters restrict f to be less than
10, so that the predictions of these particular theories
for 6 dot are

These A theories with nonzero G dot are examples of
the minimal coupling of cosmology with local physics,
discussed in Sec. II above, precisely because G =G(t) in A
units. The 3 theories seek to introduce a minimal cou-
pling of cosmology with local physics by preserving the
form of nongravitational physics in 3 units, but changing
the form of the gravitational field equations in A units
(compared with general relativity). This coupling of local
physics with cosmology is indirect through the effect of
the metric in expression (3).

As mentioned in Sec. III, modern observational data are
gathered and recorded in 3 units. Therefore explicit com-
parison of theory with observation is carried out by a
straightforward use of the second of Eq. (3) for test bodies
in A units. The post-Newtonian coordinates are chosen so
that far from the central mass the metric in A units takes
the form

dsq dt ——5;J.dx—'dxJ+h~ (x)dx~dx (10)

where the h term is the local perturbation due to the
central mass. Following Will, we write for the PPN
metric

dSg =g~~ dx dx

gpp ——1 —2U+04,

g;, =—(1+2@U)5;, +0, ,

gpi 03
GMU= -02, r =x'x',
c r

( 1 la)

(1 lb)

(1 ld)

(1 le)

where U is the Newtonian potential, y is a PPN parame-
ter, and 02 denotes the maximum value of the Newtonian
potential. The post-Newtonian coordinate velocity dx'Idt
of an orbiting body is O~.

As is well known, use of (11) in the geodesic equation
(3) gives the coordinate acceleration

d x
dt

GpMp ~&
+r r 2

(PPN4)'

(GM)o I GoMo x 06
(GM)o r r~ r

t —to + (12)

GM =(GM)o+(GM)o(t —to)+ (13)

since auxiliary fields are assumed to induce a cosmological
time dependence in GM. The additional terms in (13) are
much smaller than the terms shown. They arise, for ex-
ample, from the Earth's motion relative to the local cos-
mic rest frame and from local contributions to the auxili-
ary fields. Equations (12) can be integrated perturbatively
to obtain the coordinate positions of two test bodies (pla-
nets) as

where the PPN4 ——04 terms contain all the usual PPN
corrections and where the (GM)o term comes from ex-
panding
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x.'(r) =x '. (r)

p'(t) = [x ', (t) —x ', (t)][x', (t) —x ', ( r)]

and using (14) we find

(15)

T

(GM)Q dp(t)
p(&) =p(&)— p(r)(r —rQ) — (r —rQ)' +

(GM)Q dt

where p(t) is the range between the two bodies for con-
stant GM.

V. E THEORIES

(GM)Q, . dx, (&)
x ( r)(t —tQ) — (t —rQ)

(GM)Q dt

+ t ~ ~ (14)

where a=1,2 indexes the bodies. The x ', (t) are the solu-
tions of (12) for constant GM. The range between the two
orbiting bodies equals one-half the round-trip light time
between the two bodies. To lowest order this is given by

d~ '=g."Ay dy"=V 'g.'A~ dy" (20)

where g« is a metric deduced from ranging data timed
with A clocks. However, the (y) coordinates are no longer
PPN coordinates for the A geometry, since far from the
central mass, Eqs. (10) and (20) give

ds&2 g& (dy——) y5;~d—y'dy~+. p h (y)dy dy
(21)

which is not of the required PPN form (10). In order to
write (21) in asymptotic PPN form the coordinate
transformation

dSg =g ~~dp dg

where (y) are coordinates (dimensionless spacetime mark-
ers). Since gravitational physics is unchanged in E units,
it is possible to choose the coordinates (y) such that g
assumes the standard PPN form [the (y) are a PPN coor-
dinate system in E units]. Thus the (y) are chosen so that
far from the central mass, d$z assumes the form of Eq.
(10). The PPN metric g takes the standard form (11) in
E units.

From the fundamental equation (1), the A-time interval
measured along the world line of some test body is given
by

E theories are defined to be gravitation theories in
which test bodies follow geodesics in E units. Therefore, 3'=r+ 'iQ(r rQ)'+ 2i—A'x "+

(22a)
E units: T . =0, u . u =0. (17) y' =x '+ yQ( t tQ )x '+—

Since test bodies are assumed to follow geodesic paths in
the geometry determined using E units, they will not fol-
low geodesic paths in the geometry determined using A
units (assuming a nonconstant y). Therefore in A units
one has in general

Aunits: T . &0, u. u &0. (18)

Thus E theories seek to introduce a minimal coupling of
cosmology with local physics by preserving the form of
gravitational physics in E units, but changing the form of
some part of nongravitational physics in 3 units. ' '" The
coupling of cosmology with local physics is direct through
the nonvanishing of the right sides of Eq. (18).

As in the case of A theories discussed in Sec. IV, it is
easiest to understand the results of comparing theory with
observation if all the equations are written in 3 units.
However, this is more difficult for E theories than it was
for A theories since the relevant equations are only known
in E units and therefore must be converted to 3 units. We
do this in two parts. First we obtain the PPN metric for
E theories in E units and then transform it into A units.
Then we obtain the Newtonian acceleration of a test body
about a central mass and the range between two orbiting
bodies, also in 2 units.

d$w ——dt —5,j-dx'd& J+ . (23)

where the extra terms are either local perturbations due to
the central mass, or are of second order in pQ. Therefore
the (x) constitute PPN coordinates for the A geometry to
the required level of accuracy. Equations (22) allow one
to pass between PPN coordinates for the A geometry (x)
and PPN coordinates for the E geometry (y).

In order to obtain the additional terms in (23), we ex-
pand g as

y = 1 + jPQ ( r —tQ ) + (24)

Since cp represents the local manifestation of global effects
on local dynamics, this is valid to the same order of accu-
racy as the expansion (13) for GM in the A theories.
yQ ——1 was chosen by normalizing Eq. (1) at t =tQ From.
Table I we see that inside the Solar System

TABLE I. Orbital radius r, Newtonian potential U, and
Hor/c for the five inner planets.

r =3 '—2i f Q(3
'—rQ)' —2i

~Qy
"y"+ . .

(22b)
x =3' —go(y —rQ)3' + ' ' '

is used which allows the A metric (21) to be written as

A. PPN metric in A units Planet r (10 km) U-Oq (10 ) Hor/c (10 ' h~o)

The starting assumption is that gravitational physics is
unchanged in E units. Thus the field equations of the
gravitational theory will give components g of the E-
metric tensor, and the E-time interval measured along the
world line of some test body will be given by

Mercury
Venus
Earth
Mars
Jupiter

0.55
1.08
1.50
2.26
7.77

2.68
1.37
0.98
0.65
0.19

3.0
5.8
8.1

12
42
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Or Hor O4 (25)

where r is the orbital distance from the Sun.
Applying the coordinate transformation (22) to the

metric (20) and using (24) gives + 0 ~ ~ (31)

1 dx ', (t)x.'(t) =x.'(t) —j p x,'(t)(t —t, )—— (t —t, )'
2 dt

ds~ =[goo+ goix'qo]d

+2[go;+(g~+gpp5~ )x~jvp]dx'dt

+[g,', +2gf,xjq p]dx'dxj .

Upon taking account of (11) and (25), this becomes

(26)

where a=1,2 indexes the bodies. The x,'(t) are the solu-
tions of (29) for constant p. As in Sec. IV, the range be-
tween the two orbiting bodies equals one-half the round-
trip light travel time between the two bodies, and satisfies

p(t) =p(t) —go p(t)(t —to)
dsg2 ——g (y(x))dx dx +06 (27)

inside the Solar System. One concludes that through PPN
order 05 the form of the required PPN metric tensor for
the 3 geometry inside the Solar System is identical to the
form of the PPN metric tensor for the E geometry, pro-
vided y =y (x) given by (22a).

1 dp(t) (t —tp) +
2 dt

(32)

where p(t) is the range between the two bodies for con-
stant y. Similar but less general equations have also been
obtained by Shapiro. '

B. Equations of motion in A units

(28)

which is no longer a geodesic equation except for the trivi-
al case of cp =0. In order to obtain the PPN coordinate
acceleration of a test body in 3 units, one can either use
the A metric (27) with (24) in the equation of motion (28),
or apply the coordinate transformation (22) to the PPN
coordinate acceleration of a test body in E units. We
adopt the latter approach.

The PPN coordinate acceleration in E units has the
same form as Eq. (12) with (GM)p=0 [with (x, t) replaced
by (y,y )]. Use of (22a) in this equation then gives the
PPN coordinate acceleration equation in 3 units as

GpMp x~ (PPN)4
2+dt r r

Go~0 X' dx'—,(t —tp) — + . (29)
r dt r+pp

Since for t —tp —1 yr,

c(t —t, ) U-10 U=O], (30)

we see that both terms in the coefficient of jo in (29) are
of comparable magnitude for one year of Solar System as-
trometric data.

As in Sec. IV, Eq. (29) can be integrated perturbatively
to give the coordinate positions of two orbiting test bodies
(planets) as

Consistent with our underlying assumption that gravi-
tational physics is unchanged in E units, we assume that
test bodies follow geodesics in E units. As discussed in
Sec. III, such test bodies do not follow geodesics in A
units. Use of Eqs. (1) and (20) in the geodesic equation
(17) yields the equation of motion in A units as

d x ~ g dx dx 'P, cr ~~ dx dx

ds~ ds~ ds~ y de dsq

VI. COMPARISON OF A THEORIES
AND E THEORIES

Comparison of the acceleration equations (12) and (29)
reveals that the two categories of theories are really very
different both physically and conceptually. This differ-
ence is manifested by the presence in (29) of a "dissipa-
tive" term proportional to the velocity that is absent in
(12), and is an example of the direct influence of cosmolo-
gy on local physics we alluded to earlier.

This direct influence of cosmology on local physics is
also manifest at the level of the equation of motion for
test bodies given in (28). The fact that the right side of
(28) is nonzero means that in general one has T . &0 in
3 units. This means that standard nongravitational phys-
ics must be modified by the cosmological influence. The
formalism presented here has the advantage that one does
not need a detailed model of the cosmic interaction with
local physics in order to test for its existence. In this
sense the formalism presented here should be viewed as an
extension of the PPN formalism used to test for different
theories of gravity.

One further point is in order. In the usual definition of
"metric theory" given above, condition (iii) requires that
nongravitational laws in any freely falling frame reduce to
the laws of special relativity. In E units, E theories satisfy
T . =0 and in that sense E theories are formally metric
theories. However, condition (iii) is often stated as requir-
ing that in any freely falling frame all of standard physics
should hold. This latter form must clearly be false for E
theories since for these theories T . +0 in A units. Fur-
ther, should a "freely falling frame" be specified in A
units or in E units'? The answer must come from observa-
tion or from a complete theory, not from this formalism.
An analogous question arises when one uses coordinate
covariance of special relativity in order to naively insert
gravitational effects in the absence of a complete theory,
viz. , should a freely falling frame be specified relative to
the flat background geometry of special relativity or rela-
tive to the curved geometry induced by the metric field?
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x
dt2

(ppNg)'Go~o x'
2+

7" 7 7'

Go~o x' dx'+(8 —A) (t —to) —8 +
7. 2 di 7

(33)

Integrating (33) perturbatively, one finds the range be-
tween two orbiting test bodies (planets) to be given by

p(t) =p(t) —(A +8)p(t)(t —tQ)

+(A + —,8) „(t—to)'+dp t
(34)

These equations reduce to the acceleration and range

equations for A theories when A =(GM)J(GM)0 and
B=0, and for E theories when A =0 and B =yo.

Results from radar ranging to Mercury, Venus, and
Mars, and radio ranging to the Mariner 9 spacecraft in or-
bit around Mars have been published by two research
groups, Reasenberg and Shapiro' of MIT and Anderson
et al. ' of JPL, with similar results. Both groups assumed
8=0 and solved for A in Eqs. (33) and (34).

Reasenberg and Shapiro provide a particularly il-
luminating example of the subtleties involved in interpret-
ing the results. Table II shows their results for the A pa-
rameter when Mercury ranging data alone is used, when
Venus ranging data alone is used, when Mars ranging data
alone is used, and when all the data sets are used simul-
taneously. The final entry shows the result of a simple
weighted averaging of the first three entries. As em-
phasized by Reasenberg and Shapiro, only the fourth en-
try obtained by using all the data sets simultaneously in
the data reduction is statistically meaningful. This result

TABLE II. Values for the A parameter of Eq. (33) from ra-
dar ranging to the inner planets, from Reasenberg and Shapiro
(Ref. 12). The 8 parameter was assumed to be zero in the data
reduction. Only the fourth entry labeled "combined" is statisti-
cally realistic.

1.
2.
3.
4
5.

Planet

Mercury
Venus
Mars
Combined
Average

A (10 "yr ')

6+4
6+6

25+33
15+9

6.2+3.3

VII. DETECTABILITY

Inspection of the acceleration equations (12) and (29) or
the range equations (15) and (32) shows that the two
categories of theories produce the same size effect and
would be detectable in the data at the same level. These
equations can be rewritten in a form which allows the
data to determine which category of theories, if either, is
realized in Nature. We introduce two parameters A and B
and write the PPN coordinate acceleration equation in
atomic units as

is significantly less accurate than a simple averaging
might lead one to expect. The reason is that in fitting the
first three data sets separately, it is assumed that the or-
bits of the Earth and the ranged planet are independently
adjustable. The fourth entry recognizes the fact that the
three data sets are actually tied together since all ranging
is done from Earth and the Earth's orbit must be adjusted
to fit all the data sets simultaneously. The reason for the
discrepancy between the sensitivities shown in entries 4
and 5 is that small systematic errors in the individual data
sets might be partially fit by adjusting the Earth's orbit
for that data set alone. However, when the Earth's orbit
is required to fit all the data sets simultaneously, then the
error shows up more clearly and the uncertainty in the
value of A increases to its correct value. Consequently,
while data from any single-ranged object (for example, the
Mercury ranging data) may yield some particular value
for the A or 8 parameters (an upper bound of A & 10
yr ' for the Mercury data), such values invariably de-
grade when the complete set of ranging data is used. In
fact, since the data indicate the existence of systematic er-
rors, Reasenberg and Shapiro find that their results are
"not inconsistent" with 3=0. Thus all entries in Table II
are consistent with the bound given in Eq. (9).

Since 1976, ranging data from the Viking lander on
Mars have been accumulating. These data are so accurate
that they allow one to model Mars' orbit to within +10 m.
With the four-year baseline from the end of the Mariner 9
data (1972) to the beginning of the Viking data (1976), it
now appears possible to determine either A or B to a sensi-
tivity of about 1&(10 " yr ' using the complete set of
ranging data. This is the first unambiguous opportunity
to look for cosmologically induced effects on local physics
at the level at which they might be expected to exist.

From Eq. (34), the parameters A and 8 are independent-
ly determinable only if the effects of the term linear in t
and the term quadratic in t can be separated by the data.
The linear term will dominate only for less than the first
synodic period (Mars synodic period is 780 days), and the
effect is dominated by the quadratic term thereafter.
Thus, if the data are sufficiently accurate to determine an
unambiguous value for either A or 8 alone after one rela-
tive orbit, then given a sufficiently long time baseline of
data it should be possible to determine both A and B
simultaneously. The simultaneous determination of both
parameters will not reach the expected sensitivity of
1X10 "yr ' for each parameter individually, but it does
appear to be possible to separate A and B at a simultane-
ous sensitivity of about 4&& 10 yr

VIII. SUMMARY

We have presented a framework for the observational
detectability and distinguishability of two categories of
theories which incorporate cosmological influence into lo-
cal physics. The advantage of the formalism presented
here is that no detailed model of such an interaction is
necessary in order to test for its existence. %'e have found
that ranging data to the Viking lander on Mars are suffi-
ciently accurate so that in conjunction with the other So-



1828 ADAMS, CANUTO, GOLDMAN, AND HELLINGS

lar System ranging data sets one can attain a physically
significant level of detectability for such theories. For the
first time it has become possible to directly and unam-
biguously detect such a cosmic influence on loca1 physics
if it exists at the expected level of Eq. (4). These new data
from Viking also allow one to observationally distinguish

between the two categories of theories at a physically sig-
nificant level.
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