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Cluster model of baryons
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Baryons are studied in the constituent quark model by reducing the three-body problem to
equivalent two-body problems involving a diquark and a quark. Rotational and radial excitations of
the diquark or of the third quark are calculated by using nonrelativistic mesonic qq potentials which
are fitted to meson masses. The results are found to be in good agreement with experimental baryon
masses. A strong suppression of the mesonic spin-orbit potential is required for light baryons, in
agreement with the conclusion of other authors.

I. INTRODUCTION

Nonrelativistic (NR) potential models of quark dynam-
ics have been used for quite some time now for the
description of baryons. ' The masses of interest are
made up partially of kinetic energies and partially of po-
tential energies. It is obvious that a NR potential model
does not describe correctly the kinetic energies of light re-
lativistic quarks.

The situation does not appear so hopeless if one concen-
trates instead on the total excitation energies, using a NR
potential which is already fitted, say, to be masses of qq
mesons. Such a model is essentially a procedure for mass
extrapolation which is more inclusive than those based on
algebraic mass formulas. It has the further advantage of
being applicable to complicated multiquark systems, if we
could isolate model-independent from model-dependent
features. Other more specific arguments for the possible
usefulness of the NR quark model for light hadrons in-
volve magnetic moments' and hadronic decays of
baryons. '

In the simplest color-dependent potential model, the
quark-quark potential in baryons is exactly half of the
quark-antiquark potential in mesons. This assumption ap-
pears to work reasonably well at the level of mass formu-
las' " or of simple potential model. ' ' This suggests
that many features of quark dynamics can be described sa-
tisfactorily in terms of pairwise interactions only, i.e., that
many-body forces do not have to be mentioned explicitly,
even if they might be important in other aspects of quark
dyrlarn ics.

Indeed, notable successes have been obtained by Isgur
and Karl using a one-gluon-exchange interaction in the
Breit-Fermi form. They found that the mass splitting of
baryons and their mixing angles in the SU(6) classification
are well described by the spin-spin and tensor parts of the
Breit-Fermi interaction. However, the spin-orbit potential
has to be strongly suppressed.

We have shown in an earlier paper" that the parameters
used to fit baryon {ground-state) masses in the mass for-
mula of De Rujula, Georgi, and Glashow' can also be
used to describe meson masses if a size correction is in-
cluded. It therefore appears profitable to study the
phenomenology of baryonic excitations using potentials

fitted to meson masses. Furthermore, if the three-body
problem is treated by a cluster model' to be described in
Sec. II, the problem reduces to equivalent two-body prob-
lems involving either diquark excitations or quark-diquark
excitations, or both. In this way, the similarities and
differences between baryonic and mesonic systems can be
made even clearer and arbitrary rotational and radial exci-
tations can be calculated.

This cluster model can be used with any potential
model, relativistic as well as NR. For definiteness we use
the NR meson potential of Liu and Wong. ' The relativis-
tic quark-diquark cluster model has been studied by
Lichtenberg and collaborators. ' The properties of the re-
sulting diquark clusters are described in Sec. II. Section
III gives a brief summary of the calculated results for
ground state baryon masses. The general characters of the
rotational and radial excitations in the A and X families of
baryons are described in Sec. IV. More detailed descrip-
tions of the results for the lowest negative- and positive-
parity excitations, including X*and 6*baryons, are given
in Secs. V and VI, respectively. Section VII contains brief
concluding remarks.

II. A CLUSTER MODEL FGR
HADRGNIC EXCITED STATES

The cluster model described below is designed for the
study of the excitations of one internal degree of freedom.
In this way, states belonging to the same Regge trajectory
can be isolated from the many excited states of the system.
The model is constructed as follows: (l) One of the inter-
nal coordinates is selected as the rotational coordinate
under discussion. (2) The remaining internal coordinates
are treated with the help of variational wave functions.
Simple Gaussian wave functions are used in the calcula-
tions reported here. (3) An effective potential in the
chosen rotational coordinate is constructed after integrat-
ing over the variational wave functions for the other inter-
nal coordinates (to be called variational coordinates
below). This potential includes spectator contributions
from the variational coordinates. We make one exception
in this scheme in order to simplify the calculation. All
cluster calculations are performed in the single-channel
approximation. Any configuration mixing is treated by
first-order perturbations, as will be described later. (4)

The resulting Schrodinger equation in the rotational coor-
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dinate is solved for different angular momenta to generate
a Regge trajectory. The equation can also be solved for
radial excitations. We show only a few such solutions
since only a few radially excited states are known experi-
mentally. (5) The variational parameter is separately
varied to minimize the energy of each rotational state. In
this way, the effects of centrifugal stretching can be in-
cluded.

For q baryons, there are two internal coordinates,

p=r~ —r2, and A, =R&2 13

The resulting excitations will be called the p mode and the
X mode, respectively. The quarks 1 and 2 make up what
we shall call the diquark part of the baryon. Antisym-
metrization of the wave function is simplified by putting
quarks of the same flavor in the diquark whenever possi-
ble.

The color operator in the diquark has the matrix ele-
ment

in a=(3X3)3
&A, it, ) =

in n=(3X3)6

as compared to the matrix element of ——", in the mesonic
(3X3)1 state. This means that the two quarks are con-
fined to each other in the color representation 3, but tend
to keep away from each other in representation 6. Color-6
components do not appear in q baryons, but can appear
in multiquark systems.

Thus only the color-3 component forms a relatively
well-defined diquark structure in hadrons. Its mass in our
model may be written as

M(q )=m, +m2+(p )/2p

The additive constant b is taken to be —82 MeV. The
other potential parameters, fitted separately to different
families of mesons, ' are shown in Table I. The quark
masses used are 0.12 (0.334, 1.51, 4.83) CxeV for the flavor
u or d(s, c,b). The u, d quark mass has been chosen to fit
the proton size rather than its magnetic moment.

Table II gives the 1s diquark masses and rms radii cal-
culated variationally with Gaussian wave functions. We
see that diquark masses are roughly the same as mesonic
masses, except that the spin-spin splittings are only a fifth
as strong. Diquark sizes are about a third bigger than
meson sizes, so that diquarks should probably not be con-
sidered a structurally independent part of hadrons, except
in those special situations where they are clearly separated
from the rest of the hadron.

III. GROUND-STATE BARYONS

We first test the cluster model on the SU(6) 56-piet
baryon ground states. The nucleon mass calculated with
the same variational Gaussian function between all quark
pairs is 1065 MeV. This decreases to 1060 MeV if the
Gaussian falloff constants in the p and A, modes are varied
independently. An even better result of 1051 MeV is ob-
tained by treating the A, wave functions by means of a ra-
dial Schrodinger equation. We shall refer to this as the re-
sult of our cluster model. It is actually possible to im-
prove the p wave function also. This has been done by
Rondinone' using an earlier version of our potential. Our
approximate result is quite adequate for the present pur-
pose of studying baryonic excitations. It shows in particu-
lar that Gaussian variational wave functions give fairly
good results.

The mass calculated in the same way for 5 is 1338
MeV. Then the calculated 6-X mass splitting is in good
agreement with experiment, but the absolute masses are
too high by about 110 MeV. To compensate for this, we
simply assume that the additive constant b in Eq. {3) for
q pairs should be taken to be

(3)

where m; are quark masses and p, is the reduced mass.
The last term is just half of a qq meson potential, ' and
contains a modified Breit-Fermi part of the form

fsF(r) =S(r)S& S2+ )V(r)L S+ VT(r)ST

where

TABLE I. Parameters of the Liu-Wong potential. The
parameters are determined through the following formulas:

a, (V)= 1.4/[1+ 1.2951n(rq/rr)],

where r ~ is the rms radius of the vector meson V in each family;
k =[pro'(V)/4]'~, where

co(V) = [0.75/[1+O. 4313)n(r~/rr)]J GeV;

rQ( V) = 1.05(rv/r~) fm,

and aQ ——2.7rQ.
2 4S(r) = —— exp

r

3e'(r) = ——. 1 —exp
2

1
VT(r) = —— 1 —exp

4

ST=30] pg ~
p' —o-&.O2

rp ——ap/2. 7

ap

ap

rp

2
3

(5)

Family

p/co

f/J
Y
K*

FQ

mg (GeV)

0.12
0.334
1.51
4.83

CXs

1.4
0.88
0.54
0.40
1 ~ 14
1.00
0.73
0.97
0.69

k (aeV')

0.0795
0.101
0.1492
0.205
0.0864
0.090
0.113
0.090
0.116

ap (fm)

2.84
1 ~ 10
0.224
0.056
1.97
1.50
0.65
1.39
0.54
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a'//a'(q )Flavor

TABLE II. Comparison of calculated diquark properties with the calculated properties of the meson
of the same flavor and spin. (q =u or d.)

Diquark Meson

S (r )'~ (fm) M (GeV) (r )'~' (fm)

CC

bb

c

0
1

1

1

1

0
1

0
1

0
1

0.50
0.65
1.02
3.19
9.72
0.73
0.82
1.94
1.96
5.26
5.27

0.73
0.93
0.56
0.29
0.16
0.66
0.78
0.66
0.70
0.67
0.68

1.0

1.4
2.3
3.3

1.2

1.3

0.24
0.77
1.02
3.10
9.46
0.55
0.90
1.90
2.01
5.26
5.30

0.53
0.72
0.45
0.21
0.11
0.46
0.60
0.48
0.52
0.49
0.51

With this adjustment the calculated masses are found in
Table III to be within about 25 MeV of experimental
masses. This is about the same in quality as the fit to ex-
perirnental meson masses used originally to define the po-
tential parameters. ' We therefore conclude that at this
level of accuracy mesonic potentials can indeed be used for
the study of baryonic systems. This conclusion is in
agreement with those of other authors. ' "

IV. EXCITED BARYQNS IN THE p AND I, MODES

We now turn our attention to our main concern of
baryonic excitations.

Rotational excitations within a diquark (i.e., p mode}
are expected to give Regge trajectories which are roughly
linear in Chew-Frautschi plots. However, their Regge
slopes cx' are not expected to be identical to those of the
corresponding meson, because cx' is inversely proportional
to the square of the characteristic energy scale of the prob-
lem:

—2
( yk 2)2/3

where

kgff —
16 (A I )12)3k

is the strength of the linear confinement potential. Since
(A, l A2) for color-3 diquarks is only half of the mesonic
value, its Regge slope is larger by a factor of 2 =-2.5.
The calculated result for q (q =u, d) diquarks is about 2.8
GeV in agreement with this expectation.

In our model, the Regge slope is effectively flavor
dependent. The expected Regge slope expressed in terms
of the Regge slope a'(q ) of light (q =u, d) diquarks is
given in the fifth column of Table II. We see that they do
not differ greatly from 1 except for the c and b di-
quarks.

Rotational excitations in the p mode are excitations of
the diquark. Its Regge slopes are not those of isolated di-
quarks however, because the third, or spectator, quark also
contributes.

The Hamiltonian for the p mode takes the following
form in the cluster model:

Hp ——m I+m2+m3+ (Px /2tu3)L o+I'p /2pI2+2 I X2VI2

+(~1+~2) ~3 Ic[V131(P/2)+2S12 S3C[ V13 j(P/2)+ ( 2 S12+S3) C[~13V13 l(P/2)

+2(3S12 P S3 P S12 S3)C[V13](P/2) I

Calculated Experimental

N
A
x

Q
A,
X,
Ab
Xb

(939)
1088
1184
1312
1226
1350
1502
1619
2222
2404
5518
5737

939
1116
1193
1318
1232
1385
1533
1672
2282
2450~
5500'7

TABLE III. Masses (in MeV) of ground-state baryons. The
nucleon mass has been used to determine the overall additive
constant of Eq. (6).

where (PI /2p3)L II is the expectation value of the kinet-
ic energy of the third quark in a ground-state A, mode, C is
a convolution operator which gives the folded spectator
contribution. The precise forms of C are given in the Ap-
pendix. At large p, both quarks in the diquark are far
from the spectator. The spectator contribution then
comes primarily from the long-range confinement poten-
tial. At large p, the spectator quark is roughly midway
between those in the diquark, i.e., r&3 =rfz/2, the convolu-
tion C[ VI3] thcll slnlpllflcs to Inst V12/2 If thc collflllc-
rnent potential is linear. This means that the spectator
contributes the same amount as the diquark itself, namely,
half of the corresponding rnesonic value. As a result, the
spectrum for large orbital excitations is identical to the
corresponding mesonic spectrum.

At small p, the spin-spin terms are also important.
However, the spectator contributions from this spin-spin
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potential vanish for spin-singlet. diquarks. Consequently,
the total color-magnetic (CM) interaction is only half as
attractive as that in the corresponding mesons, so that the
calculated excitation energies

AEI ——EL —Eo

for baryons are smaller than those calculated for mesons
for low orbital excitations.

This situation is illustrated in Table IV which compares
the calculated excitation energies of A hyperonic states
with those calculated for nonstrange spin-singlet mesons. '

(The latter are not the actual experimental results, since
the potential model does not distinguish between m and g,
reproducing only the isospin-averaged meson masses. )

An additional effect appears in baryons due to the de-
crease in kinetic energy of the spectator in response to the
centrifugal stretching of the diquark on orbital excitations.
This is quite significant in hE~, where it accounts for
about 0.06 GeV of the 0.2-GeV difference between the A
and the mesonic results.

For spin-triplet diquarks, the spectator contribution
from the spin-spin potential is attractive. It is stronger
than but differs in sign from, the repulsive diquark contri-
bution. The resulting cancellation makes the total CM in-
teraction much less important. However, the centrifugal
stretching effect in the spectator kinetic energy is still
present. For example, it accounts for 0.10 (0.12) GeV of
the difference in bE& (DER) shown in Table IV between
the X hyperonic states and the spin-triplet nonstrange
mesonic states. Except for this correction, the excitation
energies of X are similar to those in spin-triplet mesons
even at low orbital excitations.

Similar results can be obtained for the A; and X; fami-
lies in which the third or strange quark in A or X is re-
placed by a heavy quark Q;. We find, in Table V, that the
excitation energies AEI are basically independent of the
flavor of Q;, in spite of the fact that the effective interac-
tion has flavor-dependent parameters. The reason is that
the meson spectra to which the interaction parameters are
fitted are basically flavor independent. Table V shows
that some flavor dependence does appear in radial excita-
tion.

We turn next to excitations in the k mode, i.e., excita-
tions of the third quark against the diquark cluster in its
ground state. The Hamiltonian is similar to that shown in
Eq. (8) except that (1) the L =0 expectation value is taken
for the diquark kinetic and potential energies and (2) the
convolution operator involves an average over the diquark
wave function. The details are given in the Appendix.
One simplifying feature is that the confinement potential

TABLE V. Calculated excitation energies EEJ (in GeV) in
the p mode of hadronic excitations.

L=1

0.63
0.65
0.66

0.97
0.99
1.01

1.31
1.34
1.35

1.60
1.65
1.66

0.83
0.85
0.73

X
X,
Xb

0.36
0.36
0.36

0.78
0.80
0.80

1.09
1.12
1.13

1.39
1.42
1.44

0.71
0.73
0.86

TABLE VI. Comparison of the rotational and radial excita-
tions (in GeV) in the I, mode for A;(X;) families of baryons with
the corresponding excitations in the K,D, bq (K~,D*,b q~) fami-
lies of mesons. m is the characteristic excitation energy for the
meson.

Baryons

0.140
0.376
0.439
0.39
0.70
0.97
1.20
0.62

0.207
0.339
0.418
0.34
0.62
0.86
1.07
0.55

0.229
0.328
0.411

(0.33)
(0.61)
(0.83)
(1.04)
(0.54)

0.35
0.67
0.93
1.17
0.61

0.32
0.58
0.82
1.03
0.53

(0.31)
(0.56)
(0.80)
(1.00)
(0.51)

for large A, has the mesonic value. However, the diquark
mass is greater than the single quark mass, so that the ex-
ci.tation energies, as characterized by the co parameter of
Eq. (7), is decreased. We do not use the diquark mass of
Table II, but treat it variationally in each calculation.
This tends to increase it, leading to a reduced energy
scale co.

This effect can be seen by comparing the calculated ex-
citation energies shown in Table VI with the correspond-
ing mesonic results. For example, the A and X excitation
energies of the first column should be compared with
those of E and E' mesons, respectively, namely,
b,EI ——0.73 (1.14) GeV for L =1(2) for spin-singlet states

TABLE IV. Excitation energies EEI (in GeV) of hyperons
and mesons for small L in the p modes calculated for the Liu-
%'ong potential model.

Mesons

S=O L =1

n =2

0.73
1.14
0.92

0.56
0.91
0.75

0.50
0.85
0.71

Mes ons Mesons

0.63
0.97
1.31

0.83
1.32
1.65

0.36
0.78
1.09

0.47
0.84
1.16

S=1 L =1 0.45
0.81
0.70

0.47
0.81
0.69

0.47
0.81
0.69
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A FAMILY

X: 2, 4, nD Lp=4
D O, Q, R

Lg= 5
P

2

~Q
Q~DC] QP

Ly=4
Lp= 3

~D
D —7

l.8—
(f)
Cf)

2

Q~
D

~Q
Q

I+ 3+ 5+ 7+ 9+
2 2 2 2 2

5 7 9-
2 2 2 2 2

FIG. I. Comparison of theoretical masses calculated in a
single-channel cluster model with experimental masses for the A
family of baryons. 2,4 (D, g) denote the spin multiplets in the
A, (p) mode. n(R) denotes the radial excitation in the A, (p)
mode. Horizontal lines and rectangles give the experimental
masses.

and EEI ——0.45 (0.8l) GeV for spin-triplet states. Thus at
low orbital excitations in the I, mode, the excitation ener-
gies are roughly 85% (60%) of the spin-triplet (spin-
singlet) mesonic values. The resu1ts of Table VI do not
depend substantially on the diquark spin S&z, i.e., the
quark-diquark spin-spin interaction does not have signifi-
cant effect on excitation energies. This is presumably be-
cause after folding in the diquark size, this effective in-
teraction has become long-ranged. The resulting excita-
tion energies are thus much closer to spin-triplet mesonic
values in which spin effects are smaller.

A comparison with Table IV shows that these A, excita-
tion energies are significantly lower than those for p exci-
tations. Both modes of excitation are compared with ob-
served spectra for these A and X states in Figs. 1 and 2.
We use the symbols 2, 4, and n to denote the spin doublet,
spin quartet, and radial excitations in the A, mode. The
corresponding symbols for the p mode are D, Q, and 8,
respectively. The experimental masses are denoted by a
horizontal bar or rectangle. An additional question mark
denotes a possible structure of only one- or two-star quali-
ty in the Particle Data Group table. ' The orbital angular
momentum is also shown for groups for which its value is
not obvious.

We see that the observed rotational structure is quite
well reproduced. In particular, the —, (I.i =3) state and
the —, (I.

&
——3) state in A* are both reproduced, confirm-

ing the theoretical expectation that the p excitations move
rapidly above the A, excitations of the same L, as L, in-
creases. However, the possible structures of J =—', at
1.8 GeV and —, at 2.0 GeV are not accounted for in our
model.

2.8—
y D

y D

Q

4
4

2~2
4

Lp= 4

Ly= 4

X: 2, 4, n

P: D, Q, R

)
2.0—

(f)
CA

~Q
Q

Qg
R+D 4—4
Q

4 Ly=3
24+

e z
2 —?

I .2 — -2-

i+ 3+ 5 7 9+ II+

2 2 2 2 2 2
I 3 5 7 9 li
2 2 2 2 2 2

FIG. 2. Comparison of theoretical masses calculated in a
single-channel cluster model with experimental masses for the X
family baryons.

In X' states, the I.
&

and I.~ modes are expected to lie
much closer together, although the L& states remain
higher. Figure 2 shows good agreement for I. &2. How-
ever, there are three or four broad, questionable, negative-
parity structures which appear roughly between the I.=1
and L, =3 groups of excited states. It is not clear whether
they belong to one group or the other or to none.

For the positive-parity states, the p and k excitations are
dynamically mixed. This mixture is carried out via per-
turbation which will be described in Sec. VI. However,
due to the presence of the s quark, the degeneracies be-
tween the p and A, modes are lifted so that the mixture is
much smaller than those in X* and 5*. We shall there-
fore denote these positive-parity states by their major corn-
ponents. In both A* and X~, the lowest calculated states
of radial excitations are those in the A, mode. They are
higher than observed masses of the first excited —,

' states
by about 0.1—0.2 GeV. The first radial excitations in the
p mode lie higher by about 0.2 GeV. This radial excita-
tion in A* should probably be compared with the observed
second excited A~ state at 1.8 GeV. If so, the model mass
is also too high by 0.1—0.2 GeV, but the model p-A, mass
splitting agrees with the observed value.

Similar analyses can be made of similar excitations in
hadrons containing one heavy quark. For excitations in
the A, mode we must examine the reduced-mass effect of
Eq. (7) carefully because quark masses vary greatly. We
find however that their effect is compensated by changes
in the fitted strength of the linear confinement potential.
Their combined inAuence on the excitation energy scale m3
is quite modest. According to Table VI, it decreases only
slightly as we go to heavier quarks. The corresponding ex-
citation energy scale m for mesons is also given in the
table, where we find ~3/co decreasing slightly to 80% (or
2 '~

) for massive quarks. A more detailed discussion of
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the excitations of these heavy hadrons does not appear
worthwhile in the absence of experimental masses.

Finally we should mention that in the " families, the di-
quark is made up of strange quarks while the third quark
is the lighter u or d quark. As a result, the p excitations
appear at lower masses than the corresponding k excita-
tions. Otherwise the dynamics is describable in the same
simple terms, with quite distinct p and A, rotational excita-
tions. The calculated results shown in Fig. 3 are of some
interest because a number of possible =~ resonances might
have been seen, ' but most of these cannot be plotted in
the figure because their spins have not been determined.

V. P-WAVE BARYONS

FA IVI I LY

2.8 (-

Ly= 4
z

4

X: 2, 4, n

p: D, Q, R

Lp= 4 4
24~

)
2.2—

CA
Cf)

1.8—

~4
@4&2

n

n Q

/ R

Q D
R

4

Lp 3

1.4
2

I+ 3+ 5+ 7+ 9+ ll+

2 2 2 2 2 2
I 3 5 7 9
2 2 2 2 2

FIG. 3. Comparison of theoretical masses calculated in a
single-channel cluster model with experimental masses for the =
family of baryons.

For baryons with three identical quarks (such as N, 5,
or II families}, the p and A, excitations are degenerate.
This is because the Hamiltonian commutes with the per-
mutation operators. ' This degeneracy is closely, but not
exactly, reproduced in our cluster model because of the
dissimilar treatments of the p and X degrees of freedom.

For P-wave baryons, there is no dynamical mixing of
the p and A, modes of excitation, because their orbital wave
functions are orthogonal. However, for baryons with
three identical quarks, antisymmetrization requires that
the wave function contains 50%%uo p excitation and 50% A,

excitation. This result is readily seen in the usual
SU(6) XO(3} classification of states. ' Thus we take sim-
ple averages of calculated masses for appropriate pairs of
p and A, excited states to generate the correct masses. The
results are compared with experimental masses in Table
VII. The state labels in the first column give the flavor
and spin dimensions.

TABLE VII. Masses {in MeV) of P-wave X*and 6*baryons.
The state labels in the first column give the flavor and spin di-
mensions. A, original model; B, with zero-range spin-spin in-
teraction; C, no spin. -orbit interaction.

State

1394
1453

Calculated

8
1490
1540

—1530

Experimental

S 11(1520—1560)
D 13(1510—1680)

N*(8,4) 1468
1592
1645

1468
1592
1645

-1610
S 11(1620—1680)
D 13(1670—1730)
D 15( 1660—1690)

1441
1489

1620
1670

-1660 S31{1600—1650)
D 33( 1630—1740)

%e see from Table VII that the calculated P-wave X*
and 5*masses are lower than the experimental values, ex-
cept for D15(1670) for which there is agreement. We be-
lieve that this can be attributed mostly to the fact that the
range of the spin-spin interaction in our qq meson poten-
tial is too long, thus giving rise to too large hyperfine
splittings in the relative P wave. To correct for this, we
may impose the additional condition that this spin-spin in-
teraction be switched off when S„,&Si2+S3. If this is
done, Sl 1 and D13 in N*(8,2) move up by about 90 MeV,
while S31 and D33 move up by about 180 MeV, both in
much better agreement with observed masses. If we fur-
ther switch off the spin-orbit interaction, we will restore
the observed near degeneracy of the N*(8,4) states at
=—1610 MeV. Among these states, S1 1(1700) and
D13(1700) should be further pushed up somewhat by mix-
ing with their N*(8,2) counterparts through the tensor in-
teraction. This effect has not been included here.

As is well known, the observed near degeneracy of
the N*(8,4) states shows that the spin-orbit interaction
used to fit the fine splittings in the p, co family is too large
for the P-wave bsryons. This problem has been discussed
by Dalitz, Gromes and Stamatescu, and by Isgur and
Karl. 4*5 Recently, Fiebig and Schwesinger have suggest-
ed that the needed suppression of the spin-orbit potential
might arise from the effects of gluon confinement and of
Thomas precession when the problem is treated in the re-
lativistic MIT (Massachusetts Institute of Technology) bag
model. Finally, we should point out that the need to have
a strong spin-orbit term for light mesons is not as well es-
tablished as that in charmonium. On the other hand, it is
not known experimentally whether the strong spin-orbit
potential in charm onium is suppressed in charmed
baryons. It thus appears that further theoretical and ex-
perimental studies of this spin-orbit problem might be re-
quired.

P-wave A* and X* baryons are simpler in structure be-
cause X and p excitations appear in different states. Table
VIII shows that most calculated masses agree quite well
with experimental masses. The agreement would be im-
proved if the spin-spin potential has a shorter range and if
the spin-orbit potential is turned off, in agreement with
the findings for the N* and 6*states.
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TABLE VIII. Masses (in MeV) of P-wave A and X baryons.

2S+1 JP Mode Calculated Experiment

1

2
3
2

1447

1493

S01(1405)
D03(1519)

1

2
3
2

1612
1672

S01(1660—1680)

D 03( 1685—1695)

1

2
3
2
5
2

P

P

P

1631

1746

1789

S01(1720—1850)

D 05( 1810—1830)

1

2
3
2

1621

1666

S 11(1620?)

D 13(1670?)

1

2
3
2

1603

1617
S 11(1730—1800)

D 13(1665—1685)

1

2
3
2
5
2

1618

1677

1705

S 11(1730—1800)'

D 13( 1665—1685)'

D 15( 1770—1780)

'Alternative assignments.

VI. POSITIVE-PARITY BARYONIC EXCITATIONS

In the SU(6)XO(3) classification, the flavor-spin and
the orbital angular momentum contents (flavor-spin multi-
plet, I. ) for the low-lying excited baryons with positive
parities include the following:

(56' 0+)=Ss= (No+No»
2

(70,0+)—S —. v 2
(4o—4o»

y pX

(56,2+)=Ds= (tt z+4z»
2

(70,2+)=D~ = M2

q pA,

(20, 1+)=Pg ——Qf

where S, P, and D designate the total orbital angular mo-
menta, the subscripts S, M, and A stand for the sym-
metric, the mixed symmetric, and the antisymmetric per-
mutations of the spatial wave functions. The subscripts of
g denote the orbital angular momentum l.. Unlike P
wave baryons, 1t PL and ltl mix dynamically, so that the
degeneracies between (56', 0+) and (70,0+), and between
(56,2+) and (70,2+), are removed. The splittings among
all these states have been studied in the past. In particu-
lar, it has been shown ' ' that the first-order perturba-
tion of any central nonharmonic potential causes various
states to move away from their degenerate X =2 harmon-

E(20, 1+)=E(70,2+)+0.26 (12)

As a further check on this procedure, we calculate 6
directly using harmonic-oscillator wave functions. The re-
sult is 335 MeV in good agreement with the above result.

Table IX gives our calculated masses including the
Isgur-Karl perturbations for the positive parity N* and A~
resonances. They are seen to compare well with the exper-
imental masses. There are several problems, however.
The calculated mass of the Roper resonance P11(1470) is
still about 150 MeV too high. (We are not free to change
the value of 6 to fit its mass, but the effect of tensor mix-
ing of D-wave states has not been included. ) The calculat-

ic oscillator energy by the same relative proportions.
We face a slightly different situation in our cluster

model. The splitting between the 0+ and 2+ states due to
the confinement and color-Coulombic potentials are al-
ready included, but different 0+, or 2+, states are still de-
generate. The unknown splittings can be estimated im-
mediately by using the first-order perturbative pattern of
Isgur and Karl mentioned above. For example, the aver-
age sPlitting of our unmixed l(Po/go and 1(Pz/gz states is
about 150 MeV. Since this is 0.456 in the Isgur-Karl no-
tation, where 6 is four times the off-diagonal matrix ele-
ment

(QPo
~

V(confinement+color Coulombic)
~
1to)

we immediately have 6=-330 MeV. The Isgur-Karl split-
tings are then

AE() ——E(70,0+ ) —E(56',0+ ) =0.5h —= 165 MeV

AE2 E(70,2+ ) E(56,2+ ) =——0.2b, =—65 —MeV

In addition, they also give
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TABLE IX. Masses (in MeV) of excited positive-parity X~ and b baryons labeled by the dominant
component as defined in Eq. (10).

2S+1 JP Mode Calculated Experiment

& +
2

Ss
SM

1620
1790
1800

P 11(1400—1480)

P 11(1680—1740)

3+
2
3 +
2
3 +
2
3 +
2'

Ds
D

SM

1732

1800

1878

1944

P 13(1690—1800)

g+
2
7+
2

Ds

DM

1802

1870
1971

2028

F 15( 1670—1690)

F15(2000?)

F 17( 1950—2050)

1+
2
& +
2
3+
23+
2

Ds

Ss
Ds

1810
1733

1777

1810

P 31(1850—1950)

P 33( 1500—1900)

3 +
2
5+
2
5 +
2
7+
2

DM

DM

Ds

Ds

1821

1903

1877

1960

P 33(1860—2160)

F35( 1890—1920)

F37( 1910—1960)

ed mass for 6*(2,Ds) at 17—33 MeV is lower than the
experimental value for F31(1910). This suggests again
that the spin-orbit interaction is far too strong.

For the A* and X* states, the presence of an s quark
means that the unmixed A, and p modes are no longer de-
generate because (primarily) of the reduced-mass effect.
There is an additional dynamical mixing, which is handled
as follows. The off-diagonal matrix element b, /4 is es-
tirnated from the spacing between the mean positions of
1(jo/1(0 and fz/fz to be 59 MeV for A* and 71 MeV for
X~. A 2&(2 matrix is then diagonalized for each set of L,

states to give the final results. Table X shows that these
calculated values compare quite favorably with the experi-
mental masses.

We should mention that we have not calculated the
masses of the $0, f2, and f~ (P~) states, but they are
all calculable in our cluster model if we use a P-wave vari-
ational function for one of the internal coordinates.

We have done similar calculations for the baryon fami-
lies =, Q, A„X„Ab, and Xb. In Table XI, we report on
the calculated results for only the lowest-mass state of
each J . These states have not been observed experimen-
tally.

and differences in quark dynamics as manifested in
baryon masses as compared to meson masses. We have
further shown that the use of only two-body quark-quark
potentials deduced from meson spectra can give a rough
picture of baryon masses even in such an unsophisticated
model as a nonrelativistic potential model. Finally, we
want to mention once more some of the limitations of our
oversimplified model —the unrealistic description of kinet-
ic energies, the need to lower all baryon masses by about
100 MeV, and the need to suppress the strong spin-orbit
potential at least in certain states.
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APPENDIX

Equation (8) is the cluster Hamiltonian for the p mode
with the contribution from the third particle folded into
the variational wave function in the S wave

' 3/4
VII. CONCLUSIONS 2cx 2

e
—aA,

We have shown that it is possible to use a cluster ap-
proach to study excited states in baryons and that this ap-
proach is also useful because it emphasizes the similarities

The kinetic-energy contribution due to the third particle
is therefore
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TABLE X. Masses (in MeV) of excited positive-parity A* and X* baryons labeled by the dominant

mode of orbital excitation.

2S+1 JP

+
2

3 +
2

5 +
2

&+
2
&+
2
&+
2
1+
2

3+
2

3 +
2

3 +
2

5+
2

5+
2

Mode

Sg

Sp

Dp

Sp

Dp

Sg

Sp

Dp

Dp

Calculated

1693
1930

1744

2034

1795
2087

1820

1896

1994

1969

1884

2065
1927

2001
1934
2033

1948

2064
1977
2115

Experiment

P01( 1560—1700)

P 01( 1750—1850)

P03( 1850—1910)

F05(1815—1825 }

F05(2090—2140)

P 11(1630—1690)

P 11(1880?)

P 13(1840?)
P 13(2080?)

F 15( 1900—1935)

F 15(2070?)

2004
2161

F17{2025 —2040)

&~~ /2v3&i=a=2 3(x

2p3

where

(m )+m2)m3
P3=

m)+m2+m3
(A2)

For the central and spin-spin potentials

C &s 1
V&3 ————„(kr&3+b') + 4 r)3

ss S(r,3)
16m ~m3

(A4)

The convolution operator C for the potential contribution
is defined as

' 3/2

C[ V(3](p/2) =

the convolution integrals yield for each term the following
expressions:

C [1/r )3 ](p/2) =—erf(v 2ap/2)
2

P

JP +
2

5 +
2

+
2

TABLE XI. Calculated masses (in MeV) of the lowest-mass

states of each J for a number of baryon families. The spin-

orbit and the tensor interactions are neglected in A„X,, Ab,
and Xb-

erf( ~2ap/2)1

2'
(A5)

C[r~3](p/2) = e I~ ' ++ rf(Ve2ap/2)

1850
2168
2763
2957
6050
6148

1954
2105
2836
2957
6120
6148

1950
2210
2836
3017
6120
6302

2084
2237

3017

6302

C[S](p/2)=S(0) exp. —

2&
X 2a+ 1 /rq 2

20'. /ro
, (p/2)'

2'+ 1/ro

3/2
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For the spin-orbit potential

so s
W(r13)

4m1m 3

the convolution gives

(A6}

13W(r13)] '
2 CI. &(p/2)+ C[W](p/2) 'L12

4ap d(p/2)

To evaluate C [W](p/2) at short distance, we expand W as

W(r, 3)=—— (1—e )= g C„r,3
3 1 zn —2

2 3
~13 n=1

where

C„=——,( —)"+'P"In!, P= 1/a0

Hence
n —1

(A7)

00 00

C[W](p/2)= g C„W2„(p/2)= g C„
n=1 n=1

with
1/2

W2(p/2 'Y)
I y=2a (A9)

3 2A
W2(p/2, y) =——2. y.

We find more specifically that

e e—2(za2/y —~)(p/2]~ ~ P
y.

(p/2) . (A10)

W2(p/2) = ——, erf(~2up/2)/(p/2)

~4(p/2} = ——~

3
2

1 + (p/2) erf(3/2ap/2)+ e '1'r ' (p/2)4a ~2o,m- (A 1 1)

3
W6(p/2) = ——

2
3 3(p/2)+ +(p/2) erf(3/2ap/2)+ +(p/2) p e '1'r ', (p/2), etc.5

16m 4a &2~a.

Asymptotically, C[W](p/2) approaches W(p/2). This is implemented by matching the truncated series of Eq. (A9) to
8'(p/2} using the following approximation:

3

C[W](p/2)~ g C„W2„(p/2) e '~~ 1 +(1—e 11'~ '
) W(p/2) (A12)

where 5 is chosen to be a/3 so that the match distance is greater than (A, )'~, the rms radius of the third particle from
the center of the diquark. Since the tensor potential has the same form as that of W(r13), we applied the same procedure
to evaluate C [ V ] as was done for C [W].

For the A, mode, the cluster Hamiltonian is written as

rn1+ r2n+r3n +(~p /2912)L =0+Xi'X2( V12 )L 0+PA /2p3

+.(A, +A2) A3[ C[ V13](A )+2S,2.S3C[ V13](A )+( 2 S12+S3).C[L,3V13 ](A )

+2(3S12.A, S3 A S12 S3)C[V13](A))

In this case, the contributions from the diquark pair are folded in by using the variational wave function
3/4

2a —ap2

(A13)

(A14)

We obtain

&&, /2p12&L=0=2 3'
2@12

and
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( V12 lL =0
3 k, s& O's 1 2(x+&' +
16 v'2tra V 2m 6v arm )m2 ro3 2rt+1/rq2

3/2

0) 02 (A15)

1I 3e
~2a ( ~ ~ r )

~ I 3

—2a( C—r )2
C[ V, 3](A, ) =

The convolution operation defined as
3/2

2a
(A16)

is the same as C [ V~q j(p/2) when the argument p/2 is replaced by k.
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