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A relativistic three-preon interaction with a spin dependence X'=o„'„'c.r'„q'erg& is proposed
for an SU(2) preon (t, u) model. The X' operator (i) gives zero force for S= —states, thus

rendering them dynamically irrelevant, and (ii) has the complex combinations p"+i+' of the
two spin- —functions +',p") as eigenstates with eigenvalues of opposite signs so that only

one combination is relevant for confinement. This feature in turn leads to just three S3-
symmetry classes (out of six available ones) of spatial wave function, again in complex form
which are sought to be identified with the generation structures. Their spatial functional
forms are such as to obey severe selection rules preventing electromagnetic transitions such
as p —+ey. Apart from these qualitative features which are shown to remain valid within a
fairly general (Bethe-Salpeter-type) dynamical framework, a quantitative model of confine-
ment with a very steep potential (-R '

) is proposed for a unified description of lepton and
quark spectra. This leads to a universal (i,q) mass formula for all three generations with
only two free parameters, in rather good agreement with the observed pattern. In particular
the lepton mass ratios which do not involve any free parameter are predicted as
m„/m, =196.7 and m, /m„=14. 3.

I. INTRODUCTION

Composite or preon models' ' have made almost
instant impact on theoretical fancies ever since they
made their first appearance. ' Their preference
over grand unified theories' (which have also been
foririulated at the preon level' ) stems partly from
their intrinsic appeal based on the successive lessons
on the history of elementarity and partly from the
economy expected in a description in teriiis of more
elementary constituents than quarks (q) and leptons
(1), though opinion may differ on the latter count in
the absence of a consensus on the origin (intrinsic vs
dynamical) of certain crucial degrees of freedom
such as color. Composite models which have been
extensively investigated in recent years are mostly of
a formulational nature ' in which certain theoreti-
cal requirements, especially a self-consistent repro-
duction, at the composite (q, /) level, of the absence
of anomalies at the preon level, have received much
attention. There is also some limited evidence of
investigations of observational constraints imposed
by low-energy physics, especially the role of the
anomalous magnetic moments (g —2) of e and )M in
determining the energy scale of the preonic
forces. '

Formulations of preon models are largely based
on the theoretical concepts already developed at -the

hadron and quark levels, such as gauge fields,
current algebra, and so on. The models so far sug-
gested can be classified under two broad headings.

(i) Models 'o in which the preons are essentially
chosen as synonymous with certain chosen attributes
(color, flavor, generation index) of the composites
(q, l) themselves. In such models the constituents
(preons) do not have any independent status apart
from the respective degrees of freedom they are in-
tended to convey. An extreme example of this situa-
tion is envisaged in Ref. 4 with a corresponding de-
gree of indifference to the understanding of the fun-
damental attributes in a dynamical fashion.

(ii) Models ' in which the preons play a role more
akin to nucleons in nuclei or quarks in hadrons, so
that these constituents are recognized to have an ex-
istence independent of the attributes they are sup-
posed to possess. Such models have the potential to
provide a dynamical understanding of at least some
(if not all) of the composite attributes by facilitating
a fuller exploitation of the mathematics of permuta-
tion symmetries which naturally come into play
whenever identical particles are involved. An ex-
treme example of this situation is the Harari-Shupe
model wherein even the color attribute was sought
to be understood as a permutation-symmetry prob-
lem.

Eventually, both types of models have come near-
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er each other, the first' ' by adopting an inter-
mediate philosophy demanding certain attributes
(especially the generation index) to be dynamically
generated, and the second by allowing certain attri-
butes (color and flavor) to be intrinsic to the preons.
However, there is little evidence so far for concrete
dynamical foi-inulations beyond the qualitative levels
of field-theoretic principles. ' ' ' On the other
hand, there are important issues connected with
composite functions which (at the present state of
the art) would seem to need more concrete foriris of
dynamics at least for a first-order understanding,
with a view to providing clues to the desirable
features that a good theory of the future should in-
corporate. Two such issues that we feel need more
serious attention than hitherto evidenced are the fol-
lowing.

(A) Why are there only spin- —, leptons and quarks
all the way up to the third generation, with no trace

3of S= —, so far?
(8) What quantum number if any provides a

meaningful distinction among successive generations
which look observationally alike and yet seem to
maintain their relative stabilities against mutual
transitions (e.g., prey)? In this respect, the radial-
excitation picture' '" appears unattractive, but other
possibilities ' exist.

In this paper, we wish to address specifically
questions (A) and (8) and look for a suitable dynam-
ical basis intended to provide some definitive
answers to these questions. To that end it is first
necessary to fix on a definite preon picture from
among several available candidates, in particular,
type (ii) models since permutation symmetries are
expected to play a vital role in our analysis. We
choose this to be the later version of the Harari-
Shupe model in which (a) the SU(2) preons (t, v) are
taken to be almost massless (to facilitate confine-
ment in a chiral fashion ' ) and (b) color is taken as
an intrinsic attribute (not dynamically generated).
The 't Hooft conditions are trivially satisfied in
this SU(2) case, ' while the color representations 3
(3*) for t (u) are capable of imparting the desired
color structures ' (singlet for ttt and uuu; 3 for utt
and 3* for tuu) among other possibilities (to be dis-
cussed in Secs. II and V).

As to the essential dynamics, the preons are sup-
posed to be confined by hypercolor forces, for
which, however, we have nothing to offer except an
effective description through a suitable ansatz on the
overall spin and moment um dependence for the
preon interaction kernel within the framework of a
three-preon Bethe-Salpeter (BS) equation. The de-
tails thereof are described in Secs. II and III, but the
crucial assumption which seems to hold the key to

the main points of the answers to questions (A) and
(8) is the following spin dependence for the effective
three-preon interaction:

ma (&) (2) (3)~ =—OpvOvXOAp ~

while the more quantitative issues such as the mass
spectra of lepton and quark generations require a
knowledge of the specific forin of confinement (har-
monic or otherwise). The paper is so arranged as to
separate the general aspects bearing on issues (A)
and (8) from the more quantitative questions such
as the (l, q) mass spectra. To that end, Sec. II de-
scribes the classification of ttt wave functions ac-
cording to S3 symmetry and X' dynamics and shows
how the general algebraic structure of any reason-
able form of a dynamical equation containing X' as
a kernel incorporates the qualitative answers to (A)
and (8). Section III outlines the derivation of Eq.
(2.11), starting from a three-preon Bethe-Salpeter
equation in the instantaneous approximation. This
equation, though ultrarelativistic in character (in-
volving massless preons), is Schrodinger-type in ap-
pearance with the traditional roles of coordinates
and momenta interchanged. Section IV sketches the
S3 structures of the spatial wave functions compati-
ble with the form of Eq. (2.11) as well as confine-
ment. These (complex) functions which are eigen-

1

states exp( —,iNA, ) of an operator A= i5~ break—up
into just three classes (N= 3n+1, 3n) which are iden-
tified with the three generations. Absence of such
functions in the quark model of baryons is dis-
cussed. Sections V and VI are taken up with the
solution of the radial equation for a definite model
of confinement. With some further similarity as-
sumptions on the dynamics of ttt and utt states (and
the analogous uuv and tuu states), a universal mass
formula for (l,q) states is derived. Comparison with
the data reveals unexpectedly good agreement on the
whole, but at the cost of a rather extended structure
of these composites. In this agreement, a crucial
role is played by a mass formula of the form
M -8 ' (where P is a slowly varying function of the
quantum numbers) as a natural outcome of the pos-
tulated dynamics. Section VII gives a critical dis-
cussion of the "good" (qualitative) and "bad" (quan-
titative) features of the model, and the extent to
which the latter can stand modifications without af-
fecting the former.

II. THREE-PREON DYNAMICS:
QUALITATIVE CONSIDERATIONS

As stated in Sec. I, we start with the preon model
of Ref. 9 wherein the (almost massless) t and u

preons are taken to have 3 and 3* color representa-
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tions, respectively, so that the possible color contents
of the various lepton and quark composites are as
follows:

e+(ttt): 3 x 3 &(3= 1+8'+ 8"+ 10

v, (UUU ): 3*X 3*X 3*= 1+8'+ 8"+10*,
u (utt): 3~x 3X3=3+3+6~+15
d(tvv): 3 X 3*X 3*=3*+3*+6+ 15 ~ .

While the desired multiplicities are no doubt
present, the problem of the "unwanted" color repre-
sentations would presumably have to be viewed as
one requiring dynamical treatment, possibly at the
level of the preonic interactions (see Sec. VI for a
further discussion on this point).

The hypercolor degree of freedom for preons may
be treated in formal analogy to the color attribute
for quarks vis-a-vis (color-singlet) hadrons. Thus
the usual (l, q) states are hypercolorless (singlets) by
design, while the formal existence of hypercolored
(l, q) states must be recognized as inevitable conse-
quences of a composite model. These states, which
are described in Ref. 9, are best regarded as "con-
fined" ones in hypercolor space. For the purposes
of the present paper, hypercolor is a "hidden" degree
of freedom for the singlet (l, q) states, except that for
pure l states (ttt, Uvu) this degree of freedom has a vi-
tal role in determining the overall antisymmetry of
the three-preon wave function in all the degrees of
freedom taken together under the assumption of
Fermi statistics. (For quark states this role is limit-
ed only to the two "like" preons). With this under-
standing we shall henceforth suppress the hyper-
color degrees of freedom from our discussion. This
leaves us with mainly two degrees of freedom, viz.
spin and momentum for active dynamical considera-
tion, since flavor symmetry is also trivial in this
simple (t, v) model. However, the possible existence
of an additional degree of freedom (such as a second
spin arising out of a chiral symmetry) need not be
ruled out at this stage, and its effect on the overall
symmetry may be taken into account through a suit-
able extension to the list of "allowed" three-preon
symmetries in the (truncated) spin-curn-momentum
space. Because of their higher degree of symmetry, /

states (ttt or Uvu) will claim our primary attention.
The main points of the argument will be later adapt-
ed without much difficulty to q states which have
more restricted symmetries (see Sec. VI). The first
task is to construct ttt wave functions of appropriate
symmetries in the various available degrees of free-
dom on lines already familiar for three-nucleon or
three-quark ' states, and in the same notation as
far as possible. Let the momentum space ttt wave
functions be denoted by (g;g', g";f')—totally sym-

metric (s), mixed symmetric (m', m") and antisym-
metric (a) combinations, respectively. Similarly, the
spin functions of corresponding symmetries are
X';X',X";X'=Q. In the same notation, the color and
hypercolor functions for ttt states must appear as c'
and h', respectively. However, to effectiuely accom-
modate other unspecified degrees of freedom (e.g., a
second spin ), it is enough to consider the extended
choice (h', h") for the h-function symmetries. The
choice h' does not give rise to any new configuration
in (gX) space, because of a simple duality relation
(f'~f",f"~ f') b—etween s and a symmetries. '

The ttt wave function 4 in (P,X) space associated
with the c'h' combination has the a forrri

'4l' =g'X" f"X'—+g'X' . (2.1)

Similarly, the (gX) functions associated with (h', h")
symmetries have the two m forms

4"=gX" f'X'+—P'X' g"X"+—f,"X',
4' =+X'+g'X" +P'X"+g"X'+g', X',

(2.2)

(2.3)

so that the complete wave function in this extended
CSSC 1S

~2X'- =X"+iX' (2.6)

are two independent complex combinations of the
spin- —, functions (X) of m symmetry. Likewise, we
define the complex space (g) functions

~&~~ =0"+&0'

~28s =W+i4, ,
(2.7)

by virtue of which (2.5) is compactly expressible as

4"+i O' =X'(g,"+iQI ) —2X+HM +2X—&s

Role of the spin operator X'

The significance of the spin functions X' and X—
is most succinctly expressed in terms of the effect on
them of the operator (1.1) whose space components

c'(0'h'+% "h") .

For further analysis, it is enough to consider (2.4),
which is richer in structure, and hence includes
more possibilities than (2.1). Also, for subsequent
purposes it will be convenient to put (2.2) and (2.3)
together in the complex form

+"+~+' =X'(g~'+~ g'~ )+~&X+(++~g')-
+~2X~( —gg'+ ~ Pi ),

where
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have the simple form o. &. o.2&& o 3. The crucial rela-
tions are

(2.9)

which show that g' and X+— are eigenstates of this
(fully antisymmetric) operator, while the real-form
functions (X', X") are not. In particular, the null
eigenvalue for g' implies that if the operator X'
represents the entire spin-dependence of the kernel,

3
then as an immediate consequence, all 5= —, three-

preon states would be effectively force free and
hence not of physical interest as composite (l, q)
states. In a similar vein, the fact that the complex
spin functions X+—are eigenstates of X' suggests, via
(2.8), that the dynamical equations would get decou-
pled in terms of the corresponding spatial (momen-
tum) functions 8M', again in complex form. In
particular, the opposite signs of the eigenvalues for
X+—[see (2.9)], would suggest that out of the two sets
of functions 8~ @ only one set, say 8M z would exhi-
bit the right sign for confinement and hence of
direct relevance to the (l, q) states, while the other set
8M s (corresponding to unconfined preons) can be
left out of further consideration. And since each set
consists of just three types of functions (two for 8~
and one for 8s), we see here the interesting possibili-
ty of associating these three functions with just the
three-tier generation structure of (l, q) states which
has by and large come to be accepted by consensus.

The foregoing contain the essential features of
what we believe could constitute possible answers to
the two issues (A) and (B) raised in Sec. I, even be-
fore going into any details of three-preon dynamics.
The crucial role is that of the spin operator X',
which (i) by its null effect on 8= —, states, straighta-
way renders them irrelevant, and (ii) by projecting
out just three of the six available space functions (in
complex 8 form) as having the right sign for a con-
fining kernel, offers the possibility of a viable gen-
eration identification. For more quantitative ideas
on the concrete fornis of the 8 functions represent-
ing the generation structures consistent with their
relative stability against electromagnetic (EM) de-
cay, as well as their mass spectra, it is necessary to
have a more quantitative forrIiulation of three-preon
dynamics centered around the spin operator X'.
Our concrete proposal in this regard boils down to a
spatial dynamic of the standard form,

[—V'g —7'„+V(p, M) E(M)]8~+ g( g', g —) =0,
(2.10)

where g', q are the two independent internal coordi-
nates, Vis a function of p=(g' + g )'~, and possi-

bly also of the composite mass M, while the eigen-
value E is itself a function of M. This equation,
though strongly reminiscent of a three-body
Schrodinger equation of the nonrelativistic type,
nevertheless admits of an alternative interpretation
as an (ultra)relativistic equation with the traditional
roles of position and momentum coordinates re-
versed. The latter picture which is more in confor-
mity with the (almost) massless character of the
preons held together by chiral confinement, 6 9'5

seems to emerge from some plausible confining as-
sumptions on the structure of the effective inter-
preon forces within the overall context of a Bethe-
Salpeter equation for the three-preon system. The
necessary steps leading from a three-preon Bethe-
Salpeter equation to the form (2.10) are outlined in
the next section. The derivation is admittedly
pedagogical and involves certain assumptions (to be
specified in context) on the (parametric) structure of
the kernel consistent with the three-body symmetry
of the ttt system, and its justification, if any, lies in
the obvious simplicity and intuitive appeal of Eq.
(2.10), which must stand out on intrinsic grounds ir-
respective of the limitations or otherwise of the
derivation itself.

III. A BETHE-SALPETER BASIS FOR EQ. (2.10)

In this section, we shall seek a justification for
Eq. (2.10) within a Bethe-Salpeter (BS) framework
which is believed to be the most conventional
dynamical basis for a relativistic system. Specifical-
ly, we shall be concerned with the following theoret-
ical aspects.

(a) A simple field-theoretic mechanism as a possi-
ble candidate for the effective spin dependence X'
for the three-preon kernel.

(b) A three-dimensional (instantaneous or null-
plane) formulation of the three-preon BS equation,
and its adaptation to a "harmonic" kernel.

(c) A justification for the foriii V(p)-p' based
partly on aspect (b) and partly on a three-way fac-
torizability of the BS kernel.

Mechanism for X' structure

Since, according to the qualitative analysis of Sec.
II, the spin structure X' plays a central role in the
understanding of the main observational features of
(/, q) composites, we must look for a basically spin-
flip mechanism for preon forces. A spin-fiip
mechanism in turn is expected to be magneticlike, in
contrast to the situation at the quark level where the
effective q —q or q —q interactions viz. , y„"'y„' ' have
an electric character and are dominantly nonflip in
content. Spin-fiip preon interactions can be con-
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ceived in both pairwise (o.„"„'o„'„')and three-way (X')
forms W. hile our discussion in Sec. II was based on
the three-way form X', it may be noted that the
pairwise form is also capable of generating qualita-
tively similar features, though at the cost of more
assumptions and less elegance. Our present prefer-
ence for the three-way form at the preon level stems
partly from consideration of elegance and simplicity
and partly from a desire to seek a maximal degree of
departure from the pairwise forms already so fami-
liar at the quark or nucleon levels.

A possible mechanism for generating a X' struc-
ture is the following. Consider a hypergluon field
F„„(= F„&) w—hich is an intrinsically antisym-
metric tensor (not of the usual B„V„—r) V& type)
and couples to a preon field g in the Pauli form
Po&„QF&„, suppressing the hypercolor labels. If the
Fz„ field in turn has a self-coupling of the form
Fz„F„~F~&, then it is not difficult to see that a
three-way mechanism like Fig. 1(a) can generate a
X' structure through standard field contraction
(Feynman gauge). More formal questions such as
renoiiLIalizability of these basic interactions, or how
many more types of effective preon couplings of
similar strength can be generated by them, are best
relegated to a later stage, contingent on the success
of the present investigation. At this stage, the X'
structure will be taken as an effective description,
notionally supported by a three-way picture like Fig.
1(a), together with its implied factorizability aspects.
We are thus led to consider a three-way kernel of the

property of y& invariance of the fo&„QF&, interac-
tion (since o„„commutes with y&) which helps
preserve the chiral character (gl ~) of the preon
fields. Since this statement holds separately at each
of the three-preon interaction vertices of Fig. 1(a),
the above property of chiral invariance with respect
to X' as a whole is immediately seen to hold for the
three-preon composite as well. This feature ensures
that the chiral SU(2) &&U(1) symmetry of the stand-
ard electroweak interaction at the (l,q) composite
level will not be disturbed by the three-preon in-
teraction (3.1) despite its strongly spin-flip charac-
teI.

BS equation in instantaneous form

For the three-preon dynamics we consider a BS
equation similar to one proposed recently for a
three-quark system in the instantaneous approxima-
tion and applied to baryon spectra under the as-
sumption of harmonic confinement. Most of the
considerations employed in Refs. 24 and 25 may be
directly adapted to the present situation, except for
certain simplifications arising out of the replace-
ment of the sum of three pairwise kernels in the
quark case by a single three-way kernel (3.1) in the
preon case. Thus the three-body BS equation may
be written as

3

(2~i)' J ~ Sp '(p;)+ (p;)
1

K(p,p')=i GF,z3X'R (p;,p ), (3.1)

3
= —f ' d p p (p p')pc(p, p')p '(p —),

I

P2
(2)

/

Pq

p1 (1) pr" Ibj: vtt

FICx. 1. Three-preon interaction model for (a) ttt and
(b) ttv states. For a significance of the numbers f and g,
see text. The complementary cases uuu and tuu are simi-
lar.

where the four-momenta (p;,p ) are shown in the di-
agram, 6 is a coupling constant, and F~z3 represents
the overall color dependence of the three-preon in-
teraction. R is a scalar function of the momenta
whose form will be specified below.

At this stage it is useful to record the crucial

(3.2)

SF (P( ) = i(m;+i Y' P) ) ~ (3.3)

(ii) Effective replacement of each factor m i y p;—

m; are the (small) preon masses if any, and the unex-
plained notations are as in Refs. 24 and 25. Reduc-
tion of Eq. (3.2) to the three-dimensional form via
the instantaneous approximation closely follows the
procedure already outlined in Ref. 24 and subse-
quently, 6 except for modifications due to the differ-
ence in the spin structure of the present kernel from
the earlier (quark) case. The main points of the re-
cipe, as adapted to the present three-way kernel may
be stated without further explanation as

(i) Elimination of Dirac matrices from the left-
hand side (I.HS) through the ansatz

e"(p, ) = g][s,-'( —p, )c"(p, ) . (3.4)
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on the right-hand side (RHS) by 2a]; (where co; is the
energy corresponding to three-momenta p;) in
preparation for the instantaneous approximation (ig-
noring certain commutators with X'). This gives
rise to a resultant factor (8a]]a]qa]q) on the RHS.

(iii) Introduction of the instantaneous approxima-
tion through the relation

3

«P')= f . . )l. @'o+J io+Joo+Joo™)@'(~ )
1

(3.5)
and the assumption that the kernel involves the
time components p;o at most as a sum of these quan-
tities that is to say, M [see Eq. (3.5)].

Insertion of Eq. (3.5) in (3.2) now involves the fol-
lowing integral on the RHS:

~2K= p~ —p~,
W6'g = —2 p ] + p 2 + p 3 o

(3.10)

(3.11)

and a suitable ansatz on the R function in keeping
with harmoniclike confinement. The latter form,
which was defined in Refs. 24 and 25 for pairwise
interaction only, now needs to be suitably general-
ized to meet the requirements of a three-way in-
teraction, in the spirit of Fig. 1(a). A possible har-
monic form consistent with three-body symmetry as
well as factorizability is

(2ooi) 1= f 5(p&o+poo+)ooo Af)

3

&& . . . . [dp;o(~ —p;o' —]~) '1,
1

which works out straightforwardly as

I ' =8']a]qa]3(N]+cog+c03 M) .

(3.6)

where A and 8 are constants, depending at most on
M. Qn the other hand, Eq. (3.11) is still not of the
desired form suitable for the language of the g,f
variables. An alternative parametrization which
also retains the features of three-body symmetry as
well as factorizability is expressed by

R =f(V'g iV'„)5 ( g —g ')6 (f f '), —(3.12)

Substitution of Eqs. (3.4)—(3.7) in (3.2), and taking
note of the factor 8a]]a]zcoq arising on the RHS from
step (ii) gives the three-dimensional equation

where

f(V' )=(C~A V' )(C~a]A V' )(C~a] AV' )

]'(a]]+a]~+a]~)+( p; )

Z+P3
1

~X(p;, p,',M)]I'( p,' ), (3.8)

(3.13)

and 1, a], a]z are the three cube roots of unity. Sub-
stitution of (3.13) in (3.9) and integration over g,f ' yields the same equation in a differential form,
namely,

where the X' in (3.1) may be read simply as
o ] oz&& o &, and the three-dimensional wave func-
tion in (3.8) may be directly identified as the com-
plex wave functions %"'+i%' defined in (2.8). Sub-
stitution of (2.8) in (3.8) and the use of (2.9) now
gives three types of uncoupled 0 equations appropri-
ate to the confined states:

(ct]]+cop +c03 M)(9( p; )

3

~~~+io3G f ]]d'~ aP i+ Po+ Pi)
1

X~(p, ,y,';M)e(p, ' ) .

(3.9)

(a]]~a]q~~q —M)0(g, q )

=2v 3F]ggGf(V'g ~V'„)8(g,f ) . (3.14)

—, X Ip; I
——,

' Xp (3.15)

where p =g + q and use has been made of Eq.
(3.10) in the last step. As a result, the energy opera-
tor on the I-HS of (3.14) takes the simpler form
(3/~&)p —M, which can be factored as in (3.13) by
virtue of the identity

A further reduction of this equation requires a mod-
est approximation which is best suited to the case of
negligible preon masses (a]; =

~
p; ~

) and consists in
the replacement

Factorizability of the kernel R

Further reduction of (3.9) is facilitated through
the use of two independent internal momenta g, g,
defined by

a ' b'= (a b)(a a—]b )(a—a]~b )——
with the identification

a= p, b=M.

(3.16)

(3.17)
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Taking account of the (factor-by-factor) correspon-
dence of (3.13) and (3.16), a solution of Eq. (3.14) is
recognized as

1/3

=(2~3GFi23)'/ (C+A Vg +AV„)g( g, ri),
(3.18)

in confoiiiiity with the "standard forin" envisaged
in Eq. (2.10).

The foregoing "derivation" has its obvious limita-
tions, apart from the semi-intuitive ansatz on the
kernel, such as neglect of certain correction terms
arising out of (i) space-time components of X'
(which are of order

~ p; ~

/M) and (ii) nonzero com-
mutators of X with S~ '( —p;) which once again
affect is space-time components. The only possible
defence for their neglect is that such details would
not be too meaningful in the context of an effective
preon kernel adopted in this paper pending the avai-
lability of a more ambitious (field-theoretic?) work-
able framework. As a comment on the instantane-
ous approximation, our experience with quark-level
dynamics suggests that a strong resemblance to the
former comes from the null-plane approximation
as well. Therefore, inasmuch as the kernel is taken
in an effective parametric form, a physical distinc-
tion between these two types of approximations is
not possible merely on the basis of the algebraic
forms of their respective equations.

Nature of canfinement

It is of interest to assess the nature of the extent
of the confining mechanism implied in Eq. (3.14) or
its "cube-root" counterpart Eq. (3.18). In this con-
nection, it is necessary to remember that g, rt are
momentum coordinates, so that the kinetic energy
(arising from inverse propagators on the LHS) and
potential energy (arising from the kernel on the
RHS) have effectively interchanged their roles in
(3.18) with respect to the "standard" (coordinate
space) description. Now in momentum space the
confining "force" behaves like p'/, as measured
with respect to the six-dimensional Laplacian in Eq.
(3.18). Translated in coordinated space, the above
statement would mean that with respect to the "La-
placian" p = —Vz —Vi, the confining force has a
huge power, that is to say R ', where R2=X2+ Y2.
This is far too steep compared to the modest linear
or harmonic confinements usually considered at the
quark level, and need not be a priori unwelcome con-
sidering the tightness requirement at the preon level.

IV. THE GENERATION STRUCTURE

z, z *=(/+if )/V 2 (4.2)

2z " z=p, 2z, 2z~ =ye —' (4.3)

Since the potential V in (3.18) is a function of p
only, the (y, A, ) dependence comes entirely from the
Laplacian operators which are expressible as

Vg +V'„=2V',' V, . (4.4)

Taking account of the permutation symmetries of
the g~ s functions, it is not difficult to see that the
equations are satisfied with the following z or z*
powers which carry the correct symmetries:

g+ 3n —i g+ gc3n g+ zg3n+ I
M1 Z ~ S Z ~ M2 Z 7 (4.5)

(n=0, 1,2, . . .), omitting an overall function of p in
each case. These three classes of functions which
may also be interpreted as eigenstates of the opera-
tor A = i Bi„w—ith eigenvalues , (3n+—1)and , n, —
represent our concrete proposal for the spatial struc-
tures of the successive generations, the lowest
members corresponding to n =0 in each case. These
lowest members may be identified as the three basic
generations e +,p+,~+, whose (A, ,y) dependence
comes entirely from (4.S) and corresponds to the
respective ground states (n =0) of the three series
(4.5). Thus

g(e+ ) y
—I/2e ri, /2 g(p—+ ) yoe0

g( + ) + 1 /2e iA/2— ,

(4.6)

The higher values of n correspond to a class of (vert-
ical) excitations of these (horizontal) generations.
Other classes of vertical excitations are (i) radially
excited states (corresponding to successive radial
functions of p) for each generation and (ii) orbitally
excited (L & 0) states, again for each generation.
Such a proliferation of vertical excitations, for each
horizontal generation is a necessary consequence of
any composite model whose eventual success if any
must depend on the details of dynamics, an essential
condition being that the first excited state of e+

Our next task is to spell out the structures of the
three generations which have been identified in Sec.
II as g~+ (two) and gs (one), in terms of appropriate
solutions of Eqs. (2.10) or (3.18). For the orbitally
unexcited (L=O) states, these g functions depend on
three scalars (p, y, A,) defined by

g2+g2=p, g —rl = —ycosA, ,

2g rj =ysinA, ,

or, equivalently, in teriris of the complex vectors
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should not lie below the ground state of r+
The A, dependence (4.6) of the lepton wave func-

tions, together with the orbitally unexcited nature
(L~ L—„—=O) of the three basic states e,p, ~, have the
following effect on EM transitions involving these
states. The electric dipole operator which is a linear
combination of V~ and V& (i.e., contains one unit of
L~ and/or Lz) will clearly give a zero matrix ele-
rnent for an electromagnetic (EM) transition involv-
ing any two of the states e,p, w (each of which has
L~ Lz ———0—) after integration with respect to the an-
gular variables dQQQ„. This selection rule is
operative against all the transitions prey, ropy,
and whey involving orbitally unexcited states,
though it will fail for their orbitally excited counter-
parts.

The A, dependence of these states is irrelevant for
this argument. For magnetic dipole transition on
the other hand, which involve the spin operators cr;
(independent of g and rj ), the A, dependence (4.6) of
e,p, w is crucial for the EM selection rule, since the
corresponding matrix elements would now survive
the angular integrations over g and rI. Noting that
the A, integration ranges over 0&A, (z~, it is im-
mediately seen that the @~ed and ~~py transi-
tions are straight away forbidden. The transition
~~ey, while not forbidden by the A, effect, is
nevertheless heavily suppressed due to poor match-
ing of their wave functions (corresponding to very
different masses). Taking both the electric and mag-
netic dipole arguments together, it is thus seen that
the overall EM selection rule against radiative lep-
tonic decays is rather strongly obeyed.

Comparison with qqq wave functions

Before ending this section, it is of interest to note
that the complex ttt wave functions in both spin
(X +—

) and spatial (8~~) degrees of freedom have no
formal analog with the real qqq wave functions in
the same variables which characterize baryon spec-
troscopy. (The contrast is of course traceable to the
role of the spin operator X' which has necessitated
the complex description). An important fallout of
the complex representations 8+-has been the emer-
gence of certain A, harmonics with half-integral
( —,1V) quantum numbers which in turn have been
identified with the generation structures. Though
known in the formal three-body literature, such A,

harmonics have not been in evidence in the standard
harmonic-oscillator classification of qqq states, the
nearest analogs being certain low-lying (70,0+)-type
statesz9 arising from the insertion of space-exchange
terms in the usual (harmonic-oscillator) quark
model. In the present preon context these A, har-
monics, which correspond to successive half-unit ex-

citations, are seen to provide a welcome interpreta-
tion of the generation structures. The fact that such
functions have not found a place in the standard
baryon spectroscopy so far need not be an adequate
reason for ruling them out at the preon level where a
richer spectroscopy is now predicted. In particular,
the e+ wave function with its singularity structure
(-y '/) has no partner in qqq spectroscopy, but
such a "mild" singularity is mathematically permis-
sible within a six-dimensional (g, ri) space.
Perhaps the nearest baryonic equivalent is the spa-
tial structure of the p+ state which lies above e+ by
a half unit of k excitation. On the other hand, the
~+ state which lies another half-unit above p+ again
has no conventional baryonic counterpart.

V. MASS SPECTRA OF ttt STATES

where X=3n+1, 3n, and substitute in (3.18) to ob-
tain the radial equation

r

g d 5dF 2$dF
p p

dp dp p dp
1/3

CG 1/3 +M 1/3 3
~2P F=O, (5.3)

where we have absorbed the factor

(2v 3F„,)'" (5.4)

in a redefinition of A and C before using the
parametrization (5.1). We now transform Eq. (5.3)
by the successive substitutions

We now come to the last phase of this investiga-
tion, viz. , an approximate solution of Eq. (3.18) to
obtain an explicit formula for the ttt mass spectrum.
This part of the program is provisional insofar as it
involves some speculative assumptions on the M
dependence of the parameters (C, A,g). This exercise
is intended more as an illustration of the feasibility
of the method to yield quantitatively realistic num-
bers than as a rigid attempt to define a complete
model. As such no formal justification (except di-
mensional considerations) need be given for the
parametric assumptions involved, viz.

3 =a M, G' =g A', C= —(M/m, )'

(5.1)
where (a,g) are dimensionless constants and A is a
(large) mass scale. A fixed (electron) mass m, has
been introduced in C for convenience without loss of
generality since its multiplying factor G'/ already
has an arbitrary constant g with it. We now make
use of Eq. (4.5) to write

(5.2)
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+( )=R(t)t r—',
and a subsequent scaling with x =at, where

1/3

(5.5)

(5.6) P(e+) =1.653=/3, ,

/3( +)=2.126, P(r+)=2.413 .
(5.20)

The next higher P value corresponding to N =2 is
(5.7)

P(l+) =2.631 . (5.21)

The resulting equation is

R +[—x —y(y+1)x +Bx ~ ]R=0,
X

81 3M
A&2

81

49a g

To relate these /3 values to the lepton masses, substi-
tution of (5.1) in (5.10) and (5.11) gives

1/21 1/7

where

(5.8) 1/3

X 1+ g (5.22)

2y+2=(18N+43)/7,

m=M'" —CG'"

(5.9)

(5.1Q)

(5.11)

which shows that M is proportional to P ' in this
model. Substituting for /3 values from (5.20) yields
the mass ratios

So far, no approximation has been made during the
reduction from (3.18) to (5.8). We now seek an ex-
plicit solution of (5.8) by reducing it to the Airy
form through an expansion about x =xp, where

xp —/3xp ~ +y(y+1)xp 2 ——0 .

An approximate solution is then

R (x) =Ai[b (x —xp)],
where

4
b =1——,Pxp 3i —2y(y+1)xp

(5.12)

(5.13)

(5.14)

Ai( —bxp) =0,
which has the sequence of solutions '

bxp ——s„(r=0,1,2, ... ) .

(5.15)

(5.16)

Because of the rather high-order vanishing of R (x)
at x =Q, we suggest that r = 1 is a physically better
candidate than r =0 for the first zero of (5.15). Sub-
stitution of (5.16) in (5.12) with the use of (5.14)
yields the approximate formula

P=s„3~ 5 '~ [1+y(y+1)s„5 '],
5~ = 1+2y(y+ 1 )s„

(5.17)

(5.18)

The y values of the first three generations (ep~)
which correspond to N = —1, Q, + 1 are given from
(5.9), whence their P values are found from (5.17) in

s„(r =1)=1.02 (5.19)

The eigenvalues are now given by the standard con-
dition R (0)=0, viz. ,

M„/m, = 196.7 (206.7),
M, /mp ——14.3 (16.9),

(5.23)

in unexpectedly good accord with the experimental
numbers (in parentheses). The next charged-lepton
state is predicted by the mass ratio

21

/M, = 2.631
2.413

=6.15 . (5.24)

VI. MODEL FOR q STATES:
A UNIVERSAL MASS FORMULA

In this section, we suggest a model for quarks as
utt (and tuu) states as a simple extension of the ttt
model developed in the foregoing. This is depicted
in Fig. 1(b) for utt states in which the strength (f) of
the coupling to v lines is taken to be different from
the corresponding strength (g) for the t lines. The
spin structure of the kernel remains the same as be-
fore. Though there is manifestly less symmetry in a
utt system compared with ttt, the classification of

This is a vertical excitation (n= 1) of e+ belonging
to the N=(3n —1) series, and its safe height above
the third (w+) generation should be regarded as a
welcome feature of the model. Other types of verti-
cal excitations are omitted for brevity. Because of
the confining nature of the interaction (see Sec. II),
there is no preon pair-production threshold.

For neutrino (uuv) states, identical considerations
to the above would lead to a mass formula similar to
(5.22), but with the replacement g ~f, signifying a
different uuu coupling strength via the hypergluons.
In this model the other two parameter (A,a) have
been kept fixed.
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spin g) and spatial (g) functions for vtt can
nevertheless be made on parallel lines to ttt, in much
the same way as, e.g., the qqq wave functions of A,
X states with unequal mass kinematics admit of (al-
beit in a broken fashion) S3 classifications similar
to those of N, b, states where the S3 symmetry is un-
broken. This convention facilitates a classification
of quark generations formally similar to lepton gen-
erations, but the broken S3 symmetry in the quark
case now helps realize the possibility of the mixing
of generations [in the manner of Cabibbo or
Kobayashi-Maskawa (KM)]. The spin mechanism
X' for keeping out spin- —, states remains valid.

As to the quark-mass spectrum, we again envisage
a simple extension of the parametrization (5.1),
wherein a and A are kept "universal, " but the con-
stant g is replaced by g f for vtt states [Fig. 1(b), in
accordance with the (empirical) rule that each t line
couples through a g factor and a v line through an f
factor].

Similarly, gf for tvv states. This prescription ex-
trapolates rather naturally to the replacement
g ~f3 already suggested for vvv states. We are, at
this stage, unable to offer any deep motivation for
this prescription except for its simplicity and factor-
able property. Using this prescription, the mass for-
mula for uct states can be read from (5.22) with

g ~g f, for dsb states with g ~gf, and for v, v„v,
with g ~f . In each case the parameters (a, A)
have been left unchanged. Note that since P de-
pends only on the generation parameter y(N) [see
Eq. (5.17)] and not on g or f, the P value would be
the same for all quarks and leptons of the same gen
eration (e.g. , e+udv, ).

Using the above considerations, the mass formula
(5.22) can be recast in a universal form (I), normal-
ized to the electron mass, viz. ,

0.511
0.511

8.20
9.45

1.11
1.08

100.5
100.5

1614
1859

219
212

Vp

6.1

0.35

1435
1435

23030
26530

3127
3030

87
5.05

TABLE I. Mass prediction (in MeV) for leptons and
quarks with e+ as input. The upper and lower figures in
each case correspond to the mass formulas (I) and (II),
respectively. See text for details.

e+

(I) M/m, =

where

P 1+k
1+ka~

21

(6.1)

ct=F/g, k =g3(A/m, )'~ (6.2)

and p=0, 1,2,3 for e+, u, d, v„respectively. P is the
P value [Eq. (5.20)], appropriate to the generation
under study. Note that neither k nor a enters the
charged-lepton series (epr) corresponding to a= 1,
whose mass ratios are already given by Eq. (5.23).
As to the other composites, the mass predictions of
formula (I) [Eq. (6.1)] are listed in Table I for the (il-
lustrative) values

k =0.60, a=0.25 . (6.3)

Unfortunately, this formula gives too large values
for the neutrino masses. Considerable improvement
in this regard can be effected by relaxing the univer-
sality restriction on the parameters (a, A). For ex-
ample, if the parameter a for the e+ case is assumed
proportional to g, viz. ,

~ (g) =&Og (6.4)

then its functional forms for u,d,v are determined by
the respective replacements

4~3F~/3 2~3F4~3 (6.5)

(II) M/m, =
1+ka~

(6.6)

where a,k continue to be given formally by (6.2), but
their values which give reasonable fits to the masses
are now different,

k =2.95, a=0.605 .

The mass predictions of (II) are listed in Table I,.
below those of (I) in each case. One now finds a sig-
nificant improvement in the neutrino masses,
without affecting the quality of the results for the
(uct) and (dsb) series. While the uct spectrum looks
rather good, the dsb series is not so satisfactory, d
being too low, b fairly low, and s rather high. On
the other hand, it is precisely for the dsb series that
one expects the Cabibbo or KM mixing to come
into play, as a result of which an upward shift in d, b
and an opposite (downward) shift in s would be a
distinct possibility. The effect of Cabibbo or KM
mixing on the dsb mass spectra which depends on
certain technical assumptions on the mass operator
in this model, will be taken up in a later communi-
cation.

With these replacements, one now arrives at the al-
ternative formula

21
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We end this section with some comments on the
color factor F123 for leptons and its counterpart
G 123 for quarks. As listed in the beginning of Sec.
II, in general colored ttt states (8,10) as well as vtt
states of the "wrong" color (6*,15) must necessarily
appear along with the desired multiplicities (1 for
ttt; 3 for vtt). To keep out the unwanted color states,
one would presumably need some dynamical
mechanism which may be introduced through a
suitable ansatz on the color factors F123 (for ttt) or
6123 (for vtt) noted above. A simple factorizable
forlll for F,23 consistent with Fig. 1(a) is

+123 P12P31P23
I 1 ~ I

&J 3 2 & 2 J

(6.8)

G 123 Q12 Q31P23 i

1 1

Q12 ———, ——, A, 1.A2,
(6.9)

where Q;1 is the color single-t projection operator for
a vt pair. This gives unit eigenvalue for the 3 repre-
sentation of vtt and zero for 15 and 6*. For vvv

states P;J must be interpreted as the projection
operator for an antisymmetric 3 representation of a
vv pair, while the definition (6.9) for Q;J remains un-
changed. The individual factors of F and G may be
indicated cyclically in Figs. 1(a) and 1(b), respec-
tively. At this stage we are unable to offer any
field-theoretic insight into these ad hoc construc-
tions which must be regarded as an effective
description with a certain degree of cyclic symmetry
appeal (like the spin operator X').

VII. DISCUSSION AND SUMMARY

In the foregoing, we have tried to present a con-
crete model of preon dynamics in which the em-
phasis is first on a general understanding of certain
crucial features of leptons and quarks (spin —,, gen-
eration structure), pending a deeper (field-theoretic)
level of formulation, many of which are under
way. The model, whose chief ingredient is a total-
ly antisymmetric spin operator X' in all the three
preons taken together has been developed in a stage-
wise fashion starting from a qualitative level and go-
ing into successively quantitative details. Already in
the first stage (Sec. II), it was found that the opera-
tor X (i) gives zero-force for S= —, states, thus

where PJ is the projection operator for a color-
antisymmetric (3*) tt pair. The operator F, which
(like X') is totally antisymmetric in color space,
gives "zero force" in all but the color-singlet ttt
states for which its eigenvalue is unity. Likewise for
vtt states [Fig. 1(b)] we suggest the following factor-
able foiin for G

rendering them dynamically irrelevant, and (ii) sin-
1

gles out only three classes of S= —, states (out of six
available ones) for the "confining interaction, " thus
providing a natural set of candidates for generation
identification. These qualitative results followed
directly from the properties of the X operator
without any further assumptions on the details of
dynamics. This operator also brought out the spe-
cial relevance of certain complex combinations of
pairs of spin functions (X',X") as well as space func-
tions (g',P";g,g') which exhibit a duality property
with respect to S3 symmetry. Such complex wave
functions do not seem to have had any counterpart
in conventional qqq spectroscopy characterized by
real wave functions in individual degrees of free-
dom, though they have been known in the three-
body literature.

In the second stage (Secs. III and IV), we have
suggested a more quantitative structure for the three
different generations as A, eigenfunctions of the op-
erator A= —iB~ with three distinct classes of eigen-

1

values , N (X=—3n+1,3n). Even such structures are
sufficiently general, insofar as these representations
require only a certain form of three-preon dynamics,
viz. a three-body Schrodinger-type equation (2.10) in
which the "potential" is a function of p only. This
form was sought to be justified in the sense of an ul-
trarelativistic equation with the traditional roles of
coordinates and momenta interchanged, which was
obtainable through a reduction of a three-preon
Bethe-Salpeter equation in the instantaneous approx-
imation. Even before going into the precise form of
the confining dynamics, the three types of A, har-
monics characterizing as many generations were al-
ready found to provide very strong selection rules
against EM transitions among lepton generations.

It is only in the third stage of this investigation
(Secs. V and VI) that more specific assumptions on
the model have been made. In particular, the form
of confinement, as interpreted in the coordinate rep-
resentation, is extremely steep, viz. a 12th power,
which partly accounts for the high powers ' evi-
denced in the mass formulas (6.1) or (6.6). The oth-
er factors responsible for such a strong power depen-
dence of M are the ad hoc assumptions (5.1) on the
M dependence of the main parameters of the confin-
ing interaction. The universality of the (l, q) mass
formulas (6.1) or (6.6) has come about from another
kind of ad hoc assumption, namely an implied prop-
erty of factorizability in the total strength of the
three-way preon interaction wherein the constants g
and f appear in the following combinations for the
various cases:

g'(t«), g'f (v«),
gf (tvv), f (vvv) .



1756 A. N. MITRA

With these (speculative) assumptions, though it has
been possible to obtain a reasonable mass spectrum
for (l, q) states in units of the electron mass in a very
economical manner (with just two parameters k and
a), these results must nevertheless be regarded as il-
lustrative of the basic applicational potential of the
model, rather than as a serious fit to the data.
Indeed the parametrization (5.1) is already in trouble
from another angle, that is to say, the mass scale of
the (l, q) form factors. For, according to the physical
content of Eqs. (5.5) and (5.7), this mass scale AM is
proportional to tz ~, which when substituted from
(5.1) gives

1/7

M —
sI g

( M6)1/7( ~~~

p 1)3

the last form being the result of normalization of the
parameters to the electron mass, according to Eq.
(5.22). This formula predicts for the mass scale of
the electron form factor a ridiculously low value of
65 MeV, which is directly traceable to the very
parametrization (5.1) which had led to a fairly suc-
cessful mass spectrum in the first place.

Such problems (serious as they are) are not beyond
remedy, especially since the parametric structure of
the kernel is rich enough to admit of many alterna-
tive forms of parametrization. However, in the
language of this section, such alternative forms of

parametrization would affect only the third stage of
our program, without vitiating the more general
features brought out in the first two stages. There-
fore, there is much to be said in favor of a deeper
formulation of the X' dynamics which not only con-
trols the spin- —, and generation stability aspects of
(I,q) states, but also has other desirable features.
One such feature, already noted in Sec. III, stems
from the commutativity property

as a result of which the chiral structure of a three-
preon wave function is not destroyed by the spin-
operator X characterizing the full three-preon ker-
nel, thus ensuring the preservation of chiral
SU(2))&U(1) symmetry of the standard electroweak
model at the composite (I,q) level.

Our efforts at a more fundamental formulation of
X' dynamics are still premature. In the meantime,
other related investigations including alternative
forms of parametrization of the confining interac-
tion so as to conform more consciously to the mass
scale constraints, as well as suitable applications in-
volving more direct use of the preon wave functions,
are under way.
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