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A study of three-quark—one-gluon configurations in the zero-strangeness, positive-parity sector is

carried out.

The quantum numbers of the ground-state levels in this system are identified. The

mass spectrum is analyzed in both the bag-model and harmonic-oscillator dynamical frameworks.
Mixing between the Q* and Q3G sectors is determined, and implications of Q*-Q>G mixing are ex-

plored.

I. INTRODUCTION

Over a period of time there have evolved certain empiri-
cal rules governing the description of hadrons. These in-
clude associating baryons and mesons with color-singlet
three-quark (Q°®) and quark-antiquark (QQ) configura-
tions, respectively, and positing the existence of a spin-
dependent potential (hyperfine interaction) to lift unwant-
ed mass degeneracies. This “valence” picture, although
undoubtedly a simplification of nature, appears to work
well."»2

However, it is possible that this simple valence descrip-
tion might require extension. There is both experimental
and theoretical evidence for the existence of (primarily)
non-quark-bearing hadrons called glueballs.>~> Moreover,
just as quarks confined within hadrons seem to have
characteristic energies (e.g., about 0.3 GeV per nonstrange
quark) and hyperfine effects, it appears possible to employ
“constituent” gluons endowed with analogous properties
to generate phenomenologically acceptable glueballs. One
quantitative difference is that it appears to cost more ener-
gy to add a constituent gluon to a hadron than it does a
nonstrange quark.

If indeed hadrons exist which are constructed either
from constituent quarks or from constituent gluons, it is
natural to explore whether hybrid configurations contain-
ing some of each can occur. We have in mind not just the
mixing between QQ and gluon sectors, with each separate-
ly a color singlet, which is expected to occur at some level
in the meson sector. Rather our interest is in configura-
tions where the quark and gluon sectors are each color-
bearing, yet combine to form a color-singlet hadron. Be-
cause far more is known about the zero-strangeness
baryon spectrum than about hyperons or mesons of any
strangeness, the most stringent test of this scenario is af-
forded by constructing a model of nonstrange baryons.
Correspondingly then, we consider in this paper properties
associated with nonstrange three-quark—one-gluon (Q3G)
configurations. We restrict our calculational study to only
positive-parity (& = + ) states because these are expected
to have the lowest masses.

There exist earlier studies of the excitation of gluonic
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degrees of freedom in hadrons. The configuration QQG
has been considered by Buchmiiller and Tye and by
Hasenfratz et al. for heavy b-flavored quarks, and by
Barnes and Close and by Chanowitz and Sharpe for light
quarks.® Implementations of the Q3G scenario using
methods rather different from those considered here are
carried out by Wagner and by Hdogaasen and Wroldsen.’
Preliminary descriptions of the work presented here ap-
pear in Ref. 8.

To implement our proposed program of study it is
necessary to adopt a dynamical procedure. Unfortunately
there does not yet exist a definitive calculational frame-
work for quantum chromodynamics (QCD). We have em-
ployed the MIT bag model to carry out numerical calcula-
tions. Our feeling is that any such model should not be
expected to provide a detailed fit to data but rather can
give a reasonable picture of the anticipated Q3G spectrum,
e.g., mass splittings and relative ordering of states. We
have also found it instructive to address aspects of the
Q3G system from the viewpoint of the oscillator model.

At this point we hasten to observe that Q3G configura-
tions are not gauge invariant. This is sometimes the case
in bound-state calculations; in some formulations Q° con-
figurations also are not gauge invariant. Our procedure is
to adopt a particular gauge (to be defined later) and to
carefully include all effects defined within that gauge.

We can of course deduce several features of QG config-
urations which are independent of specific dynamical
models. The quantum numbers of the Q3G states are dic-
tated mainly by the requirements that the three-quark sec-
tor transform as a color octet and subscribe to the con-
straints of Fermi-Dirac statistics. The Young tableaux as-
sociated with the color, isospin (i.e., flavor), and spin de-
grees of freedom are deplcted in Fig. 1. For example, ap-
pearing with a spm-— tableau (totally symmetric) must
occur a linear combination of the color-isospin tableaux
which is antisymmetric under permutation. Upon exam-
ining all possibilities we find that there are only three al-
lowed three-quark mu]tlplets They have spm (), 1sospin
(I) values: S=+5,I=3;8S=+,1=%;S=+,1=+. Ex-
amples of each type of state expressed in terms of quark
creation operators are (a=1, . . ., 8 is a color label)
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S=%,1=13:

| 438 = L eAdluf (Ddi(Duf () —df (el (Dufn1]0) m
iHS=+,I=3:

| 308 =t epaAGlu (Duf(Duf () —uf(Ou(HDufn1]0) @)
(i) S =+, =73:

|1y — 121/3 sl —d] (Duf(Duf(—2df(uf(Huf)

+uf(Duf (a0 +u](Duf (Wi +uf Ol (haln1]0) 3)

where our notation for state vectors is | 13,53 )57 5s.

There exists an elegant way to check that we have not
missed any states in our Young-tableaux construction.
Taken together, the color-isospin-spin symmetries consti-
tute an SU(12) group of transformations [i.e., SU(3)
X SU(2) xSU(2)]. The totally antisymmetric representa-
tion of this group (dimension 220) has SU(3)
X SU(2) X SU((2) content 212 4414 4 282 4 284 4
482 4+ 210? where our notation is 2+!C¥+1 § denoting
spin and C denoting color. The color-singlet states are of
course just the ordinary nucleon and A valence compos-
ites. The three color-octet entries are precisely the struc-
tures in Egs. (1)—(3). Finally, the color-decuplet Q3 com-
posite would require at least two gluons to couple to a
color-singlet hadron. As such, its mass would be rather
large and so we do not consider it any further in this pa-
per.

The construction of the Q3G configurations is complet-
ed by combining the quark and gluon sectors into a color-
singlet state and coupling the Q° and G angular momenta
in all possible ways. This results in seven levels in the Q3G
ground state as compared to two in the usual Q> valence
model. The quantum numbers associated with each Q3
and Q3G level are enumerated in Table I. Observe that
some mixing between the Q3 and Q3G sectors is to be ex-
pected. In particular there are two Q3G states with the
quantum numbers of the nucleon and one with the quan-
tum numbers of the A. For the benefit of the reader, we
list explicitly our Q3G state vectors in the Appendix and
define our notation there.

Color Isospin

|

Spin

AN

| 7

.
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YY) L
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FIG. 1. Young tableaux for color-octet three-quark compos-
ite. The shaded areas indicate possible ways of assigning a given
pair from the collection of three quarks in cases of mixed per-
mutation symmetry.

I

Having determined the quantum numbers of the Q3G
composities, we turn to a computation of mass values and
assorted mixing effects. The bag-model analysis is carried
out in Sec. II. There are two subsections, II A and IIB, in
which we consider, respectively, mass values and then
mixing effects. Section III briefly addresses the Q3G sys-
tem considered with the oscillator model and our con-
clusions are presented in Sec. IV.

II. Q3G STATES IN THE BAG MODEL

A. Mass estimates

The analysis described in this section is carried out in
the context of a static spherical bag of radius R. To
proceed with the calculation of mass values, we specify in-
dividual contributions to the Hamiltonian, calculate the
expectation value of the Hamiltonian at fixed R for the
seven Q3G states, and finally minimize each mass as a
function of R.

Throughout we adopt the treatment of a confined gluon
field as derived by Golowich in Ref. 9. That is, we take
the time component of the gluon field to vanish and to
zeroth order in the interaction, require the space com-
ponent in mode n to obey (suppressing color notation)

[V24(k,/R)*A,(x)=0 (4)
and ‘

V-A,(x)=0, r <R . (5)

TABLE 1. Numbers of states with definite spin and isospin
for (a) Q3 valence model and (b) Q°G model.

Spin
Isospin + 3 3
()
5 0
3 0 1
(b)
+ 2 2
3 1 1 0
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The gluon mode wave number k, is determined by the
linear relation

TX(VXA)=0 atr=R . (6)

Because our interest lies in the Q°G ground state, we em-
ploy throughout only the lowest positive-parity mode, for
which k=2.7437. This corresponds to a gluon energy
roughly 50% larger than that of a quark. The gluon
operator spatial dependence (for angular momentum pro-
jection A) is given by

A,(x)=Ngj (kr /R)X3,(Q)a, +H.c. , @)
where the normalization factor N is given by
Ng~2={3[1—sin(2k)/2k]—2(14k?)sin’k JR?,
(8)

and 3(1 a is a standard vector spherical harmonic.
We now list each contribution to the Hamiltonian.
(i) Quark and gluon kinetic energies:

Hy=QBw+k)/R , %)

where for a quark of mass m we use w~2.0428
+ 0.4929mR for mR << 1, the situation of interest here.
(ii) Empty-bag volume energy:

H,=47R*B/3 . (10)
(iii) Zero-point energy:
H,=—Z,/R . (11)

Note, however, as shown in Ref. 10, the expectation value
of H contains not only a mass contribution but also effects
of bag fluctuations having roughly the form of (11). This
modifies the value of Z, obtained originally in Ref. 1.

(iv) Coulomb energy:

2 — —
Hy=5- [ dx Eyx)Eox) (12)

summed over the color index a=1,...,8. This instan-
taneous interaction naturally separates into three parts,
quark-quark, gluon-gluon, and quark-gluon. The first two
of these tend to cancel against the third. The cancellation
is considerable but not complete because the quark and
gluon spatial wave functions differ. We find numerically

Eou=(0.025+0.114mR)a,R !, (13)

where a,=g?%/4x is the QCD “fine-structure constant.”
The Coulomb shift is rather insignificant. Incidentally,
two technical matters worth noting are (a) the quark-
quark Coulomb interaction includes self-energies (as in
Ref. 1), and (b) because there is a clash between the spheri-
cal cavity shape and the gluon spatial behavior (7), the
gluon electric field boundary constraint is not obeyed lo-
cally, but only globally.
(v) O (e, ) radiative corrections:

H4=thp+HCompt ’ (14)

i.e., there are two classes of radiative correction, which we
refer to as “hyperfine” (Fig. 2) and “Compton” (Fig. 3).
Such radiative corrections are extremely important to our
analysis because they lift the mass degeneracy of the seven

(a)

(b)

FIG. 2. QCD hyperfine interaction between (a) a pair of
quarks and (b) a quark and a gluon.

Q3G states induced by the energy contributions (i)—(iv).
In view of this, let us carefully address each in turn.

That a hyperfine interaction should contribute to the
physics of Q3G states is not surprising given the presence
of this effect in the Q3 sector. The only significant exten-
sion is that, because gluons carry color change, we must
take into account the process of Fig. 2(b) in addition to
that of Fig. 2(a). Several calculational methods are avail-
able. The hyperfine effect can be computed via the expec-
tation value

Ehyp=<Q3Gl_g2fd3x fa(x)-K&SC)(x)IQ3G> ,
(15)

N

AN

(a)

(b)

FIG. 3. QCD Compton interactions.
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where KLSC)(x) is the semiclassical (SC) color vector po-
tential associated with a quark current and J , is the color
current density carried by both quarks and gluons. In the
bag model the semiclassical vector potential has the form!

S 417T }“2"* H(—)+M< )+J’—‘i——) :
(16)
where
pin= [ drp'ery, (17
M= [, (18)
and
172
w(r=2 %Z;—Zf;; N_,%%olgr/R)j1(gr /R) .
(19)
In (19), N_, is the conventional normalization factor for a

bag-confined quark field, and g is the mode wave number
q =(0*—m?R?!2, Upon multiplying A, by the quark
color current

{(3)-E;(3)|Q°G)

J3 w7 (E(3)

IQQ—3<Q G |0’, 0’1
=3(3) 7)) s=1[T(E(3)F

and analogously for the other Q3G levels.

EF;3))l=—7,

Q) _
Jia i 2 K3 (20)
we obtain for Eq. (10) the expression
E{9 = —(0.177—0.047mR)a R "Iy , 1)
where
IQQ=<Q3G S 6, 3)1E,(3) Q3G>. 22)
1<J

In Eq. (22), we denote generators of the triplet representa-
tion of the SU(3) of color as F;(3) for quark i. The struc-
ture of E hy;?) can be understood as an overlap integral in-
volving quark spatial wave functions [the numerical factor
in Eq. (21)] times a term Iy, which depends on the rela-
tive spin and color orientation of each quark pair. By ex-
ploiting the quark antisymmetry property of the Q3G-
state vector and taking account of its color and spin con-
tent, one can easily determine Igg. As an example, con-
sider the I=I3=+, J=J;=% level |+<); which
arises from the Q2 color-octet composite of Eq. (1). Not-
ing that for this state each quark pair has spin 1 and exists
on the average equally in the color representations 3* and
6, we deduce

(23)

We can obtain essentially the same result via second-order perturbation theory!!:

E22 =(Q3G |H'(E,—H,o+ie)"'H'|Q°G) ,
where H|, is defined in Eq. (9), H' is given by
H'=—g [ d* 7 @(x)Aux),

and we interpret A,(x) as the operator of Eq. (7).

(24)

(25)

There is implicit in Eq. (24) an infinite sum over all intermediate

states, so the gluon propagator of Fig. 2(a) is expressible as a mode sum. In practice the sum converges quickly. There-
fore, one need employ only the lowest-energy intermediate state. Let us now use this method on the quark-gluon hyper-

fine interaction.

To compute the process depicted in Fig. 2(b) we require the trigluon vertex

H'=— % FapyABAL(VIAL, —Vi4l) (26)
as well as H' of Eq. (25). Thus we use perturbation theory to write
E2Y =(Q%G |H'(Ey—Ho+i€)"'H"+ H"(Eq—H,+i€)"'H' | Q°G ) . 27)

Upon evaluating angular integrals such as
172

f dﬂX‘ilX{l(VfX'ff—V"X'f{)=—:- 53— (28)

and performing integrations over quark and gluon wave
functions we obtain

E{29 =(0.244—0.169mR)a,R

hyp ! G » (29)

where I is a spin-color factor which vanishes for I =~
states and equals 3, 1, —2, —2, and —35, respectively, for

-
the I =7 states |15)3, |13 ), [13)y3, [11),, and |11) 5.

The Compton interaction is not present in the Q3
model; in this paper it is solely a feature of the Q3G sec-
tor. To compute the Compton energy E o, We again em-
ploy the formulas (24) and (25) but now with respect to
the processes of Figs. 3(a) and 3(b). Thus it is the quark
propagators which are expressible as mode sums. Note
that corresponding to each of the Figs. 3(a) and 3(b) are
two time orderings, direct graphs and “Z graphs.” The
Z-graph amplitudes are proportional to the direct ampli-
tudes for each of Figs. 3(a),
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EZ =0.1 39E((§jci;r)1 , (30) As an example of a Compton radiative correction we
P P write the amplitude corresponding to the direct time or-
and 3(b), dering of Fig. 3(a). Restricting the sum on intermediate
. states to the ground state, the amplitude can be cast in the
E&),=—0.385E&m, - (31)  form
i
Q¢ w—mR [ 2 2 . . . ]2
— |——— | [2NgN _ udu ji(ku)jolqu)j(qu) | I, (32)
%k |otmR G 1 f J1 Jotqu)ji\q
where
¥ | Af Ae 3¢7\ t Lspin
I=<Q3G ahwaaral |55 | @ 06 X'y (33)
and
16 (1—o0;) (1+0;)
Tgin="3" |8u1bu = +8u,18a, 1= +8a0Bx00s
(0x—io),) (ox+ioy)
— *xz—y(ﬁwotsx,—l +8,1820) — "’j“”z—y_(Sx'o&»l 483, —1820) | - (34)

One first calculates the operator matrix element of Eq. (33), which determines the quantity I, and thus the spin inner
product. Clearly then, the Compton calculations although somewhat tedious are, again, straightforward.

For the degenerate Q3G states there is an additional energy shift arising from the O(a,) mixings produced by the
quark-gluon hyperfine and Compton graphs of Figs. 2 and 3. These mixings are nonzero between the states |11);; and
|11)3 as well as between |13); and {13) ;. From perturbation theory, the energy shift for two degenerate states |i ) and

i) is

SEy=—+(Ci |H i)+ |H|jN++[(G |H )= |H|j)P—4| G |H|j)|272.

The calculation of the diagonal matrix elements has been
described above. The off-diagonal elements may also be
calculated without difficulty using the mode sum ap-
proach; we obtain the rather small values

011 [H?[11) 5= —0.022% |
R (35)

W13 | H?| 13)13=_o.oo9fRi ,
where H? symbolizes the hyperfine and Compton interac-
tions. It is evident that the off-diagonal matrix elements
make a negligible contribution to the energy shifts of these
states.

This completes the presentation of terms appearing in
the Hamiltonian. It is instructive at this point to refer to
Table II where we list in units of R ! certain contribu-
tions to the energy of both Q* and Q3G states. For defin-
iteness the quark mass is fixed at the value zero. We do
not exhibit H; or H, of Egs. (10) and (11) in Table II be-
cause each depends on a quantity (Z,; and B) to be deter-
mined by our fitting procedure. The most apparent prop-
erty of Table II is the large size of kinetic-energy contribu-
tions relative to all others. That the mass of a light had-
ron is mainly attributable to constituent kinetic energy is a
common feature of bag models. It clearly generalizes to
the Q3G states. In potential models, the “constituent
mass” plays this role. Another noteworthy aspect of
Table II is the very large, negative quark-gluon hyperfine
interaction for the I =J =+ Q3G state |11),. Indeed if
the Compton radiative correction were not present, the

f

mass of the |11), state would be unacceptably low. Thus
an interaction (e.g., Compton or something like it) distinct
from the hyperfine interaction of the Q° model must be
present in the Q*G model if it is to make any sense.

There are several parameters in our formulas—the
quark mass m, bag constant B, zero-point constant Z,, the
radius R for each level, and the QCD fine-structure con-
stant a,. Although there has been recent work on the ori-
gin of bag parameters,'>~!* standard usuage is employed
here. We incorporate the momentum dependence of a, by
employing the parametrization of Ref. 10,

27 1

@ R = A T Ro/R)

(36)

To fix these parameters we employ the N,A mass values,
impose the constraint that the pion mass vanish as the
quark mass does, require for each level of mass M that
dM(R)/dR=0, and as in Ref. 10, use perturbation theory
about m=0 to relate the pion and quark masses. In the
latter step our results differ somewhat from Ref. 10 due to
a more careful treatment of the hyperfine overlap integral.
This procedure still leaves some freedom in the choice of
one parameter, e.g., 4 of Eq. (35). To obtain some feeling
for the sensitivity of the computed quantities to the
parametrization, we present our numerical analysis for
A=1.0 and 0.9.° Another aspect of the calculation,
which in our opinion is somewhat a matter of taste, is
whether to express the baryon bag energy relativistically as
(M?*+{(p?>)R™?)? or nonrelativistically as M +
(p?)/2MR?% We list results for each choice. Our find-
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TABLE II. Energy contributions to Q° and Q3G states. The common energy unit is R ~'. The
quark mass equals zero here. The Compton entries (a) and (b) refer, respectively, to the processes de-
picted in Figs. 3(a) and 3(b). Each Coulomb, hyperfine, and Compton entry is to be multiplied by c..

Hyperfine Compton
Kinetic Coulomb -0 -G (a) (b)

Q? N 6.128 0 —0.354
A 6.128 0 0.354

Q3G [15)13 8.872 0.025 0.089 0.732 0 0.108

[33)c 8.872 0.025 0.443 0 0.268 0.090

[13) 8.872 0.025 —0.089 0.244 0.134 0.072

[13)13 8.872 0.025 0.089 —0.488 0.334 0.018

|11)5 8.872 0.025 —0.089 —0.488 0.334 0.018

|31)3 8.872 0.025 0.443 0 0.067 —0.018

[11),4 8.872 0.025 0.089 —1.220 0.536 —0.036

ings are presented in Tables IIT and IV and Fig. 4. We
defer discussion of these to the Conclusion. However, we
note here that the maximum scatter associated with the
different approaches is roughly 30 MeV.

B. Mixing effects

Our original Q3G basis is listed in the Appendix. QCD
interactions cause mixings between the Q3 and Q3G states
as well as among the Q3G states. The original basis, diag-
onal in the kinetic energy, is thus altered.

In the Q3G sector, as discussed in Sec. IT A, the Comp-
ton and hyperfine interactions produce mixings between
[11);; and |11); as well as between |13);; and |13),;.
These mixings are small. Call § the O(a,) energy shift
difference between degenerate pairs of states obtained, for
example, from Table II. Then the mixing is governed by
the ratio of the (rather small) matrix element of Eq. (35) to
8. For example, we find

|11>11—+(1-—€2)1/2|11>11+6|11)13, (37)

where €~0.05. The size of the matrix elements of Eq.
(35) thus guarantees that mixings among the Q°G states
are small. In what follows we therefore neglect these mix-
ing effects and simply employ our original basis of Q3G
state vectors.

Mixing between the Q3 and Q3G sectors is, however,
significant. The two I =J =+ and one I =J = 3 mixings
are describable in terms of a common amplitude
—1.39iv/a,, as generated in Fig. 5(a). Our notation for
the mixed states is |P),|11),,/11)p and |A),|33)c.

TABLE III. Variation of parameters. Entries for quark mass m and bag constant B
Parameter A4 is defined in Eq. (36) and the labels Rel and NR

of GeV, whereas R has unit GeV~,

These evolve, respectively, into the unmixed states |11) 0¥
|11 >11, lll)]j, and |33>Q3, l33 )31 in the limit ac—>0. In
particular, the nucleon and A Q3-Q3G mixed state vectors
take the form to first order in g,

[AT+)=(1—7)1"2| A*H) pi—in|33)s, (38)
1 2 172

1Py= =S| IP)ga—in([ 1)+ [ 11)5)

(39)
with
1.39va,

7I=—-E—a*, (40)

G

where Eg=2.7437 + self-energy effects. For zero gluon
self-energy the mixing is appreciable, 7=0.59. Even if the
gluon self-energy is large, the mixing might still be non-
negligible because N-A splitting fixes the value of a,/Eg.

Before considering the effect of Q3-Q3G mixing on pro-
ton observables, we briefly address for pedagogical reasons
the procedure by which the Hamiltonian is diagonalized.
There are some pitfalls in obtaining mass values via the
diagonalization procedure of which we have found some
researchers to be unaware.

For definiteness consider mixing of the two I =J =+
states. Upon diagonalizing the Hamiltonian, one must ex-
pand the resulting mass values to O(a,.) for reasons of
consistency. Thus the I =J =3 mass matrix

174 are in units

refer to treating the baryon bag energy relativistically or nonrelativistically.

A m B4 VA R,
Rel 1.0 0.025 0.138 1.02 2.23
Rel 0.9 0.025 0.140 1.10 2.77
NR 1.0 0.024 0.142 1.07 2.35
NR 0.9 0.024 0.144 1.14 2.88
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TABLE IV. Variation of Q3G masses. All masses are given in units of GeV. Energy contributions
up to O (a,) are included but self-energy contributions to quarks and gluons are not.

A [15)13 [33)c [13) 4 [13)3 [11)p [31)3 [11),
Rel 1.0 1.930 1.910 1.740 1.613 1.549 1.787 1.420
Rel 0.9 1.952 1.931 1.755 1.624 1.557 1.804 1.425
NR 1.0 1.944 1.923 1.760 1.636 1.573 1.805 1.447
NR 0.9 1.965 1.942 1.774 1.647 1.582 1.821 1.453
A iVa.B duced via the diagonalization procedure [e.g._, as in Flg
< @1) 5(b)]. To do so would amount to double counting. Even if
—iva,B C+Da, the calculation is performed correctly up to this point, the
. . mass values A, are not yet in useful form. The mass A _
yields the mass eigenstates contains a renormalization contribution (equaling
B2 —1.06c,) which must be subtracted off. Also, the mass
A,=C+a. D+ c—4 1’ value A has a contribution, induced as in Fig. 5(c), which
42) is canceled by its time-ordered counterpart. This latter
B2 number (equaling —0.47a.) must be independently calcu-
A_=4—c, C—A lated, a task which was not necessary in our analysis of

First note that in (42), one must be careful not to include
as diagonal contributions those energy shifts which are in-
|

2

(P1]4/(1)g;2) | P1) =L

_ 2
AL 5, (268185, +1081,820)+ 84a (781,82, + 1181,82)]

>
) (AAAL]
o |
g A A a
S rrvvell
1.3 ! | 1 | 1
N, b, N3, B, Ns,

M(GeV)
~
T

N

NS/Z

FIG. 4. Comparison between (a) experimental and (b) predict-
ed Q3G spectra. In (a), the number of solid triangles indicates
the quality of the experimental data. Those states which are not
well established in (a) have indefinite upper and lower mass esti-
mates. Quark and gluon self-energies are not included in (b).

Sec. ITA.
To determine the effect of Q3-Q3G mixing on proton
observables, we compute the matrix element

L1 8 (551,85 +81,82,)+ 80451182, +281,82)]

(43)

(c)

FIG. 5. Mixing effects: the amplitude connecting Q* and
Q3G states is depicted in (a) and energy contributions to Q°G
levels as induced by diagonalization of the mass matrix are
shown in (b) and (c).
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and observe that the axial-vector coupling constant, mag-
netic moment, and electromagnetic charge radius depend,
respectively, on the expectation values of o373, Qo3, and
Q, where Q is the electric charge. Thus we find

2tm?
g4= “’%ﬂ“gA(QS) )

2
“=—2—?L#(Q3> , (44)

<r2>EM=<r2)EM(Q3) .

The effect of mixing with the Q3G states is seen to de-
crease the proton value of g4 and p relative to their value
in the Q° model while leaving {r2) gy unchanged. Our re-
sult for g, is in accord with that obtained some time ago
by Golowich in Ref. 9.

Finally, recall that the Q3 model supports a set of
positive-parity radially excited states. The Q3G ground
states will mix with these Q° radially excited states as well
as with the Q3 ground state. We find that to O(g) the
I=J=+5 and I =J =7 radially excited states mix with
the Q3G states with a common amplitude
—0.107iv/a,R~". Thus the Q?Q*-Q’G mixing ampli-
tude is 7.7% that of Q3-Q3G. Even with the smaller
0%0*-03%G energy denominators, it would appear that
02Q*-Q3G mixing is not of dominant importance.

III. Q3G STATES
IN THE HARMONIC-OSCILLATOR MODELS

It is instructive to compare aspects of the bag-model
calculation just performed with the harmonic-oscillator
approach. In the latter we represent the constituent gluon
by a massive spin-1 particle and include as usual three
massive quarks of spin 5. The gluon mass is not predict-
ed in the oscillator model; instead it must be supplied
from another source (such as the bag model where we
have seen m ~600 MeV).

To estimate the effect of hyperfine interactions between
quarks, and also between quarks and the gluon on the Q3G
manifold of states is not difficult. A simple estimate, suf-
ficient for an initial try, is afforded by taking the quark-
quark hyperfine interaction to be the same as for Q3
baryons and normalizing the quark-gluon interaction
analogously, viz.,

HpP=C(F ;-F 6 ){S, 8¢ (8T ) , (45)
where C can be normalized from the N-A splitting
C(8(Tg6)) g3 =C(8(Tgq)) s
~300 MeV . (46)

We could improve our estimate by making a more detailed
oscillator model for the Q3G system and estimating the
wave function at zero quark-gluon separation.

Equation (45) provides an easy check on some of the re-
sults of Sec. II. The quantity (F ,-F ) is either — or
—% for the “spectator” diquark color representation 6 or
3, respectively. The spin expectation value involves the to-
tal angular momentum J of the Q3G state. For example,
in the spin-quartet states S = %, we have

($38Sg)=[JJ+1)—21/6
so that
T3 |3Hy |

3
2

1) =3I U +D=Z1C(8(F))
(43 13H,6 | +1) == I +D=H1C(8 F,0))
(47)

whereas the corresponding matrix element for the I =3,
J =7 sector vanishes.

It is not obvious how to obtain a meaningful nonrela-
tivistic estimate for the Compton amplitudes. The heavy
interacting particles of the oscillator model would have to
be created or destroyed as in Figs. 2(a) and 2(b). In this re-
gard the nonrelativistic approach would appear to be lack-
ing unless come correspondence with these processes could
be constructed.

IV. CONCLUSION AND SUMMARY

In this paper we have seriously entertained the possibili-
ty that “constituent” or “valence” gluonic degrees of free-
dom exist within baryons. Our motivation arose mainly
from theoretical and experimental evidence for glueball
states.

Baryonic excitations have traditionally provided a rich
arena for experimental study. At present their study is
also a subject of intense theoretical activity. Indeed, there
have been very recent works suggesting the existence of
hadron surface modes,! constituent gluon modes,!® and
even one suggesting that such excitations are inconsistent
with the baryon spectrum for masses lighter than 2.5
GeV.7

Our specific aim has been to compute Q°G masses to
O(a.) and to determine mixing effects at a level con-
sistent with our mass analysis. Throughout, the parame-
trization has been chosen to closely resemble that em-
ployed in earlier, successful phenomenology. We have
found mass values of pure and mixed Q3G states in the
range 1.42—1.95 GeV (see Table IV and and Fig. 4). In
addition we have shown that a Q3G component in the pro-
ton serves to lower the axial-vector coupling constant and
magnetic moment relative to their Q> values but leaves the
electromagnetic charge radius unchanged.

What can be inferred from these results? Because our
calculation does not by itself provide an all-encompassing
test of the Q3G scenario, it would be premature and even
naive at this time to draw overly firm conclusions. For
example, corrections to proton observables other than
those considered here are possible.'® Thus it seems pru-
dent to instead consider each of several possible interpreta-
tions.

The Q3G model, unadorned by gluon self-energy effects
and/or QCD perturbations of higher order, has a light
J =T = level which one is tempted to associate with the
Roper resonance N'(1470). However, the radially excited
03 model is usually invoked to explain this state. There is
a possible resolution to this dilemma. From time to time,
there have been claims that two quasidegenerate states ap-
pear in the Roper region.! It is not inconceivable there-
fore that both Q3G and Q2Q* levels exist. Unfortunately
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this scenario has a severe difficulty. It would imply that a
number of quasidegenerate Q3G,.Q?Q* levels occur. This
is not in accord with experiment, unless perhaps the Q3G
states are decoupled from the two-body channels on which
resonance assignments are largely based. Evidently an in-
vestigation of the Q3G decay amplitudes, say along the
lines of Ref. 20, is called for. If so it would be advisable
to have fairly precise wave functions, containing even
O (a.) mixing effects.

Another possibility is that the Q?Q* and Q3G models
are complementary in that they are alternative ways of ex-
plaining the same states. This is evidently not possible in
the meson sector where the QQG spectrum contains a state
(J PC—1-+) which cannot occur in the Q0 model. If
02%0*, Q3G complementarity were valid, it should be pos-
sible to demonstrate it explicitly. Perhaps the QCD equa-
tions of motion for coupled quarks and gluons along with
appropriate interpolating Q> and Q3G fields could accom-
plish this.

Finally, assume in the following that neither of the
aforementioned scenarios is correct. Then given that the
very concept of constituent gluon makes sense and that
our phenomenological models are not totally inadequate,
we are left with the option of extending our approach in
some manner. Two potentially important effects are
higher-order QCD corrections and constituent gluon self-
energy. The former has been suggested (via box diagrams)
as a significant contributor in resolving the mesonic U(1)
problem. 21 The latter has been used to fit the Q0G model
to the 0~ state £(1440).%'* If both mechanisms are im-
portant, then any fit which omits one or the other is of
course suspect. Also, there is no a priori guarantee as to
the magnitude or even sign of the net energy shift. It
must be calculated. At any rate, such effects have at least
the potential for substantially increasing the energy needed
to excite Q3G levels. This could explain the negative re-
sults obtained thus far regarding bbG states.??

Our work suggests several further avenues of investiga-
tion. Calculation of Q°G decay widths, gluon self-energy,
higher-order QCD interactions, and clarification of
0%Q*-03%G complementarity are each matters of some im-
portance. Work on them is underway.
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APPENDIX

We list below in terms of products of three-quark and
gluon-state vectors the state of highest weight for each of
the seven Q°G levels. We label the gluon states in terms
of spin alignment A and color a, viz., |A)% and the
three-quark states with the notation of Egs. (1)—(3).
Denoting the color-singlet Q3G angular momentum by J,
the Q3 spin as S, and hence each color singlet Q3G by

| 13473 )2125, We have (the color index a=1,...,8 is
summed over)
HJ=3,
7= 73)%; (A1)
() J =13,
|%%>13=(%)1/2|0>a|%%>?3
(2D 3505, (A2)
|+ a= 11335, (A3)
[T Du= 1D 1% (A4)
(iii) J =5,
=7 D 4
<i>‘/2|0>“|%%>?3
DD =), (AS)
|%%>31=(%)1/2f1)a|7 %
— (0505, (A6)
|35 u=()"? D% 3 —3)%
—(1)12) 0y | LLye (A7)

QCD interactions produce Q -Q3G and Q3G-Q3G mixings
as described in Sec. II B.
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