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Quantum chromodynamics and the rise of hadronic total cross sections
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We have computed the sum of all multiparton-production cross sections induced by one
hard-gluon exchange in the leading-logarithm approximation of QCD for high-energy had-
ronic collisions. The rise of hadronic total cross sections is explained by the excess of the
rise of parton multiplicities with respect to the decrease of each individual cross section. We
have shown that this rise is very sensitive to only one free parameter, namely the mass of
the constituent quark, but not to other nonperturbative effects. With a reasonable value of
350 MeV, we have obtained a rise of 15 mb between CERN ISR and collider energies.

I. INTRODUCTION

It is now a rather well established fact that the ob-
servables of hadronic multiple production exhibit
similar behavior both in purely hadronic reactions
and in hard lepton-hadron reactions, at least at
moderate values of Q . For instance, the increase of
multiplicities and average transverse momentum,
and long-range correlations have been observed in
high-energy hadronic reactions as well as in e+e
annihilation. Since QCD is the theoretical frame-
work used to describe these behaviors in hard
lepton-hadron reactions, the observed similarities
suggest that perturbative QCD may be a good tool
to explain some features of purely hadronic reac-
tions.

In this paper we answer the question of the
relevance of QCD to describing hadronic total cross
sections. Indeed we show by means of a quantitative
estimate that the gluon radiation induced in hard
parton collisions may be responsible for the rise of
hadronic total cross sections. We discuss the
theoretical significance of this result.

We exclude from. the domain of application of
perturbative QCD the constant component of total
cross sections, which is obviously related to nonper-
turbative effects. We concentrate on the rise of the
total cross sections, and the problem is to explain a
rise of order of about 15 mb from CERN ISR to Pp
collider energies, by means of small cross sections
typical of hard processes.

We obtain this effect thanks to the increase of the
number of gluons radiated by bremsstrahlung. '

Qualitatively, the higher the momentum transfer,
the lower the individual parton cross section but the

higher the multiplicity of partons. Indeed, it has
been observed that the rise of hadronic total cross
sections is connected with an increase of multiplici-
ties faster than logarithmic. This increase is related
to the increase of the height of the central plateau,
where gluons and sea quarks are supposed to be
dominant. On the other hand, large-PT inclusive
cross sections increase very rapidly with energy, for
instance, at PT 10 GeV, ——E do /d P increases by or-
ders of magnitude from ISR to collider energies. It
has also been observed, in calorimeter experiments,
that the cross section to deposit a large transverse
energy is large and is built up by events involving
large multiplicities. On a more theoretical ground
Gribov, Levin, and Ryskin6 have shown that the
cross section for the production of high-PT hadrons
in the pionization region may be much larger than
expected in commonly used parametrizations.

II. TOTAL CROSS SECTION OF VALONS
IN THE LEADING-LOGARITHM

APPROXIMATION

A. Valons and the additive quark model

In order to study hadronic total cross sections we
have to proceed in two steps. In a first step one ex-
tracts from the incoming hadrons the so-called con-
stituent quarks or valons by means of a nonpertur-
bative Q -independent distribution. Qne then ap-
plies QCD at the lending-logarithm approximation
to describe the interaction of these valons. This
separation is necessary since QCD applies only for
inclusive distribution of partons inside a parton and
not inside a hadron. On the other hand this two-
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step procedure guarantees that one obtains the re-
sults of the so-called additive quark model which
are known to agree with data.

Let A and B be the incoming hadrons and qA and

jB their valons. By constituent quarks or valons we
mean valence quarks (or antiquarks in the case of an
antiproton) accompanied by sea quarks and gluons,
carrying the whole momentum of the incoming had-
ron and interacting independently.

Valons are characterized by their rest mass mz
(expected to be of the order of one third of the nu-
cleon mass) and by a Q -independent probability
distribution

(z)

which is constrained by

f 1

(z)dz =3 for a proton or an antiproton
0 A~q~

) g)I},(xb, t} ~

~
~FIG. 1. Valon-valon total cross section; t is the virtual

mass squared of the gluon exchanged between partons a
and b.

(conservation of the number of valence quarks; note
that we do not distinguish u and d quarks) and by

1f zt(rs (z)t(z = ) (2)

(energy-momentum conservation).
With the help of the g distributions we write the

hadron total cross section in terms of the valon total
cross section as

1 1

aA'B(s) = dz, ~ dzbgA (zg )fB (zi, )cr'" (z,zi,s) 3
2m / s 2m /vs &A &B &A&B

(( e

which simply expresses that valons interact independently.
In a first step we shall study the valon total cross section by means of QCD, afterward we shall show that

the hadronic total cross section is not very sensitive to the peculiar form of the f distributions.

B. One-gluon-exchange contribution to the valon cross section

High-Pi events in hadron-hadron collisions are reasonably well described by perturbative QCD. At the par-
ton level they correspond to the exchange of a gluon with large invariant squared mass or virtualness (of
modulus t) between quarks or gluons carrying a large fraction of hadron longitudinal momenta. These events
are characterized by a jetlike structure.

But, let us consider the same one-gluon-exchange contribution without a large-Pi trigger. Now, gluon radia-
tion due to the bremsstrahlung of the valons may be important. From the infrared properties of perturbative
QCD, one expects a rather large accumulation of events corresponding to small relative longitudinal momenta
and inteIIIiediate t values (say t of order of a few CreV ) which contributes to the central plateau of hadronic
multiplicity distributions. Experimental data on large transverse energy inclusive cross sections confirm this
expectation.

The contribution to the valon total cross section from one-gluon exchange between partons (see Fig. I) is ob-
tained by summation over all final-state configurations. One obtains

tr: tr'"(s)=g f f f t(tttx,—dxs. (a(r ab)tS' (x„t)tst (xst) . ,qaqa dta, b

The integration domain 6 will be discussed later on. s=z, zi, s [see Eq. (3)] is the c.m. squared energy of the
valon reaction, & (x,t) [&. (xb, t)] is the probability of finding parton a in valon jA [b in jB] with the

fraction x~ [xb] of the incident valon momentum, with a resolution scale t, and der/dt (ah ~ah ) (Ref. 9) is the
differential cross section in the one-gluon-exchange approximation
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A

(ah~ah)= —a, (r) ~ (C25,~+N, 5,g)(Cz5~+N, 5tg)+0
dt

The Kronecker 5 symbols select the vertices with
quarks or antiquarks (a, b =q) and gluons (a, b =g).
s=x,xbs is the c.m. squared energy in the parton
collision. As usual we define

11N, —2Nf
a, (t) = with b =

bint /A

C2 ——(N, 1)/2—N„where N, =3 is the number of
colors and Nf 4 the——number of flavors. A is the
usual QCD scale, which is set at 0.1 GeV according
to the theoretical expectations of Ref. 10 and in
agreement with the current world average. " Note
that only elastic (but for color) differential cross sec-
tions appear in Eq. (4) because we have neglected
parton reactions involving quark exchange. The
summation over colors in the final state has been
performed in Eq. (5). In terms of hadrons, the pro-
cesses which we study are obviously inelastic since
they involve one-gluon exchange. Our calculation
thus applies to the total inelastic cross section.

sponding to tree diagrams which, in the modulus
squared of the amplitude give rise to generalized
ladder diagrams (namely, ladder diagrams with ver-
tex and propagator renormalizations) (see Fig. 2).

The kinematics for which the process depicted in
Fig. 2 is dominant is characterized by the strong or-
dering of the moduli of the transfers of momentum
(as in heavy-lepton-pair production)

Pl « ' tg
(6)

rn& « t~ &&t~ &&. . . t .

On the other hand the subsequent relative longitudi-
nal momenta are also ordered. To establish this
property which is of crucial importance for our pur-
pose we have first to consider the cascading of a
timelike parton of virtual mass squared Q2 ~ 0 down
to a valon (see Fig. 3).

At step i we have

C. The domain of integration 6

We rely on the leading-logarithm approximation
(LLA) of QCD which has been extensively studied
by Dokshitzer, Dyakonov, and Troyan (hereafter
denoted as DDT) to determine the domain of in-
tegration 5 in Eq. (4) and the parton structure func-
tions &' and & . DDT have shown that, in a

planar gauge, at the LLA the contributions which
dominate the process of Fig. 1 are the ones corre-

where z; is the relative energy of parton i + 1 with
respect to parton i Becaus.e of the strong ordering
of the virtual mass squared [see Eq. (6)], the condi-
tion that Pz is positive, implies that

Zg )
tg

Repeating this reasoning step by step we obtain that
z, the relative energy of the final valon is bounded
by

2
PlqZ)

QOOOP

000
Ct

)co
oooooAF'

QOOA

00000'
000000%000

98
j

Plq
-"5000000000
Ik ll

&&Opoopmoppp &&
xi+1
I P I| (I

IioPQQQ&poopooi

~+00055WooqgI

iyyPPOPmOOQOO !

;«ooooo~ooooO«,
ooo0oI I

f&
~RfNfoomoooo

~ ooooo&UHY'
il «l I

2
'-WAoo~ooo--

The process depicted in Fig. 2 involves spacelike
partons, but the Crribov-Lipatov reciprocity rela-
tion' holds in the LLA and condition (9) provides
us with a first constraint for the domain b, :

2 2
Plq Plq

the second one is given by

t &s=x,x~s

FIG. 2. Dominant contributions of valon-valon cross
section in the planar gauge at the LLA. (a) Typical tree
diagram in the amplitude. (b) Typical generalized ladder
diagram in the cross section. FIG. 3. Cascading of a timelike virtual parton.
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FIG. 4. The integration domain b,„(shaded area). Dotted lines are the limit of the domain leading to the factorizable
approximation.

which reflects the kinematics of two-body reactions
at the parton level. The integration domain 5 is
simpler in terms of rapiditylike variables:

1
yg b =in

&a, b

g=ln
mq

S
ri, =ln

2
mq

(12)

6 = {0&y,b &ql I,
9$ Qs

(ii) &ql & (m '"s '"&t &m s '")

by ——{0 &y, b & rj I A {y,+yb & ql, —g ),
(iii)

'
(71&ql, (mqs 'i (2t &s)

~y= {ya+yb &'9s 'VI .

D. Valon structure functions

0&g &g„' y„yb E4y(ql) where by(rI) is defined as
follows [it turns out that in order to make Eqs. (10)
and (11) compatible one has three cases as shown in
Fi . 4]:

(i) 0&q& (mq'&t"&mq4"s '")IS

where v=(16K,glnl/x)'~, I& and I2 are the modi-
fied Bessel functions which behave for large v as
exp(v)/V2qrv, and

dg', (Q') l, (P')
ln

p' g' 4qr 4mbiz, (t")-

ln
1

2

ln
4m.b p2

ln

(15)

The parameter p controls the way how g and thus
the gluon and sea-quark multiplicities vary with t.
DDT have determined p by demanding a realistic
value for the fraction of momentum carried by
gluons in a nucleon at Q =2.5 GeV . They have ob-
tained this way p =0.15 GeV for A=0. 1 GeV. Now
according to Eq. (15) g vanishes at V t =p, which is
too small to be interpreted as the mass of the valon.
Nevertheless for our quantitative calculations we
have used the DDT parametrization with @=0.15
GeV but we have allowed the mass of the valon
(that is, the scale at which g should vanish) to be
different from p by means of a slight modification
of g, namely,

j= l. DDT have shown that this effect reflects in
the following small-x behavior of gluon and sea-
quark structure functions:

x&g(x, t) ~Ii(v)/v,
(14)

x& (x,t) .~ I2(v)/v

It is well known that sea-quark and gluon struc-
ture functions are more singular than x ' near
x=O, which leads to multiplicities which increase
more than logarithmically with energy. This is due
to an essential singularity in the moment space near

ln
1

4qrb

t —m +p2 2

2

ln"
A
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1
1 &&ln —(ln

X
(17)

In our calculations x, b ~m~ /t [region (i), in Eq.
(13)], and provided that (1/n )a, (mz ) is small, i.e.,
m& /A )&1, Eq. (17) is satisfied and the LLA ap-
plies. As will be shown below m /A turns out to
be of order 10 which yields (1/n)a, (mz )-0.2.

E. Factorizable approximation

This ansatz does not affect at all the structure func-
tions at the Q values which are relevant for the rise
of total cross sections (t &~mq p—).

The LLA applies for small values of x (Ref. 13)
provided that

which simplifies the calculations. By replacing re-
gions (ii) and (iii) by the domain b,y (see Fig. 4)

1$9~y= '3'a, b &

we obtain the best factorizable approximation to the
contribution of the integral in regions (ii) and (iii).
In any case this factorizable approximation provides
us with a lower bound for the effect we are studying.

F. Truncated multiplicities

Let us consider truncated parton multiplicities in
valons, which are nothing but the parton multiplici-
ties in valons obtained in the LLA, namely,

From Eqs. (4), (5), and (14) we can discuss quali-
tatively the contributions of sea quarks and gluons
in the valon total cross section. In Eq. (4) the parton
differential cross section favors small values of t [see
Eq. (5)]. But, because of the domain of integration
defined in Eq. (13) and because of the behavior of
structure functions near x=0 [see Eq. (14)] the par-
ton multiplicities favor large values of t. We thus
expect that the maximum valon total cross section is
obtained for intermediate t

From Eq. (14) we see that the integrand in Eq. (4)
is maximum when both y, and yb are large. In re-
gion (i) the integrals in y and yb are factorized

y, y or (
ny(g) = —q/2

~ yg y org&

(19)
where p =U for valence quark, S for sea quarks, and

g for gluons. These multiplicities are truncated be-
cause the y integrals are performed in the domain
hy.

In terms of these truncated multiplicities, Eq. (4)
becomes

g C, n'g +n~ g +,ng 'e —'I

2m' b (rl+lnmz /A )
(20)

For valence quark we have approximated the truncated multiplicity by the full multiplicity which is finite:
n (g) = 1. For gluon and sea quarks the truncated multiplicities are obtained from Eq. (14) and the normaliza-
tion is fixed by means of the second moments. This yields

1

2

where

ng(ri) =Xg[Ip{(16N,gri)'~ ) 1], —

I)((16N,g'q)'~ )
n ( )=Aq

(21)

I 9$
g

4C,exp( 4N, g) 1 —exp[ ——,
'

(4C2+Nf g l

4C2+Nf 1 —exp( 4N,g)—
r

(24)

f
4C2+Nf

8 4C2 2—exp( ——,C2$) + exp[ ——,g(4C2+Nf )] ~

4C2+ Nf

exp(4N, g) —1 —4N, g'
(25)
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It is possible now to understand qualitatively the
origin of the rise of total cross sections. From the
asymptotic behavior of modified Bessel function one
can evaluate the behavior of the integrand in Eq.
(20) as a function of rf. Neglecting the slow varia-
tion of g' (which behaves like in') we obtain for the
gluon-gluon contribution to the integrand

4ao/4(nS (mb) Data from [1(]
Prediction m& = .125 GeV

Average va(ue of 4o~/4(nS

I~-exp( —t) +2+16N, gt) )

in region (i), i.e. , q ( (26)

0 I 1 I I I I i I I I I I I I I I I I I I I I I I I I I

1 10 10~ V 5 (GeV) 103

FIG. 5. ho. /kins. The solid curve is our prediction for
m~ =350 MeV. Data are from UA4 (Ref. 14).

I -exp —ted+2 16N, g
IS

1/2 '

in regions (ii) and (iii), i.e. , rf&

(27)

It appears that mostly region (i) contributes to the
rise of total cross section because there exists a re-
gion in which the integrand is increasing, whereas
the behavior of the integrand in Eq. (27) is continu-
ously decreasing. Indeed we rewrite Eq. (26) as

I~ -exp[ —(1/t1 —+16N,g) ]
which is a Cxaussian centered at

=16N, g (28)

which corresponds to a very large value of g. With
g, as defined in Eq. (16), one can solve Eq. (28). For
me —0.125 CxeV we find that the logarithmic
derivative of the cross section is positive [increasing
integrand in region (i)], for tj, (56, i.e., s &10 3

GeV . We thus see that for the rise of the cross sec-
tion the most important region is the upper end of
region (i), i.e.,

it turns out that the valon total cross section is a
slowly rising function of the energy. As a conse-
quence the hadron total cross section does not de-
pend very much on the specific form of the P distri-
butions. Provided that these distributions obey con-
straints (1) and (2), a good approximation of the
nucleon-nucleon (or nucleon antinucleon) cross sec-
tion is given by

o~~(s)=9o"'(s/9) (29)

which is nothing but the result obtained from the
additive quark model using the quark kinematics.

We have perforiried a quantitative estimate of the
QCD contributions to the nucleon-nucleon total in-
elastic cross section. We have used the approxima-
tions discussed both in Sec. II (one-gluon-exchange
approximation, factorization of the truncated multi-
plicities obtained in the LLA) and in Eq. (29). The
parameters are A, iM, and me. A and p have been
fixed at 100 MeV and 150 MeV, respectively, in
agreement with the current world average for A"
and the DDT estimate for p. The only free param-
eter for our estimate is me, the mass of the valon.

(t-mz s' ) .

The approximations to calculate the contributions of
regions (ii) and (iii) are furthermore justified by the
fact that the integrand is decreasing there.

60—
IA

aToT (mb

Data from L1t]

————Constant contribution ao (QT)

III. THE RISE OF THE NN TOTAL INELASTIC
CROSS SECTION, A QUANTITATIVE ESTIMATE

To evaluate hadron cross sections for the
knowledge of valon total cross sections one needs to
know the nonperturbative distributions 1(„.(z, )

and gz (za) which appear in Eq. (3). However

the valon total cross section depends on z, and zb
only through the upper bond in Eq. (4) s =z,zi, s, and

30—

10 V 5 (GeV) 103

FIG. 6. The N-N total inelastic cross section as a func-
tion of energy. In dashed curves, the constant contribu-
tions corresponding to two different values of Qr2 are
shown. Data are from UA4 (Ref. 14).
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For the validity of the LLA one needs that
mq /A »1, and a reasonable expectation is that
mq is around one third of the nucleon mass. Our
quantitative estimate is shown in Fig. 5. It is re-
markable that with mq-350 MeV we obtain a rise
of the cross section from ISR energy to the collider
energy of about 15 mb, in agreement with data. '

Surprisingly we even obtain a rough agreement (see
Fig. 6) with the absolute nornialization of the total
inelastic cross section. To be more specific about
the question of the rise of the cross section we have
introduced a new scale QT of the order of 1 GeV
which separates the soft region from the hard one in
which perturbative QCD safely applies. In Eq. (4)
we cut the dt integral into two pieces:

2

f*,dI"= f; dI"+ f , dI"* (30)
m m Q 2

The first piece contributes a constant apart from a
kinematical rise. Indeed as soon as
rt, l3&lnQT Imq, i.e., s=s/9&20QT, the contri-
bution of the first piece in Eq. (30) to the total cross
section is energy independent. On the contrary the
reasoning about the energy variation of the in-
tegrand displayed in Sec. II applies for the second
piece in Eq. (30). So it is the hard region which is
responsible for the rise of the cross section. In Fig.
6 we show the separation of cTg~ into two pieces ac-
cording to Eq. (30) for a few values of QT2.

We find that for QT ——1.50 (GeV) the constant
contribution of the soft region is around 31 mb.

IV. DISCUSSION

1500—
a,„(mb)

————do /d in S jn mb/uni f of In S

ojII (mb) as a function of V S

—30
do/d(nS
(mb/(nS)

10' 10s 10' 1012

I I II 0
10 VS (GRV) 10"

FIG. 7. Behavior of the total inelastic cross section at
ultra asymptotic energies.

We thus see that with the standard leading-
logarithm approximation, with a natural value for
the only free parameter one is able to obtain not
only the rise of the total inelastic cross section but
also its absolute noirnalization. To discuss this re-
sult we try in this concluding section to answer some

lI

&t&(GeV )

10'—

102—

10 =

10o =

10-' I I I W I I III I I I I I I III

102 10 10 V S (GeV) 10'

FIG. 8. Average value of the maximum t of the ex-
change gluon. The solid curve represents our calculation
and the dashed curve the s' behavior predicted asymp-
totically by the model.

questions about the theoretical meaning of our cal-
culation.

(i) Does this model for the cross section obey the
Froissart bound? We have already discussed in Sec.
II the asymptotic behavior of the integrand in Eq.
(20). From this discussion it turns out that at ultra
asymptotic energies, the integrand [see Eq. (26)] be-
gins to decrease, which means that the cross section
finally flattens out. For instance we reach the value
of 1 b at about 103 GeV (see Fig. 7). It thus ap-
pears that s-channel unitarity is not violated al-
though it has not been taken into account explicitly.

(ii) How hard are the parton processes responsible
for the rise of the total cross sections? To answer
this question we have computed the average value of
t (see Fig. 8). (t) is the average squared transverse
momentum of partons.

From Fig. 8 we notice at first that the average
value of t is indeed rather moderate and slowly vary-
ing with respect to s. The asymptotic law of varia-
tion is, as expected proportional to s'/ correspond-
ing to the maximum of the integrand [see Eq. (26)].
Note that this asymptotic foiin is valid only above
1/s —100 GeV, t -0.04 s '/ .

At the collider energy we find for (t) about 3
GeV . Assuming two or three hadrons per parton
this value is not incompatible with the average
transverse momentum of hadron which has been
measured ((Pi) -500 MeV). This means that the
main bulk of inelastic events can be described by
means of our model.

(iii) How does the proposed model compare with
theoretical expectations based on Pomeron calculus?
To answer this question we rely on the scheme of
correspondence between QCD and dual Pomeron
calculus developed in Ref. 15. According to this ap-
proach there exists a transition scale at which the
leading-logarithm approximation of QCD and the
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dual topological unitarization (DTU) scheme can be
applied simultaneously. If we interpret Qz as this
transition scale the soft component would be associ-
ated with the contribution of the "bare Pomeron"
(lowest topology in DTU) and the hard component
would be associated with the sum of all multi-
Pomeron corrections to this bare Pomeron.

(iv) Why restrict the @CD calculations to the
leading-logarithm approximation'? For instance, can
the effects of multigluon exchanges or those of par-
ton configurations outside the 6 domain affect the
obtained results? As far as perturbative effects are
concerned, it has been shown in Ref. 13 that the
LLA is sufficient in the region of interest for our
calculations, namely, the small-x, b region. On the
other hand the above-mentioned equivalence be-
tween the LLA and the dual Pomeron calculus al-
lows us to answer the question for nonperturbative
contributions, namely, all these contributions are
supposed to be taken into account either in the bare
Pomeron or in the valon distributions. This conjec-
ture is comparable with the "soft blanching" as-
sumption proposed in Ref. 2 to account for the com-
pleteness of color states generated at the perturbative
level.

In view of this discussion we conclude that per-
turbative QCD, at the leading-logarithm approxima-

tion may provide a quantitative theoretical descrip-
tion of the main bulk of inelastic cross sections at
high energy. Indeed further tests are needed to draw
a more affiiiiiative conclusion.

A first test would be to describe, by means of our
dynamical model, the inclusive cross section to pro-
duce one hadron at large Pz. It is well known that,
for a not-too-large trigger transverse momentum, it
is necessary to take into account the effect of gluon
bremsstrahlung. In this respect, it is interesting to
note that the recent calculations, which take into
account these bremsstrahlung effects, lead to a very
decent agreement with ISR and collider data down
to Pz —1 GeVjc.

The best test would be to apply our model to the
description of large-transverse-energy cross sections.
We are currently investigating this extension of our
model.
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