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It is shown that the discrepancy between the measured rate for g'~Joy and that predicted by
nonrelativistic models can be accounted for by (v/c) relativistic corrections. A Breit-Fermi Hamil-

tonian is used to predict the energy level structure and E 1 transition rates in the charmonium and Y
systems. It is obtained from an instantaneous approximation to a Bethe-Salpeter equation whose
kernel is composed of Coulomb-gauge gluon exchange and a scalar confining piece. The model ac-
counts for the observed fine and hyperfine structure of the charmonium levels and for the E1 tran-
sition rates. It is used to predict the level structure and E1 rates in the Y system. It is shown that
an extension of Siegert's theorem is valid in the relativistic regime. This result is useful in analyzing
E 1 transition-matrix elements.

I. INTRODUCTION

Nonrelativistic theories of quarkonium have been not-
ably successful in accounting for the energy-level spec-
trum of heavy mesonic states. ' However, such theories do
not account for the fine structure and hyperfine structure
of the energy levels, and in addition they cannot account
for the measured rates for g'~X&y decays. As in posi-
tronium, relativistic corrections will give the spin-spin,
spin-orbit, and tensor forces that cause the hyperfine- and
fine-structure splitting of the levels. In this paper we re-
port a study of a Breit-Fermi Hamiltonian that contains
(v/c) corrections to the nonrelativistic theory. The Ham-
iltonian reduces to the one-gluon-exchange-plus-linear-
confinement model of Eichten et al in no.nrelativistic ap-
proximation. It can be derived from a Bethe-Salpeter
equation with a kernel evaluated in instantaneous approxi-
mation. The kernel includes transverse- as well as
timelike-gluon exchange taken in Coulomb gauge. The
transverse-gluon exchange gives rise to spin-spin and ten-
sor forces, and the spin-orbit interaction has contributions
from both the gluon exchange and the linearly confining
potential. We solve the Breit-Fermi Hamiltonian and find
that we can fit the observed charmonium and Y spectra
using the parameters of Eichten et al. with ininor modifi-
cations. The interaction is taken to be flavor independent,
aside from the slow decrease in the running coupling con-
stant. We calculate El radiative transition rates and find
that relativistic effects reduce appreciably the g'~Xoy
rate and also to a lesser degree the g'~g&y rate. When
these corrections are combined with the coupled-channel
effects estiinated by Eichten et al. , predicted and mea-
sured rates agree within errors. Relativistic effects will
also be appreciable in certain bb radiative transitions. %'e
have used our model to calculate El transition rates for
the states expected to be present below the open-b-flavor
threshold. Comparison of our predicted bb level structure
and E1 transition rates with measured values will check
the validity of our model.

In a previous paper, we reported that there are
numerous (u/c) corrections to the nonrelativistic

(convection-current) operator that describes radiative tran-
sitions. To get all (u/c) effects one must evaluate ma-
trix elements using eigenfunctions of a Breit-Fermi Ham-
iltonian. It turns out that there are cancellations in the
long-wavelength limit and E1 transition amplitudes
correct to order (u/c) are given by matrix elements of r
(aside from small retardation and recoil corrections). In
nuclear physics, this result is known as Siegert's theorem.

Using this result, it is easy to see why small relativistic
corrections appreciably alter some E1 transition ampli-
tudes. Consider for example P'~+Jy. The g' is a 2 S,
state whose wave function has one node, while the +J are
1 PJ states. There is a strong cancellation in the matrix
element of r due to this node and the result is sensitive to
small changes in the wave function. This is to be con-
trasted with XJ~(J/g)y transitions where there is no
such cancellation. Relativistic corrections are not appreci-
able in the XJ~(J/f)y rates.

Similar effects occur in bb transitions. The 1P~1S
transition rates are insensitive to relativistic corrections
while there are appreciable effects, though not as large as
in charmonium, in 2S~1P rates. In bb we expect to see
other transitions where relativistic effects may be large;
for example, (n+ I) Po~n S& transitions. The matrix
elements for such transitions are small, but the photon
frequencies are large and compensate. Generally, for ex-
ample, 2P~1S rates are expected to be comparable to
2P~2S rates. However, in some cases, there is a strong
suppression due to relativistic effects. We find, for exam-
ple, that the 2 Po~l Sj rate is reduced by a factor of 5.
Generally our results for such transitions are model
dependent and are at best rough estimates.

In charmonium (u/c) is much bigger than in posi-
tronium (-0.2). Consequently, spin-spin, spin-orbit, and
tensor forces are relatively large. In positronium these
forces are usually treated as first-order perturbations.
Indeed, since (u/c) and higher-order corrections are
neglected in the Breit-Fermi Hamiltonian, it would be in-
consistent to do otherwise. In fact, they cannot be treated
otherwise because the spin-spin interaction is a contact 5
function and the spin-orbit and tensor-force potentials
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diverge like r at small distances. When such interac-
tion energies are attractive, as they are in the 'So and Po
states, the eigenvalues of the Hamiltonian have no lower
bound. This is a spurious divergence which, presumably, .

is cured by taking (v/c) and higher-order corrections into
account (radiative corrections also must be included).
Though these potentials become very large at small dis-
tances, their effects are small because they become large
only at distances smaller than the Compton wavelength of
the electron. Since the Compton wavelength of the elec-
tron is very small compared to the radius of the bound
state, when these potentials become large the radial wave
functions of the bound states tend to zero sufficiently rap-
idly for the matrix elements to remain small. This is the
reason why perturbation theory adequately accounts for
their effects. In charmonium as in positronium one has
R=(am) ', where R is the radius of the bound state;
however, for charmonium a =a,=—,', whereas for posi-
tronium a= », . Nevertheless, we find that in charmoni-
um also (v/c) effects are perturbative or nearly so. When
this is the case, the detailed behavior of these effects at
small distances is not important.

In order to use our extension of Siegert's theorem, we
need the eigenvalues and eigenfunctions of the Breit-
Fermi Hamiltonian with relativistic corrections to order
(v/c) . To obtain such wave functions it is necessary to
soften the singular nature of the potentials at small dis-
tances. Since those singularities are spurious and, presum-
ably, cured by the (v/c) and higher-order corrections, we
attempt to include such effects in our calculation simply
by smearing out the color charge. Instead of taking the
Coulomb potential of a point charge, we take the gluon-
exchange potential to be that due to a Gaussian-
distributed color charge whose mean-square radius is
given by the Compton wavelength of the quark. Precisely,
the radius is given by a parameter f, where
(r ) =1.5(fm) . With our assumption that perturba-
tion theory is valid, our results should not depend upon f
provided f is not too small nor too large. Iff is too large,
we will get the "fall" to the center in Po and 'So states
when we solve the Hamiltonian for its eigenvalues and '
eigenfunctions. If f is too small, the color charge will be
smeared over distances comparable with the quarkonium
radius which would be unacceptable. These considera-
tions restrict f to the range 1 &f& 2. For convenience we
took f=v 2. This value gives a nonrelativistic potential
that is essentially the same as that of Eichten et al. for
r &0.1 fm (see Fig. 1), and therefore also agrees with the
"universal" potential-energy curve for 0.1 & r ( 1 fm
found in other models that also fit the charmonium and Y
spectra. ' We studied how our results vary with f and
found that the El transition rates are insensitive to
changes in f as are most of the charmonium and Y energy
levels. However, we found that the hyperfine splitting
was sensitive to f; and also, but to a lesser degree, the po-
sition of the 1 Po state of charmonium. Perhaps it was
fortuitous, but we found that the value f =V 2 gave good
agreement with the observed J/g-g, mass splitting.

Since our value of f=~2 gives reasonable values for
the hyperfine splitting in charmonium, we used it to cal-
culate the Y level structure and El transition rates. In

this case, of course, the color charge is smeared out over
distances of the order of the Compton wavelength of the b
quark. For the bb system we used the same slope for the
linear-confining part of the interaction and slightly weak-
er color charge consistent with asymptotic freedom. Our
results are displayed in Fig. 3.

The linearly confining part of the interaction contri-
butes to the spin-orbit force. (Tensor and spin-spin in-
teractions come only from transverse gluon exchange. )

The spin-orbit interaction that arises from the linear con-
finement varies like r '; its sign depends on the Lorentz-
transformation properties of the confining potential. We
assumed that it transformed as a scalar and/or vector ex-
change. In order to fit the observed fine structure of the
charmonium I'z levels, we found that the linear confine-
ment should be taken to transform like a scalar exchange.
It is perhaps of some interest to note here that there is a
constant associated with the linear confinement which is
needed to get the right masses and also to have the nonre-
lativistic potential energy fall on the universal curve
which Berkelman' found. It turns out that this constant
gives rise to some spin-independent (v/c) corrections to
the energy levels and wave functions (see Appendix B).
We found it necessary to assume this constant was associ-
ated with the linearly confining piece as part of our
scalar-exchange contribution. We studied the possibility
that it was part of the vector-exchange contribution and
found that assumption gave very large corrections that
were inconsistent with a perturbative treatment and seri-
ously distorted the energy-level spectrum.

The contents of this paper are organized as follows. In
Sec. II we outline the derivation of the Breit-Fermi Ham-
iltonian. In Sec. III we derive the (v/c) corrections to the
nonrelativistic expression for the interaction of a quark-
antiquark bound state with the radiation field and show
that Siegert's theorem applies to this case. Here we also
include the possible effects of an anomalous quark mag-
netic moment. In Sec. IV, we discuss the specific parame-
ter values we use in our model and the results we obtain
for the energy-level structure of the Y and charmonium
systems. Sections V and VI contain discussions of spin-
dependent and spin-independent forces, respectively, in
our model. In Sec. VII we report our results for the El
transition rates and discuss them. In Sec. VIII we sum-
marize our conclusions. Appendix A contains a discus-
sion of finite-size corrections to E1 transition amplitudes,
and Appendix B outlines our method of calculating
Breit-Fermi wave functions.

II. THE HAMILTONIAN

To include relativistic corrections in a description of
quarkonium, we used a Breit-Fermi Hamiltonian which
has (v/c) corrections to a nonrelativistic Hamiltonian.
The nonrelativistic Hamiltonian is one in which there is
one-gluon exchange and linear confinement. Our Breit-
Fermi Hamiltonian was obtained by a reduction to Pauli
spinor form of Sucher's instantaneous approximation to a
Bethe-Salpeter equation. The kernel contains one-gluon
exchange in Coulomb gauge and a linearly rising confin-
ing piece that transforms like scalar exchange. We al-
lowed the linearly rising confining piece to have a part
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(2.1)H =h)+hp+ V,
where the quark is particle 1 and the antiquark particle 2

that transformed like vector exchange and a part that
transformed like scalar exchange, and we found from a fit
to the fine-structure splitting of the charmonium levels
that the vector-exchange part of the confining piece is
small compared to the scalar part. We therefore took the
confining piece to transform as scalar exchange. We ob-
tained our Breit-Fermi Hamiltonian from the Hamiltoni-
an,

by

Hgp ——UHU ' —2m, (2.8)

where one expands the right-hand side in powers of p/m
and keeps only the ( p /m ) = (U /c) corrections to the
nonrelativistic Hamiltonian.

We use the instantaneous approximation and Coulomb-
gauge gluon-exchange in the quarkonium rest frame, so it
is understood that HBp refers to this frame. Taking
p& ———p2 ——p in (2.8), we obtain

h =a p+Pm,
V= Vv+a~. [(I—V V/V )Vv] a2+P, P2Vs .

(2.2)
HBF ——p /m J2 /4m—+ VNR+(3Vv —Vs)S L/2m r

+(r ' Vt. —Vv')(3o(. r o.2.r . o. i o.2)—/12m

We took the potentials Vz and Vq to be spherically sym-
metric functions of r=r& —rz. The nonrelativistic ap-
proximation to (2.1) is a Schrodinger Hamiltonian with
potential energy VNR ——V~+ V~. The transverse-gluon-
exchange term in V is a (v/c) correction to VNR. As
written it must be taken as a first-order effect only; it is
not correct for second- and higher-order transitions which
involve negative-energy fermions in intermediate states.
Such intermediate states give rise to what are called pair
terms, and these terms must be included separately.

In this paper we only consider relativistic effects of or-
der (u/c) . To this order the pair terms do not contribute
to the Hamiltonian and we can replace the V in (2.1) by its
positive-energy projection

+ o
~

o'2V Vv/6m +V' VNR/4m —p Vs P/m

+p V V
V2

Vy. p /m (2.9)

where VNR ——Vv+ Vs, S=(o,+ o.2)/2, and L= r X p. If
we were to take Vs ——0 and Vv ———a/r, (2.9) would give
the Breit-Fermi Hamiltonian for positronium with the
one-photon-annihilation term omitted. " In a later section
we describe how we solved (2.9) for its eigenfunctions and
eigenvalues.

For analyzing the interactions with the radiation field it
is convenient to have HBp expressed in terms of p~ and
pz. The expression is

(2 3) Hm =(ui'+P2')/2m —(Si'+p2')/8m'+ VNR

where

and

A++ =(E)+6 1)(62+82)/2&i262

e=[p +m ]'

and this condition allows us to write the Dirac-spinor
wave functions as Pauli-spinor wave functions P. The P
are related to the g by the unitary free-particle Foldy-
Wouthuysen operator U (Ref. 10); viz. ,

(2.5)

With this replacement, the bound-state eigenfunctions of
H satisfy

(2.4)

+(Vv —Vs)(oi r Xpf o2 r Xp2)/4m'

—Vv(cr) r X p2 —cr2.r X p, )/2m

+(r Vv —Vv')(3o ] r o'2'r —o~'o2)/12m

+ 0- ] 0.$V Vy/6m +V VNR/4m —p ] Vg. p ]/2m

—p, Vs. p2/2m —pi (I —7 V'/V ) Vv'p2/m

(2.10)

III. ELECTROMAGNETIC INTERACTION
AND SIEGERT'S THEOREM

We start with minimal electromagnetic coupling and
later add the effect of an anomalous magnetic moment.
We assume amplitudes for one-photon emission are given
by

U=exp. g y; p;8, (2.6) Mif —q(pf, [a~ A2( 1 ) —a' 2 A2(2)*]g;) (3.1)

with

sin29=
~ p ~

/e, cos28=m/e .

It is easy to verify that

where g; and 1tf are eigenstates of the Dirac Hamiltonian
(2.1). We reduce (3.1) to Pauli-spinor form using the
Foldy-Wouthuysen reduction described in the previous
section. As there, we keep only (U/c) corrections, and
obtain for (3.1)

UA++U '=(1+P, )(1+P2)/4 . ~if.=q(Pf ~2.A» (3.2)
Consequently one sees that the P are Pauli spinors since

P= —,(I+Pi)(1+P )P . (2.7)

The Breit-Fermi Hamiltonian acts on P. It is related to H

where the {t are eigenstates of the Breit-Fermi Hamiltoni-
an. To obtain the correct expression for h~ care must be
taken with pair effects. As stated in the previous section,
the transverse-gluon term in V is not right, in general,
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when one has negative-energy fermions in intermediate
states. However, the work of Drake' shows that one can
use it in this case where we calculate radiative transitions
to order (v/c) only. We assume the confining part of the
potential also can be used in the same way and we derive
an expression for h~ including pair effects perturbatively
as follows. We write g in terms of solutions g++ to the
no-pair equation,

as

(h ( +h2+ V~+ )Q~+ =Ef++ (3.3)

&=&+++(V —V++ )&++/2 (3 4)

Keeping terms of order (v/c) only, we obtain ~~f; as a
matrix element between eigenstates of (3.3); viz. ,

Mgf' —q(p++f ta&.A~(1)*+[a&.A~(1)*A (1)V+VA (1)a& A(1)*]/2m —(1~2)}g++,)
where A =(e—h)/2e and e=[p +m ]' as before. Now using (2.5) one easily obtains h~ and finds

h~=[p~ A~(l) +A~(1)* p~]/2m + o
&

8~(1)*/2m + cr &
E~(1)*Xp&/4m

[p [P Ad i)*+A~(I)' p ]}/8m'+cr «XAg(1)" (Vv —Vs)/4m

+o'2 r XAz(l)'Vv/2m —[Ag(1)*Vs'pi+ piVs'Ax(l)']/2m —Ax(1) (I V V/V )Vv'pz/m —(1—+2) .

In h~ we have written

(3.5)

(3.6)

[p, i o"A X p ]/2m = o"EX p + o"A X V VNR, (3.7)

because matrix elements of [HNR, i cr AX p] with HNR ——p& /2m +pz /2m + VNR between eigenstates of HBF are equal
to those of o"EX p to the accuracy of our calculations. The terms proportional to A in (3.6) are just the terms linear in
A which are obtained from the Breit-Fermi Hamiltonian (2.10) by the gauge-covariant replacements p~~p~ —qA(1)
and p2~p2+qA(2). To obtain the o"8 and o"EX p terms one must do the Foldy-Wouthuysen reduction of (3.1).

If the quarks have anomalous magnetic moments given by ~, we can include that by adding terms

qvPo &+"'/4m (3.8)

to (3.1). Then the Foldy-Wouthuysen reduction gives o"8 and c7 EX p contributions that can be included if one multi-
plies the o"8 term in (3.6) by (1+ ~) and the cr EX p term by (1+2~). This is as in the usual Foldy-Wouthuysen
reduction' of the interaction of Dirac particles with an external field. Hereafter we shall include anomalous-magnetic-
moment effects.

A great simplification arises if we evaluate (3.6) for electric multipole transitions in the long-wavelength limit. To see
this it is convenient to write h~ as the convection-current, o'8 and o'E&& p terms, and a remainder; viz. ,

h~=[p~'A~(1)*+A~(1)* p~]/2m +(]+K)o'~ Bj(1)"/2m+(1+21c)cr ~
E~(1)*Xp~/4m —(1~2)+h~ (3.9)

For electric multipole transitions where the wavelength of the emitted radiation is much larger than the size of the
bound state, the convection-current term in (3.9) can be replaced by the photon energy times the electric multipole opera-
tor minus h~, so that all that is left is this multipole-operator term and the o'8 and o'E& p terms. In nonrelativistic
approximation, the latter two terms are neglected and this result is known as Siegert's theorem. To see how this result
comes about, consider an electric dipole transition, where in the long-wavelength approximation, one replaces the ex-

ponential in A~=e~e' ''
by unity. Using the commutation relation p=i [p, r]/2, one can rewrite the convection-

current term as a commutator of HBF with e ~ r. Using (2.10) we get, e.g.,

p~.A*/m =i[H~F, e" r~]+i[p~, e*.r&j/8m —(Vv —Vs)i [o ~ r X p~, e r&]/4m —Vvi [o2 r X p~, e r~]/2m

+i[piVs'pi e 'ri]/2m +~[pi'I(1 —V V/V )Vv}'p2 e 'ri]/m (3.10)

and the extra terms aside from the first on the right-hand side are just equal and opposite in sign to the corresponding
terms in the remainder term hq in (3.9). That this cancellation takes place stems from the fact that those terms in h ~ are
generated from the corresponding terms in HBF by the gauge-covariant replacement p ~p —qA. Thus taking
k =E; —Ef we obtain

( (5f h gp; ) = (pf, [ i k c ~ r +—( 1 +2v )e ~ S X r k /4m + ( 1 + 21c )e ~ (o'
~
—o'2 ) X ( r

~ +. r 2 )k /8m ]p; ) (3.1 1)

Here S=(o &+ o 2)/2. A term proportional to o
&

—c«2 only contributes to triplet-singlet transitions. We do not consider
such transitions here and therefore will ignore such terms.

To the accuracy of (3.11), we must include the first retardation correction in the cr 8 term; i.e., we must take
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Bg(r) = —k rex X k

in that term. Adding this in we obtain

(3.12)

(pf, hxp;)=((t)f, [ i—km' r . (—I+a)ex SX k k r/2m+(1+2+)Eg'SX rk /4m

—(1+~)ex.DX k k R/2m+(1+2~)e & DXRk /4m]P;), (3.13)

where D=(o
&

—cr2)/2 and R=r&+r2. This expression
contains both E1 and M2 transition operators for singlet-
singlet and triplet-triplet transitions. The M2 piece in
(3.13) is

EL.z ik——VfLx,
we get

Mgf' —q(Pf, [ ikfL —z( 1 )*+o j E&q( 1 )*X p &/4m '

(3.22)

(I+~)e~.SX(r —2k k r)k /4m

and the (v/c) correction to the El piece is

(3.14)

~ex SX rk /4m . (3.15)

ikEg —(r+i~r XSk/4m) (3.16)

If we neglect the retardation correction in the r term, the
electric dipole operator is

—(1~2)]P;} . (3.23)

Here we have neglected the magnetic o"B/2m interaction
by assuming (3.18). It must be included because the first-
order retardation correction to (3.18) gives a nonvanishing

contribution from the o'B term of the same order as the
0"EX p term in (3.23). This can be included. One takes
for B (Ref. 13)

1+k/12m —k (, r }/120(r }, (3.17)

to order (v/c) . We studied the retardation corrections
and found them to be small (3% in charmonium).
Lowest-order retardation corrections are given by (see Ap-
pendix A)

B«= k'r X V—f«/(L +1)
and includes it in ~~f; by taking

~xf; =q(pf, [ i'kfL~(1)*+or, EL~(1)"X p&/4m

+o.) BLg(1)*/2m —(1~2)]$;}.

(3.24)

(3.25)

f~x(r ) =k 'NL(kr) Dxo'(r ) . (3.19)

Using (3.18) and the relation a
&

A~=i [H fLq(1)] with H
given by (2.1), one obtains for (3.1)

iq(gf, [M, [fL,&——(1)*—fL x(2)*]]g;)
= —ikq(4f [fLdl)' —fL,x(2)']A» (3.20)

where k =E; Ef. To compare —this with (3.13) we must
write P=g++ ——U 'P and consider UfL, ~U ' keeping
(v/c) terms. The pair terms in (3.4) do not contribute to
hx to this order. Since V f&x=0, one has

where the upper (lower) sign refers to P~S (S~P) transi-
tions. An additional correction to (3.16) arises owing to
the effect of recoil in the final state. Kinematically this
effect is included by taking for k the observed photon en-

ergy. There may be some dynamical effect of this recoil
on the final bound-state wave function; this has not been
included.

Ignoring recoil entirely, we can give a simple derivation
of our extension of Siegert's theorem which directly shows
its relation to gauge invariance. This derivation holds for
all electric multipoles. Therefore consider a 2 electric
multipole transition. In the long-wavelength approxima-
tion, the leading term in the vector potential may be writ-
ten as'

Aq(r)= VfLx(r), (3.18)

where

For X=1, this result simply gives

Mxf; ——q(Pf, ikey—rP;), (3.26}

which agrees with (3.16) for ~ =0. In these electric dipole
transitions, the o"8 and o"E&p contributions are equal
and opposite and cancel. ' All the (v/c) corrections to
the radiative transition amplitudes are contained in the
Breit-Fermi energy eigenvalues and eigenfunctions. For
electric multipole transitions, it is not necessary to com-
pute all the correction terms in (3.6). If one were to use
(3.6), one must compute its matrix elements between
Breit-Fermi wave functions for consistency. Our exten-
sion of Siegert's theorem shows that the many (v/c)
correction terms in (3.6) simply correct the convection-
current term, in the long-wavelength limit, so that its con-
tribution is simply given by the electric multipole operator
as in (3.23).

So, we see that the problem of computing the (v/c)
corrections to electric multipole amplitudes in the long-
wavelength limit is reduced to the problem of computing
eigenfunctions and eigenvalues of the Breit-Fermi Hamil-
tonian. For E1 transitions, one need only calculate the
matrix elements of r between these wave functions. From
(3.16) by direct calculation it is easy to show that the
anomalous magnetic-moment contribution to
PJ~ S

& +y transitions can be taken into account simply
by multiplying the radial matrix element of r by the fac-
tor'4

U 'fi~U=fix+~. (Vox) X p/4~'. (3.21) 1+ak[J(J+ I) 4]/8rn . — (3.27)

Writing For S
&
~ PJ +y transitions, (3.27) applies with the
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correction term cc~ of opposite sign. Clearly there is no
such correction for the singlet-singlet case.

For E1 transitions, the effective interaction Hamiltoni-
an h~ depends only on the relative coordinate r. The
center-of-mass coordinate simply cancels out in the
derivation of (3.16). In general, it is not so simple to
separate out the center-of-mass motion. Krajcik and Fol-
dy' have given an extensive discussion of the problem of
defining relativistic center-of-mass variables. They find
1/c corrections to the Hamiltonian for the interaction of
a composite system with an external electromagnetic field
when one carefully separates out the center-of-mass
motion. Those corrections do not contribute to E1 transi-
tions in quarkonium. We can obtain the (v/c) correc-
tions by using eigenvalues of H&F to compute k and calcu-
lating matrix elements of r with Breit-Fermi wave func-
tions.

IV. EIGENVALUES AND EIGENFUNCTIONS
OF HgF

As shown in the previous section, we can obtain the
(v/c) corrections to the El amplitudes simply by calcu-
lating matrix elements of r with wave functions correct to
this order. We can either treat the (v/c) terms perturba-
tively or find the eigenfunctions of HBF. To the degree
that (v/c)" and higher-order corrections are small, both
methods should yield the same results. Treating the
(v/c) correction terms in HBF perturbatively, one easily
obtains the corresponding energy-level shifts. However, it
is not so simple to obtain the wave functions correct to
this order. This is because the perturbation-theory correc-
tion to the wave function is given by an infinite sum over
states of the nonrelativistic Hamiltonian, and this sum
diverges for potentials that become infinite like r ' at the
origin. This is well known for the case of positronium,
where the hyperfine interaction, for example, is a 5 func-
tion at the origin and the spin-orbit and tensor forces
diverge like r . Indeed, the Breit-Fermi Hamiltonian
with these potentials is not soluble because the energy lev-
els for the 'S0 and P0 states are unbounded from below;
in these states the hyperfine- and fine-structure interac-
tions are attractive and produce the so-called fall to the
center phenomenon where the wave function all piles up
at the origin. Correspondingly, one finds that the
perturbation-theory sum for the first-order change in the
wave functions diverges for large momenta when one in-
cludes the continuum. Matrix elements of r are insensi-
tive to the detailed behavior of the wave function near the
origin. Consequently, one can ignore this divergence by
truncating the perturbation-theory sum or one can remove
the singularities by replacing the Coulomb potential of a
point charge by the Coulomb potential of a smeared
charge. Both methods yield essentially the same results
for the energy-level shifts and for the El matrix elements
in the low-lying states.

In our work we assumed that the nonrelativistic poten-
tial was a Coulomb potential for the color charge and
linear confinement. Arafune and Fukugita' used the
same model. They calculated the spin-dependent (v/c)2

V~ —— serf(v 2mr)/r, — (4.1)

where m is the mass of the constituent quark and erf is
the usual error function; viz. ,

erf(x)=(4/n. )'~ I e ~ dy
0

(4.2a)

(4/m)'~ x (4.2b)

corrections to the wave functions by perturbation theory
taking only the bound states into account. We, on the
other hand, smoothed the singular behavior by assuming
that the color charge was Gaussian distributed instead of
a point charge and solved HBF for its eigenvalues and
eigenfunctions. We took into account both the spin-
dependent and spin-independent (v/c) effects. Arafune
and Fukugita did not calculate spin-independent (v/c) ef-
fects. These are difficult to take into account. Our
method of doing so is given in Appendix B. We found
that the spin-independent (v/c) effects are comparable to
the spin-dependent ones.

The Breit-Fermi Hamiltonian we used is given in Sec.
II. We assumed (2.2) with the V~ terms the instantaneous
potential for one-gluon exchange in Coulomb gauge and
Vz a linearly confining potential. In nonrelativistic ap-
proximation our model is essentially the one-gluon-
exchange-plus-linear-confinement model of Eichten et al.
We used their value for the slope of the linear confining
potential. It was necessary to take the linear confining po-
tential to be the scalar-exchange part of V in order to fit
the 1 PJ levels in charmonium (see Sec. V).

%"e also assumed the Cornell values for the constituent
quark masses. They chose the charmed quark mass guid-
ed partly by their desire to keep it close to the mass of the
lightest charmed meson and by their desire to keep rela-
tivistic effects relatively small. Their choice of mb gave
with the same potential (with slight adjustment for a run-
ning coupling constant in the Coulomb piece) a fit to the
low-lying bb S-state mass differences. Martin arrived at
similar quark masses by fitting his flavor-independent po-
tential to the ss, cc, and bb mass spectra. '

In potential models which include relativistic effects,
the choice of quark mass is more constrained than in the
nonrelativistic case. We found that a charmed quark
mass smaller than that used by the Cornell group tends to
give too large a fine-structure splitting in the 1 Pz levels.

The quark masses we use require a negative constant in
the nonrelativistic potential. This constant, which we call
C, is chosen so that the 1 S~ cc mass agrees with the mea-
sured J/P mass. The constant C not only corrects the
nonrelativistic bound-state masses, it also contributes to
certain (v/c) spin-independent corrections. Owing to
these corrections, we found that the cc energy levels could
only be fit if C was included as part of the scalar potential
(see Sec. VI). ' Therefore, we assumed Vs r/a +C. ——

In order to be able to solve for the eigenfunctions of
H~F, we smeared the color charge over the Compton
wavelength of the quark. We took V~ to be the potential
of a Gaussian distributed color charge; viz. ,
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(4.2c)

The V2 in the argument of erf is somewhat arbitrary. If
we call this factor f, a range of acceptable values for f can
be determined in the following way. A lower limit to f is
set by the requirement that Vz does not differ too much
from the Cornell potential over the range of r where the
quarkonium wave functions are appreciable. An upper
limit on f is set by the requirement that the fine-structure
splitting of the PJ eigenvalues of HaF is not very dif-
ferent from that given by first-order perturbation theory
with a point color charge. Those considerations require
that 1 &f& 2. With f=~2 our VNR is very similar to the
Cornell potential for r ~ 0.1 fm; both are shown in Fig. 1.
To compensate for the decreased attraction near r=0, we
used a slightly larger value of a than the Cornell group
used.

Our value of a was chosen to fit the experimental value
of (M)p ——Mg )

R (M25 Mlp)/(M&r Mis)—~ (4.3)

as in the Cornell model. Our parameter values are
displayed in Table I with the Cornell values in parentheses
where they are different. For the bb potential our ~ value
was similarly chosen. It was chosen so that our HNR gave
the same mass difference ratio,

r —(M3s' M2s')/(M2s' —M)s) (4.4)

as the Cornell model. The Cornell group used the ob-
served Y", Y', and Y masses to determine r. As asymp-
totic freedom requires, ~ is smaller for bb than for cc.
The constant C was chosen to fit the 1 5& eigenvalue of
HBF to the J/g mass; the same value also fits the Y mass.
Berkelman' has shown that fits to quarkonium spectrum
determine a potential-energy function which is (almost)
flavor independent and universal in the range 0.1&r & 1

fm in the sense that many different analytical forms give
approximately the same potential energy in this range

TABLE I. Parameter values for V. We use
Vr ———~erf(V 2mr)/r and Vz r/——a +C with a=0.46 f and
C= —0.80 GeV ( —0.85 GeV). Parameters of Eichten et al.
(Ref. 3) are in parentheses where they are different from those
we use.

CC

bb

m (GeV)

1.84
5.17

0.65 (0.52)
0.53 (0.48)

when the parameters are adjusted to fit the spectra. Our
VNR for 0.1 (r & 1 fm agrees with this universal curve.

Our calculated masses are shown in Tables II and III.
The agreement between the calculated and measured
masses of the Y states in Table III is evidence For the fla-
vor independence of the nonrelativistic potential. The lev-
el structure we obtain, aside from the fine and hyperfine
structure, is very similar to that obtained by the Cornell
group. The spin-dependent and spin-independent (U/c)
effects on the energy levels are discussed in the next two
sections. We conclude this section by discussing the sensi-
tivity of our results to the smearing parameter f. We cal-
culated cc masses with various values of f and found that
the hyperfine mass splittings exhibit the largest f depen-
dence. This is because the hyperfine interaction is concen-
trated near the origin where the details of the smearing of
the color charge are important. Since the effect of this
smearing does not extend much beyond a quark Compton
wavelength, matrix elements which depend on large values
of r such as E1 matrix elements are insensitive to the
color-charge smearing. A moderate amount of sensitivity
( -20%) to the value of f was found in the position of the

I o state. This occurs because both the spin-orbit and
tensor forces are attractive in this state and also are con-
centrated near the origin. The fine-structure effects in the
other Pq states for J= 1 and 2 are less sensitive to f be-
cause the interactions here are less attractive (see Table
IV).

TABLE II. Charmonium masses in MeV relative to the 1 Si
mass. Parameters m and a are those of Ref. 3; ~ has been ad-
justed to give the same mass ratio (M&z —M ip) /(M» —M i~ ) as
Ref. 3.

Non relativistic
results

With (v/c)
corrections

Measured
charmonium

values'

1 DI 757 670 670.7+3.8

2 Si
So

625
560
490

589.2+0.9
497 +5

0.Oi 0.1

r (fermi)

1'P,
1 Pi
1 Po
1 'P,

455

428
391
285
405

458.9+0.5
413.4+0.4
317.9+0.6

FIG. 1. VNR vs r. The solid curve is the Coulomb-plus-
linear-potential model of Ref. 3. The dashed curve is the nonre-
lativistic approximation to the interaction energy used in this pa-
per.

1 'So —113 —111 +5

'Hyperfine splittings are taken from Ref. 2 and P-state masses
from Ref. 19.
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TABLE III. bb bound-state masses in MeV relative to 1 S&
mass.

3 Di
4 Sp
4 'Sp
3'P,
3 P)
3 Pp
3'P,
2 Dl
3 S1
3 'Sp
2 P2
2 Pi
2 Pp

1 Dl
2 Sl
2 'Sp
1'P,
1 Pi
1 Po
1 'Pj
1 Sp

Nonrelativistic
results

1278
1204

1120

1026
928

838

734
585

483

%'ith (U/c)
corrections

1231
1160
1133
1091
1074
1037
1081
991
895
864
820
801
761
809
710
560
520
478
456
407
465

—101

Measured
bb values {Ref. 1}

111415

88914

560+ 3

V. SPIN-DEPENDENT FORCES

(r Vv Vv)(3g I'r o 2.r cr 1 o 2)/12m—

and the spin-orbit interaction term is

(5.1)

The spin-orbit and tensor-force effects on the PJ wave
functions have important consequences for some E1 decay
amplitudes as is shown in detail in Sec. VII. The tensor-
force term in the Breit-Fermi Hamiltonian is

Vhf —0 ] 027 Vp/6~ (5.4)

This interaction is entirely due to the transverse-gluon-
exchange term in (2.2). With our choice of Vr, (5.4) has
the form of a Gaussian:

Vhr=o'~ o2(2/3Vrr)zf m exp( —f2m2r2)/3 . (5.5)

As f~oo, (5.5) goes uniformly over to the familiar 5-
function contact interaction. For triplet states, the hyper-
fine interaction is repulsive. For single states it is attrac-
tive and is three times as large in magnitude as in the trip-
let case. In the limit f~ oo, the singlet energy levels have
no lower bound and the hyperfine interaction (5.4) only
makes sense if it is used in first-order perturbation theory.

two contributions tend to cancel over the range of r where
the 1P wave function is appreciable (see Fig. 2). If the
confining potential were in Vz, it would contribute an
(r/a) term of opposite sign and produce fine-structure
splitting of charmonium levels considerably larger than
that which is observed.

The fine structure of the 1 P2 and 1 P& levels is insens-
itive to the smearing of color charge. The position of the
1 Po state, on the other hand, is somewhat sensitive to the
choice of the smearing parameter f; the mass difference
M& —M& varied by about 20%%uo when we varied f over its

p

allowed range. This mass difference calculated in our
model with f=M2 is about 20%%uo larger than that given by
first-order perturbation theory using the Cornell value for

The position of the Po state is most sensitive to details
of the interaction at short distances because both the
spin-orbit and tensor forces are attractive in this state and
are relatively large. In the bb system we found the fine-
structure splittings of the 1 Pz states to be about half as
large as in charmonium (see Table III). Also we found
that the fine structure of the PJ states decreases in mag-
nitude as the level of excitation increases.

The hyperfine interaction in HBF is

(3VI —Vs)L S/2m r . (5.2)

The tensor force comes entirely from the transverse-
gluon-exchange interaction term (proportional to a&;azj)
in V. Besides contributing to fine-structure effects, the
tensor force causes mixing between triplet S and D states.
In our model this mixing is small (slightly less than 1%).'
This mixing is smaller by a factor of about 3 than that
found by the Cornell group when they included coupling
to open charm channels.

The spin-orbit interaction term has contributions from
both the gluon-exchange term ( Vr ) and the scalar confin-
ing potential ( Vz). One unit of the Vz term in (5.2) comes
from the Coulomb term in V and two from the
transverse-gluon-exchange term. In our one-gluon-
exchange-plus-linear-confining potential, the vector and
scalar contributions to the spin-orbit interaction energy
tend to cancel for low-lying P states. To see this consider
the point-charge case with Vz ———a./r and Vz ——r/a +C.
Then the coefficient of L S is

1.2

0.8

0.4

-0,8

0.0 0.5
I

1.0
r (fermi}

1.5 2.0

[3x—(r/a) ]/2m r (5.3)

and with parameter values ~=0.65 and a=0.46 fm the

FICx. 2. Radial wave functions plotted as functions of r.
These are eigenstates of the nonrelativistic approximation to our
Hamiltonian.
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From this point of view it is not surprising that our result
for the mass difference is sensitive to our choice of param-
eter f. We regard it as fortuitous that our calculated value
of 113 MeV is so close to the experimental value of 111+5
MeV. We choose f=v 2 somewhat arbitrarily, guided
only by the requirement that our nonrelativistic potential
agree with the "universal curve" of Berkelman' in the
range 0.1&r&1 fm. Owing to the fact that this value
gave such a good mass splitting, we kept it as a constant
and used f=v 2 and bb system. Our predictions for the
hyperfine splitting of the levels in the bb system are sensi-
tive to this choice of f and we therefore regard them only
as rough estimates. The magnitude of the hyperfine split-
ting in the bb system is not much smaller than that in the
cc case. On reflection this is not surprising though the hy-
perfine interaction is proportional to m because this in-
teraction is concentrated near the origin and the bb wave
function is relatively larger near the origin.

We used our model to calculate values of cc and bb
wave functions at the origin. These are changed substan-
tially from nonrelativistic values by the hyperfine
interaction —particularly for singlet states. Qur results are
very sensitive to our smearing parameter f.

Finally, we mention that we calculated E1 transition
rates between 'P& and 'So states. The hyperfine interac-
tion has an effect here through its effect on the wave
functions, but the results are insensitive to the value of f
because the matrix elements are matrix elements of r and
are therefore insensitive to details near the origin.

VI. SPIN-INDEPENDENT TERMS

The spin-independent (v/c) terms in HBF cause effects
on eigenvalues and eigenfunctions as large as those due to
spin-dependent terms. Collectively, these spin-
independent terms act effectively like an attractive poten-
tial. They tend to reduce all cc and bb bound-state ener-
gies relative to nonrelativistic values. They also reduce
the El radiative transition amplitudes.

Values of wave functions at the origin are changed as
much by the spin-dependent (v/c) terms as by the hyper-

VII. RADIATIVE TRANSITION RATES

The tensor forces in our Breit-Fermi Hamiltonian are
weak and produce negligible S-D mixing. Therefore the
E1 rates can be calculated neglecting mixing. Then with
relativistic effects included the rates are given by matrix
elements of r; viz. ,

I (3S,~ PJ)=4(2J+1)aqk (r) /27,
I'( PJ~ S))=4aqk (r) /9,
I ('So~'P))=4aqk (r) /3,
I ('P) —+'So)=4aqk (r) /9

(7.1)

(72)

(7.3)

with aq =q /4m. where q is the quark charge.
We calculate radiative widths using these formulas with

experimental values for the photon frequencies where they
are known. We calculate matrix elements of r using eigen-
functions of HBF and compare them with the nonrelativis-
tic results using eigenfunctions of HNR with
VNR ——Vz+ Vz. Our results for charmonium are shown in
Table IV where we also display experimental magnitudes.

Notice that the 2 S&~1 Po matrix element is de-
creased in magnitude from 0.47 to 0.30 by relativistic ef-

fine interaction. However, as is the case with the hyper-
fine interaction, spin-independent corrections to wave
functions at the origin depend upon the potential at small
distances and are therefore cutoff dependent. Appendix B
contains a description of the method we used to calculate
the effects of the spin-independent terms.

In our study of spin-independent effects, we had to de-
cide how to treat the additive potential constant C. We
found widely differing results depending on whether we
took C to contribute to V~ or Vz. ' In order to get agree-
ment with the measured t."c and bb mass values, we were
forced to take C to be part of the scalar potential. We
found that if we put C in Vz or even if we just ignored the
contribution of C altogether, we then got very large spin-
independent corrections which seriously distorted the
energy-level spectrum.

TABLE IV. Matrix elements of r calculated with nonrelativistic and Breit-Fermi wave functions for
charmonium states.

Nonrelativistic
result
(fm)

With (U/c)-
corrected

wave functions
(fm)

Experimental
magnitudes'

(fm)

—0.30
—0.42
—0.47
—0.48

0.37
0.37
0.36
0.31

0.31+0.04
0.33+0.04
0.37+0.06

?
0.31+0.06

(3
0.35+0.1

?

(1 PJir i23Si)

(1'P, )r )2'So)

(1 Si
i
r

i
1'Pg)

—0.47

0.36

(1 'So
i
r

i
1 'Pi )

'Experimental magnitudes are magnitudes of the matrix elements of r calculated assuming that the ob-
served rates are given by (7.1) and (7.2).
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fects. The relativistic effects are of three types: (i) spin-
orbit and tensor-force effects which vanish in S states, (ii)
the hyperfine interaction o. &. o.2V Vz/6m which acts
mainly in S states, and (iii) spin-independent effects. Ef-
fects (i) and (iii) are attractive in the Po state while (ii) is
repulsive in the S~ state, and they all act to decrease the
magnitude of the matrix element. To understand why the
effect is so large, consider Fig. 2, where the nonrelativistic
2S and 1P radial wave functions are displayed. The node
of the 2S wave function is near the maximum of the 1P
wave function; consequently there is a large cancellation
in the 2S~1P matrix element of r. Because of this, small
(U/c) corrections have a surprisingly large effect. The
spin-orbit and tensor-force corrections are largest in the
Pp state. In the P& state similar effects occur but are

smaller because the tensor force tends to cancel out the ef-
fect of the spin-orbit force; see Table V. In the J=2 state,
the combined effect of the spin-orbit and tensor force is
repulsive and tends to cancel the attractive spin-
independent effects.

Relativistic corrections to the 1 PJ~1 S~ transition
matrix elements are small because there is no node in ei-
ther wave function and no cancellation like that in the
2S~1P case. Triplet 1P~1S matrix elements are rela-
tively insensitive to (U/c) corrections.

In the singlet transitions relativistic corrections are
negligible in the 2'So~I 'P~ case, but produce a 20%%uo

reduction in the matrix element of r for the 1 'P&~1 'So
case. The main effect here is the hyperfine interaction
which is attractive in the Sp state and three times as large
as in the S~ state (where it is repulsive). This attraction
reduces the overlap of the wave functions and moves this
overlap to smaller values of r, thus appreciably reducing
the matrix element. In the 2 Sp~l P] case, the overlap
is improved but moved to smaller r values; these effects
tend to cancel, and the overall change in the matrix ele-

TABLE V. Diagonal PJ matrix elements of the spin-orbit
and tensor operators. (Sr) =(3o, r" a~ r —o', 02).

0
1

2

(I. S) (s, )

—4
2
2

ment is therefore small.
Although (U/c) corrections bring the 2 3S& ~1 Po ma-

trix element into rather good agreement with experiment,
they do not give comparably good corrected values for the
2 S&~1 PJ matrix elements for J=1 and 2. The char-
monium radiative widths calculated using (7.1)—(7.4) are
given in Table VI along with measured values. The fur-
ther reductions which appear to be needed for the J=l
and J=2 cases are perhaps due to coupled channel effects.
Eichten et al. have analyzed the effect of (closed) cq-qc
decay channels (q is a u, d, or s quark) on the cc system.
They find that coupling to these channels tends to reduce
E1 radiative decay rates; their calculations yielded the per-
centage reductions shown in Table VI. As shown in Table
VI, if such reductions are included along with (v/c)
corrections, the calculated rates come into rough agree-
ment with the measured rates. We have neglected S-D
(and P F) mixing. -The tensor force in HBF causes a small
amount of such mixing. Coupled-channel effects produce
much more mixing.

The calculated rates given in Table VI do not include
retardation and recoil effects. Corrections due to retarda-
tion effects are discussed in Appendix A. Those correc-
tions are small. We use the measured photon frequencies
in evaluating (7.1)—(7.4) and in this way, presumably,

TABLE VI. E1 transition rates in charmonium. The first two columns are calculated in long-wavelength approximation using the
matrix elements in Table V and (7.1)—(7.4). Measured values of photon momentum were used where possible; for transitions to and
from the singlet P state the predicted 1 'P& mass of 3512 MeV was used.

1('~y+XJ

Nonrelativistic
rates
(keV)

45
40
27

With (U/c)-
corrected

matrix
elements'

{keV)

19 (16)
31 {23)
27 (22)

Coupled-
channel

reduction

86%
76%
82%

Anomalous-
magnetic-
moment

corrections'

1+0.14m

1 + 0.05m

1 —0.04m

Experimental
values
(keV)

21+6
19+5
17+5

121
250
362

128 (117)
270 (240)
347 (305)

92%
89%
88%

1 —0.16m

1 —0.11m

1 + 0.12~

97+38
& 700

330+ 170

r+'Pi
r+n.

15
660

16
483

none
none

'The numbers in parentheses in this column are the calculated rates reduced by the percentage reductions given in the next column.
Estimates given by Eichten et al. (Ref. 3).
First-order effect only. Studies of M2-E1 interference term in angular distribution give —0.70 & sc & 0.65 (Ref. 19).
Taken from Ref. 2. To obtain the P'~ygz rates we used I ~=215+40 keV.
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TABLE VII. Matrix elements for E1 transitions between bb
states.

(r) with (u/c)-
corrected

Nonrelativistic
&r&

(fm)

wave
functions

(fm)

4 Sr~3 P —0.68 —0.55
—0.64
—0.69
—0.704 'S) ~3 'P)

3 PJ~3 S( 0.47 0.55
0.48
0.44
0.39

I (J/P~rl, y)= , k a(—e,/2m, ) (1+a.)2 . (7.5)
3'P, ~3'Sp

The measured value of the branching fraction (1.2+o 4)%
and the total J/f width of 63 keV gives for the charmed-
quark mass

3 PJ —+2 S) 0.064 0
1

2

0.026
0.055
0.067
0.069m, = (2.8+o'~)(1+a ) GeV .

most of the recoil corrections are taken into account (cf.
Sec. III).

In the fourth column we give a correction factor that
takes into account an anomalous magnetic moment for
the quark. It is given by (3.27). The value of x. can be ob-
tained, for example, by observation of the M2 El -interfer-
ence term in the angular distribution of the photon in one
of the S~ Pz -transitions for J=1 or 2. The M2 ampli-
tude is given by (3.14). So far statistics are not yet good
enough to allow for a determination of a., and the experi-
mental results are that —0.70&~&0.6S. ' Another way
one Inight estimate ~ is by using the simple nonrelativistic
formula for the Ml transition J/g~g, y. This gives for
the rate

From this one might conclude that if the charmed-quark
mass is, for example, 1.8 GeV, sc is negative and in the
range —0.2 to —0.5.

Our results for the El matrix elements in the f system
are given in Table VII. These results neglect coupled-
channel effects, S-D mixing, and retardation corrections.
The retardation corrections are generally smaller in the Y
than in the charmonium system and can certainly be
neglected here; see Appendix A. Since 4 S~ Y state is
above the open-b-flavor threshold, it seems likely that
coupled-channel effects on the El decay rates from this
state and nearby states will be significant.

Since there are many transitions in the upsilon system
below the open beauty threshold, it is convenient to divide
the El transitions for the triplet and singlet states into
three categories: nP~nS, (n + 1)P~nS, and
(n+1)S~nP First, let. us consider n Pq~n S& rates.
Those for n=1 are the largest; these rates are insensitive
to relativistic corrections. For n~ 1, nodes in the radial
wave functions cause cancellations which result in some
sensitivity to (u/c) effects. The largest effects are in
transitions from J=O states where the matrix elements are
increased by about 15% owing to the relatively large and
attractive spin-orbit and tensor forces in the Pp state.
For J= 1 and 2, the spin-orbit and tensor forces are less
attractive and/or repulsive and effects tend to cancel. In
the n 'P~ ~n 'So transitions, the attractive hyperfine in-
teraction decreases (r ) by about 16%. For (n +1)P~nS
transitions, radial wave-function nodes cause large cancel-
lations in (r ). These matrix elements are small and sensi-
tive to (u/c) corrections. Though the matrix elements
are small, the photon frequencies are large and conse-
quently the rates may be appreciable. We find, however,
that the (n+1) Po~n S& rates are suppressed by more
than a factor of five compared to their nonrelativistic
values. Finally, there are the (n +1)S~nP rates These.
rates are small because the photon frequencies are low.
The pattern of the J dependence of the relativistic effects
in the (n +1) S~ ~n PJ rates is similar to that we found

3 S& ~2 PJ

3 'So 2'P

2 PJ~2 S)

2 'Pj —+2 'Sp

2 PJ —+1 Sl

2 P&~1 Sp

2 Sl~l PJ

2 'Sp~ 1 'P)

1 PJ~1 Sl

1 'P, 1 'S

—0.52

0.34

0.051

—0.33

—0.42
—0.49
—0.53
—0.54

0.39
0.35
0.32
0.28

0.022
0.043
0.053
0.054

—0.27
—0.31
—0.33
—0.34

0.20
0.20
0.20
0.16

tn charmonlum; t.c., the (u/c) effects are largest, jn the
transitions to the J=O states and not big in the J= 1 and 2
cases. In Y, these relativistic effects are smaller than in
charrnonium —about half as big. We have not included
here results for decays in which the number of radial
nodes in the initial and final wave functions differ by two
or more. The decay rates for those transitions are very
small owing to the large cancellations in the matrix ele-
ments. Predictions for these cases would be very model
dependent.

For the singlet states, the main relativistic effect is that
of the attractive hyperfine interaction. As in the cc case,
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the effect is largest in n 'Pt ~n 'So transitions where the
attraction (mainly in the S state) causes the overlap of the
wave functions to be worse and to be at smaller values of
r. Consequently the amplitudes for these transitions are
reduced.

To show the relative El rates for the various transitions
discussed above, we present in Fig. 3 the rates calculated
using the matrix elements of Table VII and our predicted
photon frequencies. Since the photon frequencies are
measured when the rates are measured, our predictions
should be checked using our predicted matrix elements '

(Table VII) with experimental values for the photon fre-
quencies to obtain rates.

VIII. CONCLUSIONS

We have calculated ec and bb spectra and E1 transition
rates using a Breit-Fermi Hamiltonian that contains first-
order (U/c) corrections to a nonrelativistic model with
one-gluon exchange and linear confinement including
transverse-gluon exchange. We find that the ( v lc)
corrections give fine and hyperfine structure to the energy
of charmonium levels which is in accord with measured
values. We find that the spin-independent (U/c) correc-
tions are comparable with the spin-dependent corrections.

In order to use our extension of Siegert's theorem to cal-
culate radiative transition amplitudes, we needed wave
functions correct to order (U/c) . We found these by solv-
ing a Breit-Fermi Hamiltonian with the color charge
smeared out over a distance of the order of the quark
Compton wave length. Our results for the E1 transition

mass in

I( Gev

rates and level structure, aside from the hyperfine split-
ting, are not sensitive to this smearing. Arafune and
Fukugita' have studied some of the same effects in char-
rnonium and treated them by perturbation theory. When
we calculate the same things, our results agree. They did
not take into account spin-independent corrections. Har-
dekopf and Sucher studied (U/c) corrections to dipole
transition amplitudes for quarkonium and showed that
wave-function corrections are comparable to the (v/c)
corrections to the dipole operator. We agree with this re-
sult. In fact, our use of Siegert's theorem implements this.

The main conclusion of these studies is that radiative
transitions such as le —+Xzy and similar transitions in the
bb system are sensitive to relativistic corrections owing to
the fact that the overlap of the wave functions changes
sign over the range of r of interest and causes cancella-
tions in the matrix element. Spin-orbit and tensor forces
in PJ states along with other (v/c) corrections and
coupled-channel effects bring calculated values for the
lt '~XJy rates into agreement with measured values. We
have not calculated coupled-channel effects in the bb sys-
tem. If they are small for transitions we11 below the
open-b-flavor threshold, our calculated rates for those
transitions can be compared with measured values to test
the validity of this model

%ore added in proof: H. J. Schnitzer [Nucl. Phys.
8207, 131 (1982)] has given an analysis of ordinary-meson
spectroscopy showing that the spin dependence of the
forces can be interpreted as due to a short-ranged vector
exchange and a confining potential that transforms as a
Lorentz scalar. The compatibility of this assumption with
the fine structure of charmonium I' states was first
demonstrated by A. B. Henriques, B. H. Kellett, and R.
G. Moorhouse [Phys. Lett. 648, 85 (1976)].
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APPENDIX A

10.0

9.5

P, S S, P P,
Bp

2

The leading contribution to E1 transition amplitudes in
quarkonium comes from the convection-current (A p
+ p A)/2m term where the exponential in A= pe' " ' ' is
replaced by unity. Such an approximation is valid when
the size of the bound state is small compared to the wave
length of the emitted photon. Corrections to this approxi-
mation are called finite size or retardation effects. In this
appendix, we discuss such corrections for transitions in
which the initial state is a P state and the final state an S
state and vice versa. The radial matrix element of the
convection current for such transitions is given by

~=(2Im) J dr r Rp(r)[jo(kr/2)+f2(kr/2)]
FIG. 3. Predicted bb mass spectrum below the open-b-flavor

threshold with E1 transitions marked. The numbers on the
transition lines are values of (r ) in GeV . These are related
to the E1 transition rates by (7.1)—(7.4).

XdRs(r )Idr, (Al)
where Rz and R& are the radial I' and 5 wave functions,
respectively, and jL (kr/2) are spherical 8essel functions
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of order L. If we neglect (U/c) corrections, we can as-
sume that Rz and R~ satisfy nonrelativistic radial
Schrodinger equations and show that'

U(r) = (7V~ 4—Z —3 Vs )/12, (84)

neglecting higher-order (U/c) effects. ' In the commuta-
tor (83), U(r) is given by

2 f dr r RPRsf = f dr r Rf [(Es E—p)mF+2Fr
0 0

2fr —i f ]R—s ~ (A2)

where

Z =r f s (dVV/ds)ds . (85)
where Es Ef—is the energy difference of„the S and P
states, f(r) is any function of r, and F= f dr f. Taking
for f the sum jo+j2 in (Al) and expanding the Bessel
functions as a power series in kr, one gets

f=1 (kr) —/40+

F=r —k r /120+
(A3)

APPENDIX B

There are three types of problems that arise when one
wants to find the eigenvalues and eigenfunctions of the
Breit-Fermi Hamiltonian. First, the tensor force mixes S
and D states, etc. Second, there are the momentum-
dependent terms

—p /4m —p Vsp/m +p. I — Vi. p/m
V2

and with k =
I
Es —E~

I
(recoil neglected) one obtains, us-

ing (A2),

M=+k(r)(I+k/lzm —k (r ) /1 20(r)+ . ),
(A4)

where the upper (lower) sign applies to S +P (P~—S)
transitions. We denote by ( r&) the radial integrals

f dr r2+f'R pRs.
In charmonium 1 PJ~1 S&+y transitions, the retar-

dation or finite-size effects are not more than 3% correc
tions. These corrections are smaller in the 2 S&~1
decays both because k is smaller and because the two
correction terms in (A4) tend to cancel.

The Vsi' term can be combined with the V,ff in (82) to
give an effective Hamiltonian

Heff —p /m + Veff
2 (86)

in which the effective potential energy V,ff depends on S,
I., and J. The eigenfunctions and eigenvalues of H, ff' can
be found using standard methods. ' We solved for the
eigenfunctions and ei~envalues of H, ff numerically. In or-
der to evaluate the Vsi' term, we had first to solve for the
eigenvalues of the nonrelativistic Hamiltonian, ENL. In
terms of these and the nonrelativistic potential energy
VN&

——Vz+ V~, one has

Vsi ~ [(ENL VNR ) + ( NL VNR )
()) 2 U(") (0) 2 (0)

m

X(3Vs+2Z —2V) )/3]/4m

+ZL(L+1)/m r (87)

WNL fNL + g 4ML(4ML~ VSI 4NL )/(ENL ML ) ~

M~X

(88)

where gNL are eigenfunctions of HNR and gNL' of H,ff.
Substituting HNR for p /m in (83), one finds for (88)

The remaining Vsq' commutator term was then included
perturbatively. As a first-order perturbation, this term
does not change the energies since one can substitute HNR
for p /m in (83). To find the effect of Vsi' on the wave
functions, one can use first-order perturbation theory

p /m+ V,ff(r) . (82)

To include the terms (Bl), one can write them as a tenn
Vsi'(r) which depends only on r and a commutator term

Vsi' ——[p, U(r)]/m (83)

(81)

and, third, the effective central potentials that arise in the
various 'So, S~, PJ, etc. states require numerical
methods for solutions of the eigenvalue problem. As re-
gards the tensor-force mixing, we studied it perturbatively
and found very small mixing angles. We neglect this mix-
ing and assume that the eigenstates of HsF are states of
definite orbital angular momentum L. Then for each of
these 'So, S&, 'P~, 'D2, D2, etc. states, if we neglect the
terms (81),HBF has the form

4NL PNL g fML (QML ~ U PNL )/m
M~iV

(89)

and completing the sum over states one gets

CNL(r) 0NL (r) [U(r)/m +( PNL UeNL l™]eNL
(810)

These are the wave functions we used in our calculations
of the El matrix elements. Use of eigenfunctions 1t'NL' of

ff in (810) is only a convenient way of including first-
order (U/c) corrections to the wave functions. To the ac-
curacy of our calculations of (r ), higher-order effects are
negligible. We checked this numerically.
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