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In this paper one of the classics of particle theory in the resonance region is reexamined,
namely the prediction of the amplitudes M'1+ ' and El+ ' of photopion production on nu-
cleons around the resonance 6(1232). The tool employed for this purpose is the final-state-
interaction theory, and the principal aim of the study is to advocate for the appearance of
two distinct dynamical mechanisms of photoexcitation in such an approach. Special em-

phasis is put then on the naturally emerging links between the present treatment and the iso-
baric approach and calculations based on the static quark model. Et is argued that the
dynamical meaning of the troublesome arbitrary constants (known to appear in most studies
of the type presented in this paper) can be very convincingly explained when the resonances
formed in the reaction [6(1232) in this specific case] are treated as "elementary" objects
represented in the T-matrix elements by singularities of the Castillejo-Dalitz-Dyson kind.
In the case discussed here, "direct" magnetic-dipole excitation N ~b, (1232) seems to emerge
very clearly as an independent dynamical mechanism of photoproduction in the p33 state,
parallel to the usual electromagnetic excitation of nonresonant mX systems, both followed by
resonant pion-nucleon rescattering. It turns out that the magnitude of such direct yah cou-
pling is completely determined by the related strong interactions. The necessity of allowing
for both specified mechanisms in this and other similar calculations is emphasized. The
no-fit absolute predictions regarding the two multipole amplitudes M 1+

' and El+ ' agree
then with the data over the whole interval of photon laboratory energy E~(800 MeV
currently covered by multipole analyses of experimental measurements. In the interpreta-
tion of the results, it is concluded that photoproduction of pions on nucleons in the p33 state
by magnetic-dipole excitation proceeds mainly through "direct" resonance formation, which
explains the well-known strongly resonant character of M'1+ ' a priori assumed in isobaric
calculations and qualitatively emerging fmm static-quark-model analyses. On the contrary,
photoproduction by electric-quadrupole excitation is a nonresonant process (despite resonant
pion-nucleon interactions in the final @33 state) which explains the smallness of E', + ', also
qualitatively predicted within the static quark model.

I. INTRGDUCTIGN

The problem of redicting (or postdicting) reliably
the amplitudes MI+ ' and EI+ ' of photoproduction
of pions on nucleons in the b,(1232) region belongs
to the classics of particle theory in the resonance en-

ergy range. As a great deal of excellent papers' on
this subject have appeared since 19SS, a natural
question arises, whether there is still anything new
to be told in this connection. In this paper I try to
give an affirmative answer to this question by argu-
ing that there exists an implicit common dynamical
background of most of the past studies on photopro-
duction despite their apparent diversity and by

showing that these common ideas, when made expli-
cit and applied systematically, lead to surprisingly
good predictions (or postdictions) regarding all mea-
sured quantities related to the electromagnetic exci-
tation N —+6(1232). I find this point quite impor-
tant, since in spite of a general success reported by
most of the earlier studies regarding the amplitude
M'&+ ', the effective determination of this multipole
had in many cases no clear dynamical motivation.
In what concerns the amplitude E~+ ' much effort
spent in calculating it in the past did not yield, un-
fortunately, any conclusive answer to the question of
whether EP+ ' had to be resonant or not. It is only
through phenomenological fits that the nonresonant
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character of the latter multipole was firnily estab-
lished.

In the following I summarize and extend some of
my recently published fragmentary studies8 '0 re-
garding the deterinination of the amplitudes of elec-
tromagnetic excitation N~b, (1232). I believe such
extension necessary because the calculations, pri-
marily intended to be applicable in the range of pho-
ton laboratory energy E&(450 MeV, ultimately
turned out to give very correct no-fit predictions
over a much broader energy interval extending up to
E& (800 MeV, i.e., comprising the whole range
covered by phenomenological multipole
analysis. "" There is hence good reason to advo-
cate for a dynamically rooted interpretation of these
results. It is then interesting to note how naturally
the links between the approach in question, the iso-
bar model, and the quark model show up in the
course of the present calculation.

The study presented here is based on the equa-
tions of relativistic, unitary, final-state-interaction
theory derived from fixed-angle dispersion relations.
The latter have been discussed in detail some time
ago' and later on applied to a simple calculation of
photoproduction amplitudes. ' The study which
follows differs from that of Refs. 13 and 14 by some
forrnal improvements in the integral equation, such
as the use of subtracted dispersion relations and in-
troduction of more suitable threshold factors. As
the present calculation has been confined to the
determination of the multipoles M'&+ ' and EP+ ' a
truncated system of integral equations, comprising
these two amplitudes only, has been actually solved.
The dynamical input to these equations contains two
nontrivial assumptions in addition to the routine use
of elastic ~N phase shifts as required by the Watson
theorem. ' The first assumption is a "pseudoelas-
tic" extrapolation of the multipole phases beyond
the range of negligible inelasticity. The details of
the extrapolation have already been presented ear-
lier' and will also be recalled in Sec. III. The
second, far more important assumption consists in
introducing to the multipole amplitudes a
Castillejo-Dalitz-Dyson (CDD) zero' located on the
energy axis at the value where the multipole phase
equals m. The necessity of introducing such a zero
is evident from the present and earlier calculations,
though the meaning of this device has not been
made sufficiently clear before. The interpretation
advocated in the present study tells that the CDD
zero reflects the existence of the so-called "direct"
photoexcitation' of 6(1232) through yNb, cou-
pling which is a mechanism of photoproduction al-
ternative to photoexcitation of nonresonant states
followed by resonant mN rescattering in the p33
state. This brings the present study close to the iso-

bar model, the important difference between the two
approaches lying in the way of setting the strength
of the yNE coupling. In the isobar model it has al-
ways been a new parameter of the calculation, while
in the present case it is fixed by strong interactions
alone. This can be easily seen here because the loca-
tion of the CDD zero is ultimately connected with
the use of the perfectly elastic unitarity condition in
the whole range of integration over the energy vari-
able, as mentioned in the foregoing. The latter as-
sumption is very fair indeed, owing to the remark-
ably elastic character of AN scattering in the p33
state. In Sec. III, I elaborate on the last points
thoroughly.

The results, as presented in Sec. IV and discussed
in Sec. V, are in very good agreement with the data,
which is considered to be an important check for a
calculation without arbitrary parameters. The for-
malism is able to reproduce correctly the multipole
M(13+/2). The multipole E(13+/2) turns out to be non-
resonant and its values, though small, match the
available data very reliably with the possible excep-
tion of those in the threshold region. It turns out,
however, that the traditional approach, which treats
the subsystem of mutually coupled integral equa-
tions for M', +

' and E'~+ as a closed one, might be
too restrictive. The coupling of EP+ ' to the s-wave
multipoles could be large enough to affect final re-
sults close to the threshold.

The presence of the "direct'* electromagnetic exci-
tation yN +A(1232) a—nd, owing to this, the treat-
ment of A(1232) as an "elementary" (within the
framework of the present formalism) object, com-
bined with its known behavior under electromagnet-
ic excitations as a three-quark state, allows for a
very convincing explanation of differences in the en-

ergy dependence of the amplitudes M'&+ ' and E'&+ '

around 6(1232). Photoproduction of pions on nu-
cleons in the p33 state by magnetic-dipole excitation
proceeds overwhelmingly through "direct" yNE ex-
citation, which explains its known resonant charac-
ter. On the contrary, photoproduction in the p33
state by electric-quadrupole excitation is an effect of
formation of nonresonant pion-nucleon states, which
notwithstanding the resonant mN rescattering in the
p33 state leads in general to a nonresonant total am-
plitude as will be argued in Sec. V. This explains
the presumed nonresonant character of the transi-
tion and the relative smallness of its amplitude
~(3/2)

o

Owing to such a sharp distinction between the
characteristics of the two foregoing multipole transi-
tions, the process of photo- and electroexcitation
N~5(1232) turns out then to be a highly rewarding
testing ground for a study of interplay between in-
teractions in the final state and "direct" excitations
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in resonant scattering. The results of the present in-
vestigation could therefore pertain not only to the
specific domain of photo- and electroproduction of
pions in the energy region of 6(1232), but to photo-
and electroexcitation of hadronic resonances in gen-
eral. Clearly, not in all such cases will the effective
calculations be as easy and meaningful as they
turned out to be here.

II. NOTATION AND KINEMATICS

1
[s —2s ( m +p~) + (m 2 —p2) 2]

S
(2.1)

C = s +s(2t —2m —p )+m (m —p )

(s m)[s 2—s(m +p—)+(m —p ) ]'~2

(2.2)

I mention here only a few basic points necessary
to provide a link with earlier papers, ' ' to which
the reader should refer for more details.

Invariant functions appearing in the spin and iso-
spin decomposition of the S-matrix elements of pho-
toproduction are denoted A; '(s, t, u) where the su-
perscript and subscript refer to isospin and spin in-
dices, respectively. In the c.m. system of the direct-
photoproduction channel (s channel) s is the total
energy squared, t is the squared four-momentum
transfer between bosons, and s + t + u =2m +p
where m and p denote the mass of the nucleon and
the pion, respectively.

In the process of deducing the fixed-angle disper-
sion relations we introduce the new variables

which mean, in the c.m. system of the s channel, the
final three-momentum squared and the cosine of the
production angle, respectively. The invariant ampli-
tudes A; '(s, t, u) expressed in terms of the new vari-
ables v, c will be denoted H,J '(v, c) where the second
subscript j=0, 1,2, 3 labels the four Riemann sheets
of the v, c domain resulting from the transformation
from (s, t, u) to (v, c). The ordering of the sheets has
been explained earlier. '

The symmetry properties

Hi'p '(v, c)=H,'3 '(v, —c) (2.3)

H, '(v, c)=H 2'(v, —c) (2.4)

combined with the property of independence of
H J '(O, c) on c enable us to write, at c=const, the in-
tegral representations for H~z '(v, c) with one sub-
traction at v=O which does not introduce arbitrary
constants. These expressions are more convenient
than those used previously' ' because, firstly, the
integrals converge even more rapidly than before,
and secondly, owing to the explicit use of properties
(2.3) and (2.4), we avoid some spurious singularities
inherent in earlier calculations and requiring partic-
ular treatment especially in numerical work.

Calculations and approximations perfectly analo-
gous to those described in Ref. 13 lead to the follow-
ing integral relations:

Hc'(vc)=bc'(vc)+ —I, g Q, (vv')ImHJ"(v', c), i=),2, 3b (2.5)v' —v .j=0
where b;p '(v, c) denotes the pole terriis which comprise the minimal gauge-invariant set corresponding to X and
m. exchange, and

1 vK(v) vA(v) vX(v)
(2.6a)

1 vK(v) vA, (v)
4 v'K(v') v'A, (v')

vX(v)
v'X(v')

(2.6b)
J

with K(v) = [(v+m )/v]', X(v) = [(v+p )/v)', A(v) =K(v)X(v). The approximations mentioned above con-
sist in neglecting all contributions to the dispersion integral from the regions other than the positive v semiaxis
on the four sheets. This formal procedure stems from a dynamical assumption that in the integrands we may
confine ourselves to contributions of the direct- and crossed-photoproduction channels (s and u channels,
respectively) only. A more extensive discussion of this point can again be found in earlier papers. ' '

A remark regarding .the crossing properties of Hz '(v, c) is in order. Since the integral representation (2.5)
holds for c =const (instead of t=const), an additional minus sign in the usual crossing condition ' is neces-
sary in the range where (Bs/Bu), „„„&0 for j= 1,2.
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By perforining known multipole projections, ' ' we finally obtain the following system of equations:

1607

1 " dv'
( )

00

MI '(v) =B '(v)+—,1m~I '(v')+g dv'A ~~J. ~'(v', v) Im~j~~'(v')
v' —v 0

P,J
(2.7)

where, according to the convention adopted in the
earlier papers, ~,' '(v) denotes an arbitary multipole
amplitude multiplied by a suitable threshold factor
to be specified later. Functions B '(v) denote the
pole contributions and MIJN

'(v', v) are nonsingular
functions which couple the multipole amplitude
M; '(v) to all the others. In what follows the phase
of ~,' '(v) will be denoted y,' '(v). One should
remember an otherwise known fact, namely that
the dependence of the diagonal coupling functions
MIP '(v', v) on threshold factors is not trivially mul-
tiplicative, if the foi-irI of the singular integral in Eq.
(2.7) is to be kept invariant under a change of
threshold factors. This property should be remem-
bered especially when the strength of the coupling of
a multipole ~'; '(v) to itself is concerned.

III. THE INTEGRAL EQUATION
AND DYNAMICAL ASSUMPTIONS

In order to transform dispersion relations of the
forrii (2.7) into a system of manageable integral
equations, to be ultimately solved for multipole am-
plitudes, some essential assumptions of dynamical
character are unavoidable. The most crucial among
them is probably that which stems from the necessi-
ty of extrapolating the multipole phase somehow
from the region where the elastic unitarity condition
y,' '(v)=5(v) holds [where 5(v) denotes the proper
m.N phase shift' ] to the region beyond the inelastic
thresholds. This allows for transfoririing ' disper-
sion relations (2.7) into a system of Fredholm-type
equations. Such a way of handling the dispersion
relations for photoproduction amplitudes has been
discussed by many authors ' ' ' ' and has often
been used in practical applications despite strong
criticism. The reason is that alternative proposals,
trying to overcome the traps inherent in the above-
mentioned treatment, are usually based on assump-
tions which can hardly be judged more sound. For-
tunately enough, the particular case of the multipole
transitions leading to the p33 pion-nucleon final state
is far easier to handle than any other owing to the
remarkably elastic character of the 533 phase shift
over that part of the integration interval giving the
most important contributions. The identification of
the multipole phase with 533 ln this region is there-

fore well motivated. On the other hand, however,
the ascent of 533 with energy to the value of m and
the presumed identical behavior of the multipole
phase gives rise to a known polynomial ambigui-
ty' ' ' in the final solution of the respective in-
tegral equations. The ambiguity which needs special
attention is believed here to be connected with the
"elementary" or "CDD-type" character of the
b,(1232) hadronic state. This will be discussed later.
Being concerned with the truncated subsystem of
equations for the mutually coupled multipole ampli-
tudes Mi+ ' and Ei+ ' we leave apart any discus-
sion regarding all the other multipoles.

The assumptions relative to the multipole phases
as adopted in the present approach can be summa-
rized as follows. The elastic-unitarity condition
y'; '(v)=533(v) (i =2,3) has been applied wherever
possible, i.e., up to ~s =-1500 MeV. Above this
limit, i.e., where inelasticity becomes non-negligible,
Ijp2 (v) —Ip3 '(v) is smoothly extrapolated in such
a way that exp[iyz '(v)] sing& '(v) would represent
the p33 amplitude of mN scattering if inelasticity
were ignored. Consequently, y2 (v)=y'3 (v) 7T at-
a finite v=v„corresponding to vs =-1780 MeV
(Ref. 10) counter to many earlier extrapolations
which used to assume an asymptotic rise of the mul-
tipole phase to m. in the limit shoo. A more de-
tailed discussion of the foregoing extrapolation and
some related technical particulars can be found in
earlier papers. '

Owing to the kinematic suppression of the kernels

MIJ '(v', v) (i,j=2,3) and of the threshold factors
at large v and v', we can safely neglect all contribu-
tions to the integrands in Eq. (2.7) from the range of
"large v" which extends, in the following, from
v=v, on. This fair assumption, being essentially
technical, has also the advantage of dispensing us
from approximating the multipole phase in the re-
gion where any extrapolation would be questionable.
The present calculation does not differ in this
respect from many others carried out in the gast.
The relation ImM, ' '(v)/Re. WI '(v)=tang; '(v)
(i=2,3) expressing the unitarity of the calculated
multipole amplitude is therefore satisfied
throughout the integration range.

We are then led to the system of integral equa-
tions which can be cast in the following form:



A. JURE%'ICZ

1m~k(v) [] 1 &, [&], Im~q (v) [] [](a) (p)

(v)~ —g J 6Fs (v',v), ,
dv'+cs exp[ps (v)], c=)3=3, k, q =3,3

sinpk '(v) sin(][)P'( v')

(3.1)

where

exp[p'k '(v)] &. dv'
( )

bk '(v) =Bk '(v) cos(pk '(v)+ P, B~ '(v') exp[ —][]k '(v')] sin(|[)k '(v')
v' —v

Ak ~'(v', v) =A k P'(v', v) sin(][)q~'(v')cospk '(v)

ex,' '(v)
P „A 'k ~'(v', v") exp[ —pk '(v")] sin(pk '(v") sing/'(v')

v —v

[ ) 1 ". f'k (v)
p[k~](v) =—P, dv' —ln(v, —v)

0

(3.2)

(3.4)

(3.5)

Multipole amplitudes MP+ ' and E]+ ' are connected with ~,' '(v) (i=2,3) in the following way:

m"' v'+ v'~ kE(v)(s —m )[E(v)+m]'
E']'+"(v) 8~m(Z W)'" m[,"(v)

where k =(s —m )/(2W), E(v)=(s+m —p )/(2W'), 8 =Ms. The kinematic threshold factor which ap-
pears in (3.5) differs from those used in similar calculations. ' ' Its form has been chosen so as to ensure a
better asymptotic decrease of the kernels Akq '(v', v) (k, q =2,3) as v, v'~0(). This is by no means surprising
since the kernels in question result from fixed-angle dispersion relations and therefore may differ from those
resulting from the fixed-t dispersion approach more commonly used in the past. For v —+0, the kinematic fac-
tor appearing in Eq. (3.5) has of course the usual threshold behavior. From the discussion of the multipole
phases earlier in this section it follows that yz '(v)=(][)~ '(v) and, consequently pz '(v)=pq '(v). The arbitrary
constants denoted cJ

' (j =2,3) represent the polynomial ambiguities (of order zero) mentioned earlier. Their
appearance in Eq. (3.1) is a direct consequence of the fact that the variation of the @zan scattering phase [identi-
cal with the two multipole phases (p,' '(v)] over the integration interval is 6qq(v, ) —533(0)=n In the p.resent
and the related calculations '' ' the values of cz

' (j =2,3) have been fixed by enforcing a zero (actually a
CDD zero' ) at v=v, in both calculated amplitudes MJ '(v) (j =2,3). This leads to

V

c~.
'= —8~ '(v, )exp[ —

pI '(v, )]ccsyI '(v, )+—f 8' '(v')exp[ p(v )]s(ctpj —'(v')'
C

V II

dv' A"
k (v', v, )exp[ —p (v, )]cos(][). (v, )+— „~Jk (v, v )

1 (33) (3) t3) (33} i pp

J C v"—vk=2, 3

)&exp[ —pj '(v")] smyth~
'(v") Im~'k '(v') (3.6)

Now it is a matter of simple algebra 7 to show that
the foregoing choice of cz'

' (j =2,3) is formall
equivalent to skipping over the terms containing c~

'

(j =2,3) everywhere in Eqs. (3.1)—(3.3) with the
simultaneous substitution

exp[p,'"(v)]~(v, —v) exp[pj"'(v)] . (3.7)

This means of course that we introduce the enhance-
ment factors due to rescattering (or Jost func-
tions) D'"(v) =(v, —v) ' exp[ —p'"(v) —i(][)"'(v)]
(j =2,3) with CDD poles at v, explicitly built in.
Although the mere appearance of these poles for-

mally follows from the behavior of the multipole
phase, their location is an arbitrary choice so far, as
emphasized repeatedly in earlier discussions. ' '

Yet, the location of the poles adopted in the present
approach seems to acquire a very plausible motiva-
tion if only perfect elasticity of the @33 pion-nucleon
scattering amplitude (responsible for final-state in-
teractions) and, consequently, elastic unitarity of the
multipoles ~J '(v) (j =2,3) are enforced
throughout the integration range, just as it is done in
the present calculation. As the enhancement fac-
tors, by definition, are supposed to carry all infor-
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mation on rescattering in the final state of a given
process, it seems natural in the present case to iden-
tify DJ '(v) (j =2,3) with the analogous enhance-
ment factor appearing in the N/D representation of
the m.N scattering amplitude in the p33 state. But
N(v)/D(v) =exp[i533(v)] &&sin533(v)/v' and, un-
less the pole at v=v, coincides with that of N(v)
(which would be a pathology, however), the condi-
tion sin533(v, ) =0 or 5 33( v, ) = nm for the location of
this pole follows immediately. This observation jus-
tifies the ad hoc condition enforced on v, in the
foregoing provided the assumptions regarding the
multipole phases yj. '(v) (j =2,3) are kept in mind.
Note that v, ~ao will be a particular case of this
condition if the generalized Levinson theorem is
taken for granted, whereas another possibility,
namely v, being an unphysical point, does not need
discussion here. The possibility of fixing the con-
stants in the amplitudes of photoproduction evolves
then into the possibility of identifying the enhance-
ment factors in these amplitudes with the respective
factors in the amplitudes of nN scattering, if only
the influence of inelasticity can be neglected. Such
identification is hardly anything new in calculations
regarding photoproduction of pions on nucleons in
the p33 state. Its implicit use should be credited for
the success of the widely known formula proposed
by Chew et al. ' For if in the simplest approxima-
tion accommodating rescattering the magnetic-
dipole amplitude can be expressed as

(23)(v)=82(3 (v)/D(23)(v) and likewise for the p33
pion-nucleon scattering amplitude, then by identify-
ing the two enhancement factors one is immediately
led to the conclusion that the ratio of the two ampli-
tudes in question is equal to the ratio of their one-
particle terms, just as conjectured by Chew et al. 2'

Then ~~2 '(v) can be calculated without knowing
D2 '(v) explicitly. In particular, no assumption re-
garding the zeros of the multipole amplitude needs
to be anticipated as all such information should be
contained in the p33 scattering amplitude used in the
calculation. Another example of an approach of
this sort has been due to Finkler who has devised a
fitting procedure to construct explicitly a "correct"
D function of pion-nucleon scattering in the p33
state in order to use it for the purpose of calculating
M)+ ' and E)+ '. Since no attempt has been made
in the past to interpret dynamically Finkler's device,
it has remained just another way of grappling with
the problem of resolving the polynomial ambigui-
ty. ' A possible dynamical picture which I advo-
cate in this connection will be elaborated thoroughly
in Sec. V. For the moment it is worth emphasizing
that the idea of identifying the enhancement factors
of photoproduction of pions on nucleons and of
pion-nucleon scattering in the p33 state, their CDD

singularities comprised, receives phenomenological
ba~king going well beyond the static folnlula of
Chew et al. ' Such a conclusion comes first from
the conviction that inelastic channels in the two pro-
cesses are irrelevant over the studied energy range,
and second from the striking similarity of the Ar-
gand diagrams of the multipole amplitude M')+/ '

(Refs. 4 and 6) and the p33 amplitude of n.N scatter-
ing. The situation in the case of E)+ is less clear
and will be discussed in Sec. V.

I have alluded earlier in this section to a possible
connection between the appearance of the zero now
in question and the existence of an unstable, "ele-
mentary" (for all the purposes of this discussion)
state 5(1232). The position of the zero (v=v, ) on
the energy axis will then be related to that of the un-
stable state (v=v„) in such a way that the first will
be determined by the condition [DJ '(v, )] '=0 and
the second by ReDJ '(v„)=0. The dynamical link
between v, and v, will therefore be implicit in the
functional dependence of the phase shift (or,
equivalently, of the mN scattering amplitude) on en-
ergy which is given a priori in our photoproduction
calculation, but should in principle emerge somehow
from a complete study of m.N scattering. Note also
that the just-described way of deterraining v„and v,
is more general than that which starts from singu-
larities on an unphysical sheet of the complex ener-

gy plane, and that v„ is not necessarily close to v„
but their relative distance depends on the details of
the dynamics. For these reasons there is no mention
of b, (1232) as a "second-sheet pole" here, and no
surprise that v„and v, are quite distant from each
other.

IV. PROPERTIES OF THE SOLUTIONS
OF THE INTEGRAL EQUATIONS

The purpose of the calculations, as reported here.
has been to obtain possibly adequate no-fit predic-
tions regardiny the values of the two multipole am-
plitudes M(13+/ ) and E(13+/2) in the energy region of
b, (1232). Actually, a more ambitious goal has been
scored, namely a very good agreement of the calcu-
lated values with the data over the whole energy in-
terval covered by the presently available multipole
analysis ' "' ranging from threshold to —800
MeV/c photon laboratory momentum. This makes
a considerable extension of the results published pre-
viously ' which covered only the interval below
-450 MeV/c photon momentum in the laboratory.

To begin with, a few remarks regarding the pro-
cedure of solving the system (3.1) numerically are in
order. The use of Eq. (3.6) to calculate the constants
cj ' (j =2,3) would be very impractical in computa-
tional work. Instead, to ensure the vanishing of the
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solution of (3.1) at v, the following device was ap-
plied. The system (3.1) was solved on an interval
slightly truncated at its upper end. Then yj '(v) & m.

(j =2,3) throughout the interval and no ambiguity
can appear in Eq. (3.1). Owing to the presence of a
branching point which emerges now at the upper in-
tegration limit, the calculated ~J '(v) (j =2,3) fall
to zero there, and automatically satisfy the en-
forced property. By extrapolating slightly the result
(with respect to the upper integration limit), I recov-
er the desired amplitudes. The actual values of cj

'

(j =2,3) remain therefore unknown, but they are of
no relevance to the present discussion. If needed,
they could be computed from Eq. (3.6). The details
of the just-mentioned extrapolation and other con-
nected technical problems have been described in
earlier papers. '

Some differences in the procedures of solving the
system (3.1) for M'i+ ' and E'i+ ' motivate the fol-
lowing separate discussions of the two cases.

A. The multipole M I+ '

The calculation has been carried out in three
steps. As they have been already discussed in detail
before, ' only the essentials need outlining here.

The first step consisted in solving the so-called
characteristic equation for MI+ ', i.e., the equation

obtained from Eq. (3.1) by skipping over all terms
containing M,'J. (v', v) (i,j =2,3). The dynamical
meaning of this simplification is of course that pole
teriris are taken as the only "left-hand" singularities.
This contribution to the "driving force" is generally
believed to dominate in the present case. ' ' The
agreement of the calculated M'i+ ' with the data is
interpreted as a hint that the dynamical input to Eq.
(3.2) comprising the values of (pz '(v) as described in
Sec. III and the presumed presence of a CDD zero
at v=v, is basically feasible. Further speculation
regarding a deeper rooting of this input would be,
however, rash at this stage of investigation.

In the second ste only the self-coupling of MI3+/')

represented by Mqz '(v', v) has been included, leav-
ing us with an isolated integral equation to be solved
for MI+ '. Past experience with analogous kernels
derived from fixed-t dispersion relations has taught
us that the bearing of self-coupling teriiis should be
small in the case of Mi+ '. The same conclusion
has been found true also with regard to kernels de-
rived from fixed-angle dispersion relations used
here. The effect of self-coupling can be summarized
as leading to a general decrease of ~MI+ '

~
by a

few per cent. Although quantitatively less satisfac-
tory than the preceding one, this result should not be
discouraging. Suitable adjustments in the procedure
of extrapolating (pz '( v) on the high-energy tail
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FICx. 1. ReM'&+ ' in units 10 iii/(pc) vs photon energy in the laboratory. The curve results from the present calcula-
tion, the points come from the inultipole fits of Berends and Donnachie (Ref. 4) (~ ), Pfeil and Schwela (Ref. 12) (O ), and
Berends and Donnachie (Ref. 11) ( )& ).
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(v s ) 1500 MeV), possibly including also a change
in the value of v„could certainly restore agreement
with data as achieved in the first step, without alter-
ing the general spirit of the approach. Again I am
reluctant to speculate at this moment on the inter-
pretation of the dynamical input to Eq. (3.1).

The third step then consisted in solving the com-
plete system (3.1), including all couplings represent-
ed by A,'I '(v', v) (ij =2,3). As in most calcula-
tions carried out in the past, ' the coupling of
MI+ ' to E't+ ' described by Mq3 '(v', v) was found
negligible and the calculation has yielded the mul-
tipole M't+ ' almost identical with that obtained in
the preceding second step. The calculated values of
MI+ are shown in Fig. 1. This is a repetition of
the results of Ref. 8 with supplements covering the
range up to —800 MeV/c photon laboratory
momentum.

B. The multipole E~+
'

In an earlier paper only a brief account of the re-
sults regarding this multipole has been given, hence
a more comprehensive presentation is due now.
First of all, a calculation of the type described as the
first step in Sec. IV A is expected to be misleading
since the contribution from the crossed-cut integral
is known to be large. A trial solution of the
characteristic equation in our case led indeed to

completely wrong values of EI+ '. Other con-
clusions which can be drawn from earlier pa ers
flatly indicate that the couplin~ of E&+ ' to M&+

'

described by the kernel M3z (v', v) is important
when equations analogous to (3.1) are solved for the
multipole E', + '. There have been only differences
in estimating the actual magnitude of the effect 34

which of course should give account of most of the
b,(1232) exchange in the crossed channel. In order
to check this point here, the isolated integral equa-
tion analogous to that of the second step of Sec.
IV A has been solved for EI+ '. The outcome of the
calculation is shown in Fig. 2. Although the agree-
ment with data cannot be rated high, the order of
magnitude and the sign of ReEI+ ' below resonance
are generally correct, and only the presence of a
second zero at -450 MeV contrasts with the desired
double zero of ReEI+ ' at the resonance 6(1232).
When the complete system (3.1) is now solved for
EI+ ' the role of the coupling kernel A 32 (v', v) in
the fine-tuning of the ultimate result becomes evi-
dent. Now the two previously mentioned zeros of
ReEI+ ' merge to one within the accuracy of the
numerical work, whereas the values of the amplitude
move almost perfectly into the experimental error
band. This has been partly discussed in Sec. IV A as
step three. Figure 3 displays the calculated values of
the amplitude published earlier together with these
now added to cover a larger energy interval. Visible

0.2—

0.1-

-03—

E, (vev)

FIG. 2. The multipole amplitude EP+ ' in units 10 2A'/(pc) vs photon energy in the laboratory. The curves result from
the "second-step" calculation, as described in the text. The points come from the multipole fits of Noelle (Ref. 37) (o ),
Berends and Weaver (Ref. 38) ( X ), and Berends and Donnachie (Ref. 4) (%).
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FIG. 3. ReEI+ ' in units 10 2A'/(pc) vs photon energy in the laboratory. The curve results from the present calcula-
tion, the points come from the multipole fits of Berends and Weaver (Ref. 38) (+ ), Berends and Donnachie (Ref. 4) (~ ),
Noelle (Ref. 37) (O ), and Berends and Donnachie (Ref. 11) ()& ).

discrepancies with the data in the threshold region
can be attributed to less precise measurements as
well as to the omission of couplings with s-wave
multipoles Eo+ ' and Eo'+ ' in (3.1). Estimates of
the relevance of these couplings made in the past
vary considerably, and there has been no attempt to
grapple with this problem here. Another discrepan-
cy, growing with energy, shows up in the range
E&) 700 MeV. This might well be a consequence of
condition (3.6) enforced on E'&+/ '(v, ) which, as we
have seen, is correct only approximately.

It became customary to plot the ratio
E'I+ '/M'I+ ' against energy. This is shown in Fig.
4 together with a few curves of a much earlier date.
The energy range in Fig. 4 has been confined to
-450 MeV to make the comparison more visible.
There is little to comment on, as none of the older
results is acceptable on the grounds of recent
phenomenological fits. Regarding the differences
between the fitted values of E'I+ '/M'I+ ' and those
of the present calculation around Ez 450 MeV, it-—
should be emphasized that the calculated curve
better represents the overall energy dependence in
this energy region, as the results shown in Figs. 1

and 3 demonstrate.

The outcome of this part 8 of the calculation, as
shown in Fig. 3, is by no means trivial if we reiterate
that no freedom was left to make adjustments, once
the "dynamical input" as defined earlier in this text
was inserted into (3.1). Moreover, the just-described
changes in the solution of the system (3.1) caused by
switching the successive couplings on, indicate that
casual coincidence between the calculated curve and
the data is highly improbable. Incidentally, there
seem to be no published calculations able to repro-
duce EP+ ' with comparable accuracy, if the solu-
tion proposed somewhat ad hoc by Chew et al. '

and those related to it are left apart.
The results discussed in Secs. IVA and IVB and

the earlier successful prediction of the X~h(1232)
electromagnetic transition form factor, make suffi-
cient ground for drawing more general conclusions
regarding the dynamical basis of the calculations of
the electromagnetic excitation %~5(1232) as re-
ported here. This will be the subject of the next sec-
tion.

V. DISCUSSION

As I mentioned repeatedly in the foregoing, all at-
tempts to calculate the amplitudes MI+ and E&+
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FICi. 4. The ratio —E&+ '/M'+ ' vs photon energy in the laboratory. The curves result from the present calculation
and those of Berends et al. (Ref. 34) (BDW), Finkler (Ref. 30), and Korth et al. (Ref. 40). The points come from the mul-
tipole fit of Berends and Donnachie. (Ref. 4).

planation of the results reported earlier in this study.
Manifest difference between the interpretation as
given below and those outlined in the earlier pa-
pers ' ' should not surprise as it merely reflects an
evolution in the views of the present author. The
advocated interpretation is believed to be more
coherent and sound than many others advanced in
the past in this connection and is also convergent
with proposals contained in some apparently unre-
lated studies.

The first important consequence of the behavior
of the multipole phase is that the desired resonant
character of the amplitude MI+ ' can not build up
from final-state n.N interactions alone in spite of the
explicitly resonant character of the phase. Indeed,
linear integral equations of the type (3.1) generally
allow for solutions fa/ling to zero near the resonance
of the rescattering process provided
y( '(v —v„)—m/2 is an odd (or approximately odd)
function of v —v„rising to m. /2 and the inhomo-
geneous term slowly varies in the v„region, as point-
ed out, e.g. , by Resnick. ' These are the solutions
with c ' set to zero or, equivalently, with v, =v,
(the so-called "fundamental" or "particular" solu-
tions). Now, as the true q(23)(v) and 8(23)(v) (or the
respective inhomogeneity with crossing terms in-
cluded) do indeed vary approximately in the just-
described fashion, it is no surprise then that also the
"particular solution" to the equation for MP+ ' van-

with the aid of integral equations of the type (3.1)
have been continuously plagued with a bi~ problem,
namely, how the arbitrary constants cj, (j =2,3)
(or other equivalent ambiguities) should actually be
fixed. A review of various devices proposed in this
connection in the past can be found elsewhere,
while the way followed in the present study has been
exposed in Sec. III. In an attempt to give a dynami-
cal rationale to the assumptions and results dis-
cussed in the preceding sections, I shall cling to the
idea that in analyzing the dynamics of N~b, (1232)
electromagnetic excitation by means of final-state-
interaction theory, it is essential to exploit the conse-
quences of the view that 6(1232) is, for all the pur-
poses of the present calculation, an "elementary" or
"CDD-type" object. This standpoint strongly re-
lies on the observation that the phase shift of nN.
scattering in the p3~ state [by definition equal to the
multipole phases yj '(v) (j =2,3)] rises with energy
to n./2 and then steadily to m. . Also, the notion of
h(1232) as a bound state of quarks, whose photoex-
citation is well described by the static properties of
the system, offers very useful hints as to the possible
magnitude of N~b, (1232) excitations of magnetic-
dipole and electric-quadrupole type. This will be
elaborated below. The foregoing ideas combined
with the remarkable elasticity of m.N scattering in
the p33 state over a very wide energy interval are
claimed now to form the basis for an appealing ex-
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ishes near v„as observed, e.g., by Korth et al. or
by Schwela et al. who did not refer apparently to
the general case, however. The relevant point now is
that by picking out such a "particular" solution as
the ultimate one we enforce an arbitrary condition
on v, (e.g., v, =v„as in the foregoing example).
Equation (3.6) for j=2 and with the left-hand side
set to zero would be the form of such a condition
imposed on v, and expressed in the language of the
present study. This arbitrariness may bring a calcu-
lated production amplitude with a completely wrong
shape, and the example of M I+

' shows it explicit-
ly. In order then to obtain the amplitudes MI+ '

and E&+ ' with correct shape and magnitude the
values of c~'

' (j =2,3) have to be chosen suitably.
In other words, we have to fix the position of the
pole in the enhancement factor of the studied pro
duction amplitude [for example, a (3.3) amplitude of
photoproduction] with regard to possible constraints
on the admissible values of v, which may follow
from the properties of the enhancement factor of the
connected scattering amplitude (for example, the p33
amplitude of ~N scattering). This has certainly been
the main, though implicit, purpose of the previously
mentioned procedure of Finkler and a similar one
due to Engels and Schmidt ' who a long time ago
successfully used the positions of the poles in their
enhancement factors as free parameters to adjust the
values of MP+~ '. The present claim is, however,
that perfectly elastic unitarity holding, there is no
freedom left at all in tuning cJ

' (j =2,3) as a suit-
able choice means here compliance with the postu-
lated identity of the respective enhancement factors,
one of which (namely, that corresponding to scatter-
ing) is, though implicitly, known a priori. Any
difference between them may signify a change af-
fecting an important dynamical ingredient of the
calculation as pointed out in Sec. III. Exactly, this
line has been strictly followed in the present study,
which allows qualifying the latter as a no-fit ap-
proach.

As the first and the second terms on the left-hand
side of (3.1) taken together come out as basically
nonresonant around v„ it is the term
cq '

exp[p2 '(v)+ipse '(v)] whose contribution should
be crucial ' in predicting MI'+ ' with the desired
magnitude and pronounced resonant shape. The
question regarding a possible dynamical meaning of
this teria then arises naturally. In trying to answer
this question let it be recalled first that the observed
rise of the multipole phase y2 '(v) through m./2 at v,
to ~ at v, is generally believed to reflect an "elemen-
tary character*' of the transition N~b„as opposed
to the excitation of a "dynamical resonance" due to
sufficiently strong forces between the interacting
particles in which case the phase above v, would fall

to zero again. Room appears then naturally for a
"direct*' yN —+b, transition in our dynamical
scheme, and this is what the polynomial ambiguity
is supposed to represent. A study of Eq. (3.1) can-
not prove such a statement but considerations based
on nonrelativistic potential scattering ' and a simple
model calculation' convincingly support the belief
that the term c2 '

exp[pz '(v)+ip2 '(v)] whose
resonant behavior is evident ' represents in fact
the excitation N~b (1232) through a so cal-led
"contact term" yNA. For if 6(1232) is a three-
quark state and it is not generated dynamically from
a proton and a pion, then even if one knew the phase
shift of AN scattering perfectly and one knew the
"driving forces" in Eq. (3.1) perfectly, then one
would still not know the yN~E transition because
this is inherently a quark-model calculation and it is
inaccessible to a final-state-theory approach. A sim-
ple, based on the SU(6)-symmetry-group,
nonrelativistic-quark-model calculation known to
predict a large magnetic-dipole excitation
N ~b, ( 1232 ) agrees then, not surprisingly, with the
view that the contribution representing a "direct"
yN +b, transitio—n is necessary if the system (3.1) has
to yield a resonance solution for MI+ '. This is be-
lieved to be the implicit, or even unconscious, con-
tent of various devices proposed in many earlier pa-
pers to determine the arbitrary constant c2 '. The
present, no-fit, result shown in Fig. 1 a art from ex-
tending the predictions regarding MI+ ' to the ener-

gy range 450(E&(800 MeV is actually typical to
most calculations of the kind mentioned here. In-
cidentally, the curve representing the Argand dia-
gram of MI+ as available from the present fits, if
extrapolated to higher energies, clearly points at a
(CDD?) zero. ' lt would be desirable to have this
tendency checked against the data from multipole
analyses at larger Er.

The conclusion of this part of the discussion
could then be that photoproduction of pions on nu-
cleons in the p33 state by magnetic-dipole excitation
seems due, in the first instance, to direct
yN ~6 ( 1232) transition whereas the principal
"driving forces" constructed of the minimal 'set of
one-particle terms and of crossed ternis due to self-
coupling, play a secondary role in the framework of
final-state interactions satisfying perfectly elastic
unitarity.

On the other hand, a quark-model calculation
parallel to that quoted before strongly suggests a
nonresonant behavior of E'~+ ' in the 5(1232) ener-

gy range. It is because the electric-quadrupole tran-
sition N~b, (1232) is forbidden in this model.
Possible corrections to this simple result should not
alter the expectation that the direct coupling term in
the system (3.1) for j=3 should play a minor role.
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"Unitarity corrections" present in the "particular"
solution would then make the dominant dynamical
mechanism responsible for the actual magnitude of
the amplitude E'i+ '. This happens indeed to be the
case, as described in Sec. IV. Note in this connec-
tion that crossed terms, in particular those account-
ing for the coupling of E', +

' to M'i+ ', cannot be
neglected in building up the respective "driving
force." The "direct" magnetic-dipole excitation
yN~b, (1232) in the crossed channel contributes in
this manner substantially to the ultimate result.
Owing now to the smallness of c 3

' and to the gen-
eral shape of the "particular" solution discussed ear-
lier in this section, the amplitude E)+ ' falls to zero
at v„as shown in Fig. 3. As the actual position of
the zero results from destructive interference of a
weak resonance with background of comparable
magnitude, clear distinction between this zero and
that of the inverse enhancement function (which is
constantly kept at v=v, ) should be made. Exam-
ples of similar cancellations are known from studies
regarding other processes. '

A conclusion of this part of the discussion would
then be that photoproduction of pions on nucleons
in the p33 state by electric-quadrupole excitation
seems essentially a final-state-interaction effect with
"driving forces" constructed of the minimal set of
pole terms and of crossed ternis mainl~ due to cou-
pling with the multipole amplitude Mi+ ', i.e., cor-
responding to the exchange of 6(1232) in the
crossed channel. The role of the mechanism of
"direct" interaction yN~E(1232) through electric-
quadrupole excitation is in this case negligible.

It might be instructive now to get, by means of a
rather pedagogical example, an idea about the inter-
play between the nonresonant and resonant parts of
the calculated multipole amplitudes. In a narrow-
resonance approximation the solutions of Eq. (3.1)
have the forixi

D(3)( ) v v J

1 vc vr (3)+ (3) FJ (vC )r J
D, (v) v, —v

(5.1)

where FJ '(v) denote the inhomogeneous terms in
the integral equation, i.e., one-particle terms and
possible contributions from the crossed channel.
The first terixi on the right-hand side of Eq. (5.1)
represents the nonresonant contribution as it expli-
citly falls to zero at v, . The second term is resonant
and corresponds obviously to the last term on the
right-hand side of Eq. (3.1). According to the
adopted line of reasoning the value v, is fixed a

priori. When FJ '(v, ) =0 there is no "direct" excita-
tion of the resonance and the reaction proceeds in a
nonresonant fashion despite a resonant behavior of
the final-state interaction. Now, if FJ '(v, ) is large
and FJ("(v„)=0, as discussed earlier in this section,
the nonresonant background is minimal in the reso-
nance region, and the excitation is purely "elementa-
ry. " In general one would expect rather intermedi-
ate situations, but it happens that the two multipoles
discussed here are close to the extremal cases: E'i+ '

to the former, MI+ ' to the latter. This explains
why they do represent such a rewarding testing
ground for studies of the two components of this
and other similar solutions.

The appearance of a "direct" yNb, term in the
present calculation brings the latter very closely to
those studies based on the concept of "isobar ex-
change. " Yet the difference between the two ap-
proaches seems to be substantial. Firstly, because
the "direct" term appears in the present calculation
as a consequence of the adopted dynamics of pion-
nucleon scattering and not as an ad hoc component
conceived to fit the data, and secondly, because the
strength of the yNb, coupling can neither be chosen
here arbitrarily nor even fitted. The reason is that
the value of v, has been deteriiiined by strong in-
teractions alone. In other words, v, depends on the
strength of the couplings NNn and Nb, ~. Conse-
quently, cj

' (j =2,3) as given by Eq. (3.6) depends
only on the foregoing coupling constants and,
through BJ' '(v, ), on the charges and magnetic mo-
ments of N and m. . Therefore, contrary to what it
might seem to be at first sight, the @Nb, "direct cou-
pling" constant, appearing implicitly in this calcula-
tion, is not a new independent quantity. Actually,
this conclusion should come as no surprise if one
realizes that the yNE "direct coupling" constant
measures the electromagnetic N~h(1232) transi-
tion form factor at the squared four-momentum
transfer q =0 which, like all electromagnetic form
factors, is believed to originate from strong interac-
tions. The just-presented way of thinking leads
indeed to remarkably good effects when followed in
the case of the N~b, (1232) electromagnetic form
factor."

It would be of course unwary to attribute very
precise quantitative meaning to the foregoing state-
ments regarding the two possible dynamical
mechanisms of photoproduction in the b, (1232) en-
ergy region. This is because the breakup between
direct resonance production and the remainder is not
unique. The ternIs proportional to cj (j =2,3) in(3)

(3.1) could in fact implicitly contain a part of
crossed terms, in addition to those shown explicitly.
They could also give account for some necessary
complements to the extrapolation procedure adopted
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for pj '(v) (j =2,3) or for some corrections due to
inelastic effects certainly present in the upperixiost
part of the integration interval, but deliberately sa-
crificed here for the sake of perfectly elastic unitari-
ty. Earlier experience teaches us, nevertheless, that
crossed terms other than those explicitly shown in
Eq. (3.1) cannot substantially alter the results con-
cerning MI+ ' and EI+ ' in the resonance re-
gion. 2s'3~ As to other corrections, the changes they
can introduce are certainly of a few per cent magni-
tude at most. Therefore, the first two terms on the
right-hand side of Eq. (3.1) certainly represent the
bulk of contributions to the "driving forces. " For
all these reasons the general idea about the term pro-
portional to cj ' (j =2,3) as representing the direct
yX—+ b, ( 1232) transition has reasonable backing,
though, e.g., attempts to extract the yah coupling
constant from the present calculations would prob-
ably be shaky. Whatever the importance of the fore-
going objections, the remarkable agreement of the
results with the data as described here and else-
where ' ' strongly supports the belief that the

presented calculation grasps correctly the essential
dynamical content of the electromagnetic excitation
X~h(1232). If also the interpretation, as proposed
in the foregoing, were substantially correct, it could
serve as a guide in the, studies regarding electromag-
netic properties of other hadronic resonances.
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