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The process vl~v2+y+y is studed in detail. Formulas for the decay rate are given in the context
of the SU(2) )& U(1) model with massive neutrinos and it is shown that this process can dominate over

v&~v&+y for some range of values of m„, depending on the relevant mixing angles. A general,

model-independerit analysis is also given with particular emphasis on the difference between the
cases of Dirac and Majorana neutrinos. In particular, we show how the invariant amplitudes in the
Majorana case can be expressed in terms of the amplitudes calculated as if the neutrinos were Dirac
particles.

I. INTRODUCTION

The decay mode v~~v2+y for massive neutrinos has
been the subject of much discussion in the recent litera-
ture. This has been motivated in part by the implications
of this process in a variety of astrophysical problems' and
by the current theoretical ideas that suggest that neutrinos
are massive. The study of this process also has an intrin-
sic theoretical interest because it reveals some of the pecu-
liar properties of Majorana neutrinos. As the detailed
calculations of the rates show, ' in most models a leptonic
Glashow-Iliopoulos-Maiani (GIM) mechanism suppresses
the amplitude by a factor of (m, /M~), which, for
m„=SO eV, gives a decay rate of the order of 10 yr. It is
possible to avoid the GIM cancellation in some models,
which, however, look somewhat artificial unless they can
be independently confirmed. An exception is perhaps the
Zee model of neutrino masses in which rates of the order
of 10 yr are obtained.

Motivated by the same considerations, we have studied
the process v~~vq+y+y. Our purpose in this work is to
discuss the general features in a model-independent way,
with particular attention to the difference between the
cases of Dirac and Majorana neutrinos. In addition, in or-
der to gain an idea of the rates that can be expected, we
have carried out an explicit calculation in the standard
SU(2)XU(1) model with Dirac neutrino masses. Instead
of the GIM suppression factor ( m, /M ~ ) for the
v~~vq+y decay in the same model, the rate for the two-
photon mode is suppressed by (m„/m, ) for m, &2m, .
For m„=SO eV, the two-photon mode is negligible, but for
m„=2m, it can dominate over the one-photon mode. For
m„&2m„ the channel v~ —+v2+e +e+ dominates and
the radiative decays (with one or two photons) are ir-
relevant. We also show how the invariant amplitudes in
the Majorana case can be expressed in terms of the ampli-
tudes calculated as if the neutrinos were Dirac particles.

In Sec. II, we set down the general form of the ampli-
tude and examine the implications of CP invariance and
Hermiticity on the invariant amplitudes in four separate
cases: Dirac or Majorana neutrinos with v~ ——vz or v&&vq.
In addition, it is shown how the amplitudes in the Majora-

na case can be expressed in terms of the amplitudes calcu-
lated as if the neutrinos were Dirac particles. In Sec. III,
we exhibit an explicit calculation of the rate in the context
of the standard SU(2)&&U(1) model with Dirac neutrino
masses, and Sec. IV contains our conclusions.

II. CONSTRAINTS ON THE INVARIANT
AMPLITUDES

We discuss the kinematics in the channel

y(k) +vt(p ) )~y(k ') +v2(p2 ) . (2.1)

e )p —=E~))apP K q )
v a P

e2p =q P„+Kq(P.K) q~(P.q), —
e 3p ——qp

e4p =Kp,

(2.2)

q=k+k',
E—=k' —k =p~ —p2,
P—=pi+p2 ~

Using

e;.K=e; q =0 (i =1,2),
we obtain

(2.3)

e;.k=e; k'=0 (i =1,2) .

Qn the other hand,

(2.4)

If v& ——v2, and if the neutrinos are Dirac particles, this pro-
cess is similar to Compton scattering for which standard
analyses exist. ' Our purpose is to generalize them to in-
clude the off-diagonal case v~&v2 and the case in which
the neutrinos are Majorana particles.

In order to write down the most general form of the
amplitude, it is convenient to define the orthogonal vec-
tors
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M =d (k')e (k)l „„, (2.5)

where

I p
—Go(e]„e],+e2„e2„)+G](e]pe2 +e2pel

+62(e]pe2 —e2pe] )

+G3(el@ 1 2pe2 (2.6)

The term involving G2 in Eq. (2.6) can be written in a dif-
ferent form. Using the identity

Sip vapy gAv papy+g Aa~papy g A,p~pvay+gA, y~pvap

we obtain

~2 ~a p
e&&eZ —e2&e&„——P e& aP~ q

e3 k=es.k'=e4. k= —e4.k'=q

so that only e] and e2 are gauge invariant. Therefore, the
most general form of the amplitude is

where A& is the photon field, and

&i =&'V2&~ (2.13)

=71,ri e]'*(k')e"(k)u(p2)Q„„(P,q, K)u (p, ), (2.14)

where Q„„ is obtained from Q» by replacing ys~ —ys
and e p~ —e+~p (in particular, e]&~—e]„).

On the other hand, Hermiticity implies that for any dia-
gram D that contributes to M(y(k)+v](p])~y(k')
+v2(p2)), there is a corresponding diagram D' that contri-
butes to M(y(k')+v2(p2)~y(k)+v](p])), which is ob-
tained by replacing every vertex in D by its Hermitian
conjugate. Therefore,

M(y(k') +v2(p2 )~y(k) +v](p] ) )

in the Dirac representation for the y matrices. If the La-
grangian is CP invariant, these transformations imply

M(y(k)+ v](p] )~y(k')+ v2(p2) )

The G; are of the form

Np2)Q'u {pl ) {2.8) where'

=e]'(k')e (k)u(p] )Q& (P,q, K)u(p2), (2.15)

Qo = (Fi +f]ys)+ (F2+f2ys)4

]3 5(F3+f3ys)+ {F4+f4ys)q'

Q2 = iys{Fs+fsys)+ (Fe+f6ys)q

Q3 —(F7 +f7y5 ) + (F]]+fs ys )V

The invariant amplitudes F, and f; are functio'ns of

(2.9)

where, using the Dirac equation, the Q; can be written as Q~, (P,q, K) =yoQp„(P, q, K)yo .

Further, the substitution rule' and Eq. (2.15) yield

M(y(k)+ V](p] )~y(k') +v2(p2) )

(2.16)

=(—l)e]"(k')e"(k)U(p] )Q„„( P, —q, K—)U (—p2),
(2.17)

U(p)=iy2u "(p) . (2.18)

A=P q. (2.10)

Substituting Eq. (2.18) in Eq. (2.17) and comparing with
Eq. (2.14), we finally obtain

For later use, it is convenient to define Q» by writing (2.19)

M =ei'*(k')e"(k)u(p2)Q„„(P, q, K)u (p] ) . (2.1 1)

From Eqs. (2.5), (2.6), and (2.8), it follows that Qz is
given by a formula analogous to Eq. (2.6) with the replace-
ment G;~Q;.

We now examine the constraints on the F; and fi im-
posed by Hermiticity" and, if applicable, CP invariance.
We consider four cases separately: v] ——v2 and v]&v2
when the v; are Dirac or Majorana particles.

Thus, if the invariant amplitudes have no absorptive
part, ' then they are relatively real.

B. v~ ——v2 Dirac case

The amplitude in this case is of the same form as in the
off-diagonal case:

M(y(k) +v(p] )~y(k') +v(p2 ) )

A. v~&v2 Dirac case =ei'*(k')e"(k)u{p2)Q»(P, q, K)u {p]), (2.20)

In this case, Hermiticity by itself does not imply any re-
strictions on the invariant amplitudes, but combined with
CP invariance it yields some reality conditions. CP invari-
ance implies that the Lagrangian is invariant under the
substitution

(2.12)

where Q» has an expansion similar to that given in Eq.
(2.9). In contrast to the off-diagonal case, Hermiticity and
CP invariance can be used independently in the present
case. Let us consider Hermiticity first. Repeating the
steps that led to Eq. (2.15), we obtain in this case

M(y(k') +v(p2 )~y(k) +v(p ] ) )

=ei'(k')e~(k)u(p, )Q„„(P,q, K)u (p, )

so that
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M(y(k)+v(pi )~y(k')+ v(p2))

=eI'(k)e (k')u(p2)Q„, (P,q, —K)u (pi) . (2.21)

Comparing Eqs. (2.21) and (2.20), we then obtain

Qq„(P, q, K) =Q ~(P,q, —K),
which in terms of the invariant amplitudes implies the
condltlons

(2.28)

Strictly speaking, the phase factors in the CP transforma-
tion law for Majorana neutrinos are ri =+i (see, e.g., Ref.
3 and references therein). However, since fermion fields
always occur in pairs in the Lagrangian, only the relative
sign between these factors is relevant. Equation (2.26) also
implies that the plane-wave decomposition of the Majora-
na field is

57s and f2348 real

F3 6 and f i 5 6 7 lmaglnary
(2.22) p p2Z

The assumption of CP invariance yields further restric-
tions. Following the steps leading to Eq. (2.14), and
remembering that g~ ——g2 in the present case, we obtain

M(y(k) +v(p i )~y(k') +v(pi ) )

=6"(k')e"(k)u(p2)Q&„(P, q, K)u (pi), (2.23)

where, as in Eq (2. 1.4), Q&„ is obtained from Q„„by mak-
ing the replacement y5~ —y5 and E& p~ —

E& p. The
substitution rule then gives

M(y(k')+ v(pi) ~y(k)+ v(p i ) )

+ u (p,s)e'i'"a'(p, s) ] (2.29)

where u (p,s) is given by Eq. (2.18).
We now adapt the discussion in Sec. IIA to the case of

Majorana neutrinos. The amplitude is of the same form
as in Eq. (2.11) for Dirac neutrinos. However, in contrast
to the Dirac case, Hermiticity and CP invariance yield in-
dependent conditions on the invariant amplitudes. Let us
consider Hermiticity first. Following the analysis leading
to Eq. (2.17), and remembering that v; =v; in the present
case, we obtain

and finally

=(—1)d'(k')e (k)u(p2)Q„, ( P, —q, —K)u(—p, ) M(y(k)+vi(p&)~y(k')+v2(p2))

=( —1)e4'(k')e" (k)u(pi )Q„,( P, —q, —K)u—(p2) .

M(y(k) +v(p i )~y(k') +v(p2 ) )

=( —1)&(k)e (k')u(pi)Q„, ( P, q, K)u(p, )—. —
(2.24)

(2.30)

Substituting Eq. (2.18) in (2.30) and comparing with Eq.
(2.11), we obtain the conditions

Substituting Eq. (2.18) in (2.24) and comparing with Eq.
(2.20), we obtain

F; real (all i),
f; imaginary (all i) .

(2.31)

F3,6 =fi, s, 6, 7 =0 . (2.25)

As it should be, Eq (2.25) .also follows by putting ii& ——F12

in Eq. (2.19) and comparing with Eq. (2.22).

v =l f2v] =vi (2.26)

for every neutrino specie. Together with a phase conven-
tion for the charged-lepton fields, Eq. (2.26) implies a de-
finite phase convention for the Kobayashi-Maskawa ma-
trix in the lepton sector. If CP is a symmetry, then the
Lagrangian is invariant under the transformation

viI. ~ IiviR

vw~'giviL, ~

Ap~ —Ap,
where, as a consequence of Eq. (2.26),

(2.27)

C. v~&v2 Majorana case

Before proceeding to extend the preceding discussion to
the case of Majorana neutrinos, it is useful to review brief-
ly our phase conventions, which are explained in more de-
tail in Ref. 5. In general, the phases of the left-handed
neutrino fields v;I can be chosen such that the Majorana
condition is

Qp (P,q, K) =riiri2Qp„(P, q,K),
which yields

+i =nig2+~

f = —nin2f .
(2.33)

[These conditions also follow from Eq. (2.19) with ilz ——riz
and Eq. (2.31), as they should. ] Therefore, if the initial
and final neutrinos have the same (opposite) CP parity,
Q„„behaves as a tensor (pseudotensor). This situation
contrasts with the results for the process v&~v2+y. The
quantity analogous to Q„, is I „defined by

M(v, —+v2+y) =ei'*(q)u(p2)l „u (pi ) .

In this case CP invariance implies that if the initial and fi-

CP invariance yields further conditions. If the Lagrang-
ian is CP invariant, then the transformations in Eq. (2.27)
imply that

M(y(k)+vi(pi )~y(k')+v2(p2))

=ili712d'*(k')e (k)u(p2)Q~„(P, q, K)u (p, ),
where, as in Eq. (2.14), Qz„ is obtained from Q&„by mak-
ing the substitution y5~ —y5 and e„p~—e„p. Equa-
tions (2.32) and (2.11) imply
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nal neutrinos have the same (opposite) CP parity, then I &
is of the form o&~'y5(o&~ ) (Refs. 3—7). In our deriva-
tion, the origin of these contrasting results for Q„and I „
is the minus sign in the CP transformation law of A& in
Eq. (2.27), which cancels in the two-photon process.

The result in Eq. (2.33) for the Majorana case also
differs from the corresponding result in Eq. (2.19) for the
Dirac case. In the Majorana case, CP invariance forbids
the simultaneous presence of F; and f~ terms while both
type of terms are allowed in the Dirac case.

D. v& ——v2 Majorana case

plitudes calculated as if the neutrinos were Dirac particles.
Let us denote the contribution of a given diagram D by

M (y(k)+v)(p))~y(k')+v2(p2))

=eI'*(k')e"(k)u(pz)Q„„(P,q, K)u (p, ) . (2.38)

For each diagram D there is a corresponding diagram D'
which is obtained by replacing every vertex in D by its
Hermitian conjugate and gives an additional contribution
to the amplitude. The contribution of D' can be obtained
by the same reasoning leading to Eq. (2.17). (Remember-
ing that V; =v;. ) Thus, we obtain

F3,6 f2, 3,4, 8 (2.35)

Hermiticity yields additional conditions, which can be
most simply obtained by putting v& ——v2 in Eq. (2.30) for
the off-diagonal Majorana case. In this way, we obtain
conditions analogous to Eq. (2.31):

This is an interesting case because the Majorana condi-
tion, Hermiticity, and CP invariance yield independent
conditions on the invariant amplitudes. The amplitude is
of the same form given in Eq. (2.20). Remembering that
v=v, the substitution rule implies

M(y(k')+v(p2) y(k)+v(p ))

=(—l)e"(k')e (k)u(p2)Q&„( P, —q, —K}u (p &

—)
so that

M(y(k)+ v(p ~ )~y(k')+ v(p~ ) )

=( —l)d'(k)e (k')u(p&)Q„, ( P, q, K—)u(pz—) .

(2.34)

The consistency of Eqs. (2.34) and (2.20) requires

M (y(k)+v((p) ) y(k')+v2(pp})

FM=Fa+Fa

fM fD fD»
(2.40)

It is readily verified that Eq. (2.40) is consistent with
our previous results. In particular, the results in Secs. II C
and II D for the off-diagonal and diagonal Majorana cases,
respectively, follow from Eq. (2.40) and the results in Secs.
II A and II B for the corresponding Dirac cases. Equation
(2.40) is also very useful in explicit calculations of the am-
plitude if one wishes to compare the rates in the Dirac and
Majorana cases.

=( —1)d"(k')~"(k)u(pi )Q „„( P, —q—, —K)u (p, ) .

(2.39)

The complete amplitude is jven by the sum of Eqs. (2.38)
and (2.39). Denoting by FI and f; the complete invari-
ant amplitudes in the Majorana case and by F;,f; the
corresponding quantities calculated as if the neutrinos
were Dirac particles, Eqs. (2.38) and (2.39) yield

F; rea1,

f; lmaglnary .
(2.36) F. The Dirac neutrino

as two degenerate Majorana neutrinos

Equations (2.36) and (2.35) are consistent with Eq. (2.22)
as they should be since the requirements of Hermiticity
can also be obtained by putting v= v in the diagonal Dirac
case.

In similar form, the implications of CP invariance in
this case can be obtained from the diagonal Dirac case
(with v=v) or from the off-diagonal Majorana case with

v&
——v2 (and g, =gz). Together with Eq. (2.35) these two

procedures yield equivalent conditions which are summa-
rized by

Therefore, only F$ 24578 are nonzero and, according to
Eq. (2.36) are real. If CP is not conserved, then f~ q 67
can also be nonzero, and according to Eq. (2.36) they are
imaginary.

E. The Majorana amplitude
in terms of the Dirac amplitude

1
v~ = (v+v'),

&2
1

v2 —— ~ (v —v') .l~2

(2.41)

The U(1) invariance associated with v implies that [a simi-
lar proof is given in Ref. (5), Eq. (28)]

M (y+ v)~y+ v) ) =M (y+ v2~y+ v2),

M(y+v, ~y+v, ) = —M(y+v, ~y+v, ),
and, therefore,

(2.42a)

(2.42b)

M (y+ v-~y+ v) =M (y+ v, ~y+ v, )

It is instructive to recover the results for the diagonal
Dirac case as the limiting case in which the Dirac neutri-
no is regarded as two degenerate Majorana neutrinos of
opposite CP. Denoting by v the Dirac neutrino, the asso-
ciated Majorana neutrino fields are

+iM(y+v)~y+v2} .
We now show how the invariant amphtudes in the Ma-

jorana case can be expressed in terms of the invariant am- Defining Qz'„" and Q„"„'by

(2.43)
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M(y(k)+v)(p) )~y(k')+v)(p2))

=d'*(k')e(k)u(p2)Q&'„"(P, q, K)u (p) ),
M(y(k)+v)(p) )~y(k')+vq(p2))

=d'*(k'}e (k)u(p2)Q„'„'(P, q, &)u (p) ),
Eqs. (2.43) and (2.44) imply

f()1)+ f{12)

(2.44a)

(2.44b)

(2.45)

(b)

where F;,f~ are the invariant amplitudes for the Dirac
neutrino, and F "',f '"(F;" ',f;" ') are the corresponding
quantities in the diagonal (off-diagonal) Majorana case. In
addition to the relations in Eq. (2.31), the F;" ' and f;" '

satisfy another set of relations if m) ——m2. These are most
easily derived by considering Eq. (2.44b). Remembering
that v; =v;, the substitution rule gives

M(y(k')+ v2(p2) ~y(k)+ v)(p ) ) )

=(—l)d'(k')e (k)u(p2)Q&'„'( P, —q, —E—')v(p) ),
so that

M(y(k) +v2(p) )~y(k')+ v)(p2) )

=( —1)d'*(k')E"(k)u(p) )Q'„p '( P, q, E)—o(p2—) .

(2A6)

FIG. 1. Diagrams for v~ —+v&+ y+ y in the standard
SU(2) && U(1) model with right-handed singlets. In principle, dia-
grams in which each W line is replaced by an unphysical Higgs
scalar should also be included. In addition, there is a set of dia-
grams with the photon lines crossed.

well as the diagrams with unphysical scalars, give contri-
butions to I &„oforder ( I/Mz ) at most. Explicit evalua-
tion of the diagrams in Fig. 2 yields'

M(v, ~v, +y+y)=&'(k')& (k)u(p2)Qp„u (p) )

(3.2a)

Qp„—— 2iep~iak' —kp(F5 +f5y5),
u(pz)Q&' '(P, q, K)u (p) ) =u(p) )Q,'& '( P, —q, K—)v(pz),

which yields
where

(m —m„)6
a c(2.47)1 2 4, 5, 7, 8 J 1,5 6 7 =0 .

b

On the other hand, the left-hand side of Eq. (2.46) can also with
be obtained from Eq. (2.42b). Thus we obtain

&lb
2

(3.2b)

Equations (2.47), (2A5), and (2.31) allows us to recover the
results in Eq. (2.22). [It must be emphasized that, in con-
trast to Eq. (2.31), Eq. (2.47) is only valid in the limit
m) ——m2. ] Further, Eq. (2.25) can also be recovered from
Eqs. (2.47), (2.45), and (2.33) using the fact that g) ———g2
for the two degenerate neutrinos that compose the Dirac
neutrino.

6 Ub, Ub, Ib(s)
(m, +m„)

In Eq. (3.3), mb (=m„m&, m, ) is the mass of the charged
lepton in the loop and

III. CALCULATION GF THE RATE
FOR v~~vq+y+y

In order to estimate the rates that can be expected for
the decay

eb

v](p) )~v2(p2)+y(k)+y(k'), (3.1)

we consider the standard SU(2) XU(1) model' with right-
handed singlets v~. We assume that the mass terms are of
the form VL mv~ so that the neutrinos are Dirac particles.
The rates in the case of Majorana neutrinos can be ob-
tained by using Eq. (2.40). To lowest order, the relevant
diagrams are shown in Fig. I. These diagrams are similar
to the diagrams for s~d +y+y. ' The leading contribu-
tion to I &~ in powers of (I/M~), is of order (1/M~}2
and comes from diagram (a). The remaining diagrams, as

&(k })
bc,

FICx. 2. Diagrams that give the leading contribution to
v& —+v2+ y+ y. a, b, and c are family indices, eb is a charged lep-
ton, and Ub, is the Kobayashi-Maskawa matrix in the lepton
sector.



TWO-PHOTON DECAYS OF HEAVY NEUTRINOS 1669

1

Ib(s) = da)da28(1 —a) —a2)a)a2
0

where

CX )CX2$1—
mb

(3.4)

On the other hand, the rate for v, ~v, +y in the same
model is given by'

I (v, ~v, +y}=l or'(I —r } (1+r )(U„U*„)

(3.14)

where

s =2k k', (3.5)

In terms of the invariant amplitudes defined in Sec II., Eq.
(3.2) corresponds to P F5 F5,——P f5 f5 wi——th all the oth-
er amplitudes being zero. Equations (3.2) and (3.3) lead to
a decay rate

I (y)
a62m

va

128~
9 mr

16 Mg

4

mv
a

1 MeV
=(5.6&& 10' sec)

5

(3.15)

where

F(s)A(s, m, m, )

3mv a

(3.6)

F(s)=s I ~F5
~

[(m, +m„) —s]

+
~ f5 ~

[(m„—m„) —s]j (3.7)

and, as usual,

A, (x,y,z)=(x +y +z —2xy —2xz —2yz)'~

In Eq. (3.6), s varies in the range

0&s &(m„—m„)

(3.8)

(3.9)

In order to obtain a numerical estimate for the decay
rate, let us assume that m &2m, . In this case the term

with mb =m 1n Eq. (3.3) dominates. Approximating
I, (s) by I, (0)=,'~, and defining

Therefore, the basic difference between the one- and two-
photon decays is that the CRIM supression factor
(m, /M~) in I 0(y) is replaced by (m, /m, ) in I o~'.
For m in the eV range this makes I 0

y' negligible com-
pared with I 0y'. However, for m ~0.2 MeV, the two-

photon process can dominate. For example, for m =1v

MeV we have I o~'=(2&&10 yr) ', while I o
' is three or-

ders of magnitude smaller. Notice, however, that these es-
timates can change drastically when the effect of the mix-
ing angles are taken into account. In particular, the rate
for v, ~v, +y+y is controlled by the coupling to the
lightest charged lepton while v, ~v, +y is controlled by
the coupling to the heaviest charged lepton. If v, and v,
are not strongly coupled to the ~ lepton, the two-photon
decay becomes more important even for masses m„&0.2
MeV.

If m „&2m, (strictly speaking it should be m,
& 2m, +m, ), the dominant decay mode is

C

s=

mv
C

mv,

s
2 7

mv

R =U,', U„(1 r), —
R'= U,', U„(1+r),

the decay rate can be expressed as

where

p(rr)f (~)
ds

and

f (s) =s 'A( l,s, r ){8 [(1+r) —s]
+R' [(1—r)2 —s] j

(3.10)

(3.11}

(3.12)

v, ~v, +e++e (3.16)

mvI,'rr) =(1.2~ 10"sec)-'
1 MeV

For mv much smaller than m&, I 0~' is negligible com-

pared with I or'. However, for m &40 MeV the two-

(3.17)

which occurs through the diagram in Fig. 3. However, if
for some reason U, „and/or U„=O, this process does

not occur at the tree level and the radiative decays are
relevant. In this case the term with mb =m& in Eq. (3.3)
dominates and the decay rate for the two-photon decay is
given by the same formulas as above with the substitution
of the subscript e by p. Thus, in this case

T 9

a62m
Va

128~

mv a

288m l m,

=(7. 1 X 10' sec)
mv,

1 MeV

9

(3.13)
FICx. 3. Tree-level diagram for vi~v2+e +e+.
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photon process can be the dominant mode: For example,
if rn„=100 MeV, then I c~'=(4X 10 yr) ', while

I or'=(1.7X10 yr) '. The situation for m, ~2m& can

be analyzed in an analogous fashion with obvious modifi-
cations.

In summary, the rate for v, ~v, +y+ y is not
suppressed by the GIM factor (m /Mtt ) as is the rate for
v, ~v, +y, but rather by (m, /m, ) (assuming

m„&2m, ). As a result, the two-photon process is ir-
relevant if m„ is in the eV range, but it can dominate if
m is of the order of a few tenths of MeV. Equation

(3.13) provides an estimate of the rates that can be expect-
ed for this process.

IV. CONCLUSIONS

The present paper consists of two main parts: a general
analysis of the amplitude for v& ~v2+ y+ y, given in Sec.
II, and an explicit calculation of the rate for this process
in the SU(2) XU(1) model with Dirac neutrino masses. In
addition to illustrating some of the interesting properties

of Majorana neutrinos, the analysis of Sec. II serves as a
useful guide in explicit calculations of the amplitude.
Moreover, the relations in Eq. (2.40) are useful for com-
paring the rates in the cases of Dirac vs Majorana neutri-
nos.

The main result of Sec. III is Eq. (3.13), which provides
an estimate of the rate in the standard SU(2) X U(l) model
with Dirac neutrino masses.

Finally, we mention a recent calculation of gluino pair
production by e e+ collisions, by Nelson and Osland.
This process occurs through the gluino-gluino-photon ver-
tex, which is analogous to the vvy vertex for Majorana
neutrinos. The analysis of the present paper may be
relevant also in that context.

After this manuscript was completed we received a pa-
per by Ghosh ' in which the rate for vt~v2+y+y is cal-
culated in the standard SU(2) XU(1) model.

ACKNO%'LEDGMENT

This work is supported in part by the U.S. National Sci-
ence Foundation.

~The extensive literature on this subject can be traced from the
review by F. W. Stecker, Neutrino 81, proceedings of the In-
ternational Conference on Neutrino Physics and Astrophysics,
Maui, Hawaii, edited by R. J. Cence, E. Ma, and A. Roberts
(University of Hawaii High Energy Physics Group, Honolulu,
1981).

This subject is reviewed in P. Frampton and P. Vogel, Phys.
Rep. 82, 342 (1982).

B. Kayser, Phys. Rev. D 26, 1662 (1982).
48. H. J. McKeller, Los Alamos Report No. LA-UR-82-1197

(unpublished).
~J. F. Nieves, Phys. Rev. D 26, 3152 (1982).
P. Pal and L. Wolfenstein, Phys. Rev. D 25, 766 (1982).
R. Shrock, Nucl. Phys. B206, 359 (1982).
A. Zee, Phys. Lett 93B, 389 (1980).
S. T. Petkov, Phys. Lett. 115B,401 (1982).
oSee, for example, V. B. Berestetskii, E. M. Lifshitz, and L. P.

Pitaevskii, Relativistic Quantum Theory (Pergamon, New
York, 1971),p. 236.

~~This is sometimes referred to as Hermitian analyticity. See,
for example, R. J. Edern, P. V. Landshoff, D. I. Olive, and J.
C. Poldinghorne, The Analytic S Matrix (Cambridge Universi-

ty Press, Cambridge, England, 1966), pp. 17 and 209. J. D.
Bjorken and S. Drell, Relativistic Quantum Fields (McGraw-
Hill, New York, 1965), p. 271.

'2In general, the F; and f; contain the ie factors to define the
branch cuts. Strtctly speaking, Q~„ is given by Eq. (2.19) tf, at
the same time, the substitution is~ —i@ is made. The struc-
ture of any diagram D is g I I where, schematically, g

represents a product of coupling constants, I a product of
Dirac matrices, and I is a loop integral. However, the struc-
ture of D' is g (yoI'~yo)I, with the same loop integral. The
substitution ie~ —ie in Eq. (2.19) would take this fact into
account. Thus, whenever F and f* appear, it is,implicitly
understood that the substitution ie~ —ie is made. In what
follows, we shall say that an invariant amplitude is real (ima-
ginary) if it satisfies F =F (F = —F). We are motivated to
use this terminology by our main interest of applying these re-
sults to the decay process v~ ~v2+ y+ y in the case m ~ & 2m„
in which the loop integral is real ~

'3J. M. Jauch and F. Rohrlich, The Theory of Photons and Elec
trons, 2nd ed. (Springer, Berlin, 1976), p. 161.

~4Strictly speaking, Eq. (2.19) should read
FI(4+i', t)=q~g2F& (6—ie, t), etc. See Ref. 12.

5The proof of Eq. (2.39) is identical to the proof given in Ref. 5
for the analogous quantities v~J„' 'v2 and v~J„' 'v2.

' S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salarn, in
Elementary Particle Theory: AelatE'vistic Group and Analytici-
ty (itiobel Symposium Xo. 8), edited by N. Svartholm
(Alrnqvist and Wiksell, Stockholm, 1968), p. 367; S. L.
Glashow, Nucl. Phys. 22, 579 (1961).
M. K. Gaillard and B. W. Lee, Phys. Rev. D 10, 897 (1974).

'8The details are the same as the calculation of s ~d +y+y in
Ref. 17.

'9See, for example, Ref. 6.
~oP. Nelson and P. Osland, Phys. Lett. 8115, 407 (1982).
'R. K. Ghosh, Phys. Rev. D (to be published).


