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Electromagnetic corrections to semileptonic decays with a polarized emitted hyperon
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The radiative corrections to the Dalitz plot of hyperon semileptonic decays when the recoil hy-

peron is polarized are studied. An expression for the transition probability that is suitable for high-
statistics experimental analysis is obtained. The model-dependent part of the radiative corrections is
retained in general so that the results obtained are not limited to specific model calculations. The
asymmetry coefficients are dealt with in the second part of this paper.

I. INTRODUCTION

In a previous publication' we studied the radiative
corrections to the Dalitz plot and angular correlation and
asymmetry coefficients of semileptonic decays of polar-
ized decaying hyperons. We obtained an expression, valid
within certain reasonable approximations, that is not re-
stricted to any particular model for strong interactions.
The result obtained, although it does not solve the prob-
lem of the model dependence does show that modified
form factors can be introduced and that it is only such
form factors that can be experimentally determined.
Therefore, the expressions obtained allow that experimen-
tal analysis of Dalitz plots be finished in a model-
independent fashion. The experimental values of those
modified form factors can later be used for comparison
with theoretical predictions once a specific model is
chosen to compute the model-dependent part of radiative
corrections. In this way one can avoid the risk of compar-
ing model-dependent experimental numbers with predic-
tions based on different models or even on incompatible
ones.

For a long time it has already been proposed to mea-
sure semileptonic decays with polarized emitted hyperons
instead of initially polarized ones. Very recently, the first
measurements of the Dalitz plot and asymmetry coeffi-
cients of X ~Aev with polarized A have been reported.
It is therefore timely to calculate the radiative corrections
to the case when it is the recoil hyperon that is polarized.
General expressions with V —A theory, without radiative
corrections, have already been available in the literature
for quite some time. We shall address ourselves to the
question of radiative corrections and we shall show that
essentially the results obtained in Ref. 1 apply also to this
case—the differences are only in the details.

In Sec. II we discuss the separation of the model-
dependent part of radiative corrections and we give the
relevant transition amplitudes. In Sec. III we derive a
general expression for the differential decay probability.
In Sec. IV we compute the radiative corrections to asym-

metry coefficients, and in Sec. V we make some final re-
marks.

II. RADIATIVE CORRECTIONS
WITH A POLARIZED EMITTED HYPERON

The basic approach we shall follow in computing the
virtual and inner-bremsstrahlung radiative corrections to
first order in a when the final baryon is polarized is the
same as in Ref. 1. We separate the troublesome model-
dependent part from a finite gauge-invariant model-
independent part. The latter can be computed and the
former can be incorporated into the form factors already
present. We shall neglect the effects of the four-
momentum transfer q on the radiative corrections. One
can estimate that contributions of order (a/m )q are small-
er than one half of a percent. Thus our results will be use-
ful if the experimental precision on the determination of
form factors is of a few percent. On the other hand, q will
be kept to all orders in the uncorrected matrix elements.

The separation procedure applies at the amplitude level
and thus, it is valid whether the polarization of the recoil
baryon is going to be observed or not. It is clear then that
the virtual amplitudes of Ref. I can be carried over to this
paper without further ado. There is no need to reproduce
all the lengthy Feynman integrals. The transition ampli-
tude with virtual radiative corrections is
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Here c and d are two constants that contain all of the
model dependence. The hadronic part of the matrix ele-
ments is as usual
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The uncorrected transition amplitude is given by

Gv
Mo= —II'i.V i J ~)~, ri.(1+1')U. .
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The model-independent part of the virtual correction is contained in the functions Pi and Pi. It is customary to work in
the rest frame of the recoil hyperon when its polarization is observed. The expressions for Pi and Pz in this frame are

a
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where I, is an infrared cutoff and L is the Spence function. The constants c and d can be absorbed into the leading form
factors, as was the case in Ref. 1; namely,

f'i (0)=f, (0)+—c,

gi(0)=gi(0)+ —d . (7)

The inner-bremsstrahlung amplitude does not introduce any model dependence if terms of order (a/ir)q are neglected
in the transition rate. Its explicit expression is given in Ref. 1, so there is no need to repeat it here. Its contribution to
the decay probability will be given in the next section.

It is clear then that the calculation of the radiative corrections to order a when the emitted hyperon is polarized is ba-
sically the same one as when the initial hyperon is polarized. The only differences lie in the computation of the traces,
especially in the one that arises from the second term in Eq. (1). In passing, let us remark that the above results corre-
spond to a neutral emitted hyperon. If this hyperon were charged then it would be pz that appears in the second term of
Eq. (1) and P& of Eq. (2) would contain a term (a/n )(ir /p) coming from the final-state Coulomb interaction.

III. DIFFERENTIAL DECAY RATE WITH POLARIZED EMITTED HYPERONS

As we just mentioned we shall give our results in the rest frame of the emitted hyperon. The differential decay rate
when this hyperon is polarized is

1 Gv (E E) lEdEd—AidA
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~ ~ ~ ~where Sz denotes the emitted hyperon polarization direction, I ' and p '„are the emission directions of the charged lepton
and neutrino, x =l'.p'„, and E =(Ml —Mq —m )/2M&. The coefficients D,', with i=1,2, ,56are quadratic functions
of the form factors of Eq. (2); the prime indicates that the effective form factors, Eqs (6) and (7), have been replaced into
them. D i and D z correspond to the unpolarized Dalitz plot; they are the same as D i and D z of Ref. 1, except that
they are now given in the rest frame of the emitted hyperon. We do not need their explicit form here; it can be found in
Refs. 4 and 9. The coefficients D ~ and D 6 are'
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The model-independent parts of the radiative corrections are
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NED and CEH mean "neutral emitted hyperon" and
"charged emitted hyperon, " respectively. PI and P2 are
certain linear combinations of P, and P2, Eqs. (4) and (5);
HI and H2 come from the inner-bremsstrahlung contribu-
tion. Comparing with Ref. 1, one can see that they are
formally identical with their counterparts there. As a
matter of fact, they agree numerically when terms of or-
der (a/n)q are n. eglected, as is the case here.

Equation (8) for dw(A~Blv) is useful for a model-
independent experimental analysis. It clearly shows that
only the effective form factors ft and g' can be experi-
mentally determined. Equation (8) can be u"ed even in
muon-mode decays since we have not neglecced the
charged-lepton mass. Also, no approximation about the
smallness of q has been made in D 5 and D 6.

IV. RADIATIVE CORRECTIONS
TO ASYMMETRY COEFFICIENTS

When low-statistics experiments are performed it is cus-
tomary to measure integrated observables such as the total
decay rate, angular correlation coefficients, and asym-
metry coefficients, instead of the detailed Dalitz plots.
Four asymmetry coefficients have been proposed when
the emitted hyperon is polarized; namely, the electron and
neutrino asymmetries, ai and a„, and two more asym-
metries a and ap, which correspond to replacing l* and
p*„by a new orthonormal basis. The advantage of the
latter two over the former two is that they are governed
directly by a theorem due to Weinberg. " Specifically,
when the charged-lepton mass can be neglected, a de-
pends only on cross-product terms of vector and axial-
vector form factors, while ap does not contain any such
interference terms. The first measurements of a~ and ap
in X ~Aev have been reported in Ref. 3.

The radiative corrections to aI, a„, and the decay rate R
I

I

are obtained directly by straightforward integration of Eq.
(8),
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The uncorrected asymmetries and rate are a I, a, and R,
respectively; they contain the contributions proportional
to q to all orders.

The radiative corrections to a and ap require a little
more effort. The orthonormal basis introduced to define
a~ and a~ is a=(1*+p', )/a', P=(l* p„)/b', and-
n =PXa; a' and b' are normalization coefficients. In or-
der to use Eq. (8) to get the radiative corrections to a~, we
change the angular variables of the electron to those of the
vector a using

1'= —p*„+(2p*,.a)a .

The solid angle dpi is replaced by (4p *, a)dQ a. The part
containing S2 of Eq. (8) then becomes

1+ (1—Px )
E

M2

Gp (E* E) 1EdEdA d—Q
dw(A~Blv)- =—

3 (4@*„a)[(2p*„a)S2a D 5 +S2 p*( D5 +D 6)j—2 (2~)

Integrating Eq. (20) to get a, we get'

2
y 2 ~, a @2 Q ~, aRaa= 3
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where D 5 and D 6 are the integrated coefficients D 5 and

D6.
The radiative corrections to ap are obtained using

l*=p*—(2p „.P)P to replace 1" and der in Eq. (8), so
that P and dQp appear instead. The result is
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i.e., the form of these asymmetries is independent of radi-
ative corrections.

For completeness, let us mention that for q=O, Eqs.
(27) and (28) become

The uncorrected asymmetries a and ap have been
computed by Linke. They are given in Table 4(a) of Ref.
4. As we mentioned earlier, the numerical values of the
model-independent part of the radiative corrections agree
with the corresponding ones in Tables I and II of Ref. 1.
For X ~Aev, they are (a/m)(@ilb) =0.0012 and
(a/tr)(42/a) =0.0001. From the latter tables one can see
that within our approximations, it turns out that
(a/m)(4t/b)-(a/m)(42/a). Thus, in Eqs. (21) and (22)
the model-independent radiative corrections factor out
and we get
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Because of this factorization property, we can conclude
that the above asymmetries, Eqs. (13), (14) and (23), (24),
obey the same theorem that the angular coefficients of the
initially-polarized-hyperon case obey. ' Namely,

and

a~= —, Ref'&g&*/(f i +3gi )

rrp= 3 I
g'i

I
'/(f'i'+3gi'»

in agreement with Refs. 2 and 4.

V. SUMMARY

We have calculated the radiative corrections to first or-
der in a to semileptonic decays with a polarized emitted
hyperon in close parallelism to the radiative corrections of
semileptonic decays of an initially polarized hyperon. Our
results are appropriate for high-statistics experiments that
will be able to determine the form factors up to 1 or 2%.
The effective form factors, Eqs. (6) and (7), determined
from experiment are model independent and thus can be
used for comparison with theoretical predictions without
any bias in favor of or against any particular approach to
estimate the model-dependent part of the radiative correc-
tions.

The V —A theory form of the asymmetry coefficients is
not changed by radiative corrections. The only indication
of the presence of radiative corrections is through the ap-
pearance of the primed form factors. The last paragraph
of Sec. IV stresses this point.
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