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We develop an approach for introducing bosons into gauge theories as composite states of fer-
mions. It is scale and gauge invariant from the outset and utilizes invariant regularization pro-
cedures. This results in the acquisition of gauge-covariant kinetic energy by the bosons and the
growth of coupling constants and masses. Relationships among the coupling constants and masses
are derived.

I. INTRODUCTION II. SU(3) xSU(2) xU(1)

In recent years there has been a considerable amount of
activity directed toward introducing the bosons (both spin
zero and one) as composite states of fermions. Many of
these models utilize a four-fermion coupling following the
work of Nambu and Jona-Lasinio. ' Their equivalence,
in certain cases, to gauge theories both for Abelian and
non-Abelian examples has also been shown. However,
the couplings are non-scale-invariant and/or non-gauge-
invariant initially with a compensating non-gauge-
invariant renormalization procedure used to arrive at a
gauge-invariant formulation.

Another, very attractive approach starts with just fer-
mions using scale-invariant and gauge-invariant couplings
involving derivatives and inverses of the fermion fields.
However, the implementation of this model appears to be
extremely difficult and it does not appear to be renormal-
izable.

Here, we offer another approach which is scale invari-
ant and gauge invariant from the outset and employs a
gauge-invariant renormalization procedure.

In Sec. II, we exhibit the procedure by working with a
prototype based on invariance under SU(3) )& SU(2)
XU(1). In Sec. III we determine the relationships among
the coupling constants and masses which emerge from the
calculation and in Sec. IV we present some concluding re-
marks.

We choose this group as our prototype. It is a very easy
one with which to work and will exhibit the method we
have in mind very nicely. It also contains most of the
features we believe exist in the weak, electromagnetic, and
strong interactions. It does not explain why we have more
than one family of fermions and if for no other reason is
therefore seriously lacking.

However, we do introduce three families of Dirac fer-
mions where %k refers to leptons and Qk to the quarks.
The index k refers to the families. We let the left-handed
fermions transform as isotopic doublets. Thus,

E (2.1)
k L

and
Uk

QkL D (2.2)
k

while the right-handed fermions (excluding neutrinos)
transform as SU(2) singlets. We denote them by Ektt,
Ukg, and Dkg.

We require that the model be locally gauge invariant
and to this end introduce the gauge fields T& for SU(3),
V„ for SU(2), and S& for U(1). However, we are not re-
quired to intoduce kinetic energies for the gauge fields and
hence we shall not.

Our Lagrangiari may thus be written as

. Ya. YI
i%'kL 9 i JF—i—.S—0 kL +iEkz Q i S Ek—R2 2 2

YqL . ~a . Yu~
+iQkl e1 i g —i —S i —T Qkt.—+ t Uktt g i S —i T' Ukt—t2 2 2 2 2

. YdR .~a a 6+tak~ e) i g—i T' —Dktt + g (fkt'IikL, Ektt fk~Qkst UkL+—f~QkLDkR ) &&(H.c. )
2 2 k=1

2/3

(2.3)

Qk is the G-conjugate field of Qk, while Uk is the charge-conjugate field of Uk. There is of course a summation on color
where quarks are involved. The above choice for the fermion interactions leads to the most economical

symmetry-breaking scheme that is scale invariant. Obvious generalizations are possible.
The nonpolynomial interaction in Eq. (2.3) can be converted into the standard polynomial form upon the introduction

of a scalar, SU(2)-doublet, constraint field X. We then have
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. ~II,i'4L 9 —i .g —i g %'kL+iEkR 9 i— g EkR2 2 2

T

. ~a F„g
+iQkL 9 i——Ã i— 8 i— T' QkL+iUkR 9 i— 8 i— T'

2 2 2 2 2

. IdR . ~a
+iDkR 0 i —S l — T'

2 2

gkl( PkLEkR++~ EkR q kL ) gku(QkL UkR+ ++ +kR QkL ) gkd(QkLDkR+++ DkR QkL ) —~p(+ +) ~ (2.4)

Here P =i'+* is the G-conjugate field of X. We note
that in Eqs. (2.3) and (2.4) no coupling constants have
been introduced along with the gauge fields because they
can be absorbed into these fields. This in turn stems from
the fact that no kinetic energy has been introduced for the
gauge fields.

The equations of motion obtained by varying X and g
yield, using Eqs. (2.3) and (2.4),

and gL is the corresponding two-component spinor with
equivalent relationships for 'PR and pR, we have

q, y~%, =g,r~f, ,p

+.) "q.=A "A,p (2.6)

'PL'PR&=i PL&&

and

4
' 1/2

27 gs

16 &03
(2.5)

& 'PRq'L= —&& APL ~

In Eq. (2.6), o" and o" are 2&(2 matrices given by
where the index i takes on the values kI, k„, or k~. The
coupling constant ko is superfluous and could be absorbed
into a redefined X with a corresponding redefinition of the
g;. However, its appearance will help us make a connec-
tion with the standard theory.

It will be convenient to introduce the two-component
Weyl spinors for doing integrations over the fermion
fields. However, we shall not use the full machinery of
the dotted and undotted notation. Thus if qi is a Dirac
field with

(1—y5)

2

and

o"=(1,o. )

o"=(1,—cr) .

(2.7)

We use the notation pL, eR, qL, uR, and dR for the
Weyl fields. We then substitute the relations Eq. (2.6) into
the Lagrangian Eq. (2.4). Following the authors of Ref. 2,
we next integrate over the Fermi fields in the generating
functional to obtain an effective Lagrangian. This makes
use of the quantum fiuctuations inherent in quantum field
theories to develop dynamics for the boson fields. Thus,
we define W,rr by

ifd xiii i f d'xW,+ ~gkL ~AL ~ekR ~ kR ~qkL ~qkL ~ukL ~ ukL ~dkR ~dkR e
k~1

After discarding matrices which only change W,rr by a constant, we obtain
3

d xW, lr= g [—itrln(1+Mk~) —itrln(l+Mk2)] .
k=1

(2.&)

(2.9)

Mk& arises from integrations over the lepton fields, while Mk2 arises from integrations over the quark fields.
For each family there will be an identical result except for the coupling constants gkI, etc. Thus, suppressing the fami-

ly labeling for the present we have

1 ~ z a.

v
P 2

(igloo )
lO B~

(2.10a)
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1 r YqL

v

1 (ig„Xot)
ECT 0

1
(igdx )

EC7 0

1, G
( —ig„X )

EV 8

1 YuR ~a ao." S„+ T„'
~o- O„

1
( igdx )

lO BV

1 YdR ~ao" S + T„'--a. "2" 2"
(2.10b)

where 7 is a column matrix and g~ a row matrix:

y(+)
x= ... , x'=(x'+",x'"") .x'0) (2.11)

In terms of Feynman diagrams, the logarithms in Eq.
(2.9) are the sum of all one-fermion-loop contributions
with any number of external boson legs. We of course ob-
tain only one-fermion loops because the fermions appear
only quadratically in W &.

The ultraviolet divergences arise only from those dia-
grams having four or fewer external legs. These are the
ones that generate the dynamics for the boson fields and
hence are the ones of interest. We use dimensional regu-
larization, thus preserving gauge and scale invariance. For
these particular diagrams, the infrared divergences disap-
pear as we let the complex dimension d approach the
neighborhood of 4. Diagrams with more than four legs
need not be considered as a result of the procedure we use
in what follows.

The trace to be taken in Eq. (2.9) is with respect to
space-time points, the Pauli matrices, and the internal-
symmetry matrices. In evaluating the traces and matrix
multiplication indicated in Eq. (2.9) we have made use of
the following identities:

(ot'k„l(o "k„)=(k )' —k '=k',
tr~(&V") =2g"',

tr~(Wo "o o ) = 2(rt""rt g" g" —+rt" rt" )

+2) +vA, o'

(2.12)

In Eqs. (2.12), rt&" is the Lorentz metric, et'" is the com-
pletely antisymmetric Levi-Civita tensor, while tr& is over
the two-dimensional Pauli space only.

The ultraviolet-divergent pieces of Eq. (2.9) will be ex-
hibited as poles at d =4. Letting d =4 in the residue at
these poles, we obtain

2 3I
[——„'S„,(x)S""(x)]+ [——,

' V„,(x) V""(x)]+
~ [—,' T„'„(x)T'~—"(x)]

48m (4—d) " 48m. (4—d) " 48m (4—d)
T

Gz 3+, [(D"X) (D„X)]—~0+, g [gki'+3(gku'+gkd')] (X X)'.
8n. (4—d) "

8m (4—d)
(2.13)

In Eq. (2.13), although I and L have different origins
they both have the value I =L =8, a result specific to
the model we have chosen,

Sp ——B~S —8 Sp,
Vp„——8~V —B„V„+V„xV, , (2.16)

Y =2YtL +Yttt +3(2Pqt + Y„g + Ydg ) (2.14)

and

3

[gkl +3(gk«+gkd
k=1

(2.15)

Yg ———1 ~ Ygg ———2 ~ Yq

Ygg 3 and Yd~ ————, whence Y =
3

4 2 40

The field strengths and covariant derivative of 7 are
given by

where the index k in Eq. (2.15) refers to the families. We
assign the hypercharge the values of the Weinberg-Salam
model. Thus

l . 'TDX= 8 ——S —i—VP P 2 JM 2 P

For the purpose of brevity we had anticipated in writing
the next to last term of Eq. (2.13) the subsequent assign-
ment of the hypercharge.

We now follow the procedure of Terazawa et al. ,
~ and

note that we may add to W~ the term WUv to fortn

~2 ~1+~UV (2.17)
The Lagrangian W& is then equal to W2 plus counter-
terms ( —WUv). In fact, if we consider the generating
functional constructed using W2 and integrate over the
Fermi fields, we obtain the same result as is obtained us-
ing W& once the fields have been rescaled and coupling
constants defined (see below and Sec. III). As an aside, we
are reminded that we are to take the limit d =4 only after
all renormalizations have been performed.

We now rescale the Bose fields by letting
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3I
48+(4—d)

1/2

Vp,
We also define coupling constants as follows:

1/2
3T

48m (4—d)

31.
48rr (4 d)—

1/2
G2

8m (4—d),

(2.18)

48m (4—d)
3I

48&(4—d)
3 +2

' 1/2
48m. (4—d)

31.

(2.19)

8' (4 d) —
~ 1
0+ 2 g lgkl + (gku +gkd )1

8n (4—d)
G 2 kl ~ etc.

Then W2 is given by

FIL . , ~IR &qLt 'PkL Q ig +— —ig ' p '—Pkl. +EEL 0 ig ' —8 Eka +iQkL 0 rg —4—ig
' — 8 th 5—Q2 2 2 2 2 2 kL

QR . + g+~ UkR ~ lg ~ ' lh
2

F UkR +DkR Q —lg g —lh F DkR —Gkl( +kLEkRQ+f Eka Vkl. )

ku(QkL UkRP +'(t' kR QkL ) Gkd(QkLDkR4'+0 DkRQkL )

A, (sty) —,
'—(&„,)'——,—'(A„) ——,(F„' )'+ (D„y ~', (2.20)

where III. COUPLING-CONSTANT
AND MASS RELATIONSHIPS

A„„=B„A„—8„+ g A„XA

F„'„=B„F'„Bg„'+hf"F„F'., — (2.21)

D P= 8 i B —i——r.A—
P 2 P 2 P

Wz is the standard form that one would use if starting
with a scale- and gauge-invariant theory of SU(3)
X SU(2) XU(1). The difference of course is that there ex-
ists relationships among the coupling constants.

%'e note that the coupling constants go to zero as d ~4.
However, this is exactly what one expects of the unrenor-
malized coupling constants in a standard field theory.
One must first renorrnalize the theory before letting d ~4.
The renormalization constants are of course infinite and
hence the product is defined to be the renormalized physi-
cal constants which are nonzero and finite.

The Weinberg angle 0~ is related to the constants g and

2 g 3
(3.1)

g +g
where we have used Eq. (2.19) for g and g' with I =8 and
F 3 as calculated in Sec. II. This result for the un-
renormalized steinberg angle is the same as that calculat-
ed by Cxeorgi and Glashow in their SU(5) model. This re-
sult was also obtained by Terazawa et al. We also find
that the bare strong-coupling constant h =g, since L, =8.
Hence there is only one independent gauge coupling con-
stant.

There will also be a spontaneous symmetry breakdown
due to radiative corrections as presented by Coleman and
Weinberg and in the related work of Weinberg. The re-
sult for the mass of the Higgs boson is the same as that
given in these papers (assuming the one-loop level). How-
ever, we do obtain a new relationship among the vector-
boson and quark masses.
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Thus if m; is the fermion mass (where i takes on the
values ki, k&, and k~), then

m; =G;P„, (3.2)

3

Mn ———, g [mkt +3(mk„+m~ )] .
k=1

(3.5)

Unfortunately, inserting the present known (or suspected)
masses of the fermions into this relationship gives too
small a value for M~ . There will of course be additional
corrections coming from higher-order contributions.
Furthermore, there is the possibility of more massive fer-
mions appearing in additional families.

IV. SUMMARY AND CONCLUDING REMARKS

We have considered a model in which the bosons are
composite states of the fermions. The starting Lagrangian

where the G; are given in Eq. (2.19) and P, is the value of
the classical scalar field at which the first derivative of the
scalar potential vanishes. (We again restrict our con-
siderations to the one-loop level. )

From Eq. (2.19), the definition of G in Eq. (2.15), and
setting I =8, we find that

3

g = 4 g [Gki +3(Gk„+G~ )] . (3.3)
k=1

Now the mass of the W vector boson is given by
2 2 3

Mw'= =
8 g [Gkt'+3{Gkt'+G~')ld. '.

2 k=1
(3.4)

Substituting Eq. (3.2) into Eq. (3.4) then gives ~~ in
terms of the fermion masses,

is scale and gauge invariant and dimensional regulariza-
tion has been used for calculating.

In this paper we have chosen SU(3) X SU(2) &&U(1) as
the invariance group of the model. However, we wish to
emphasize that this is a prototype. Our primary purpose
was to exhibit the procedure and show how the bosons ac-
quire gauge-covariant kinetic energy and how coupling
constants are grown. This in turn leads to the determina-
tion of the unreno~alized Weinberg angle as sin20W —

8

We also obtained a relation for the mass of the 8' vector
boson in terms of fermion masses.

Clearly it is of interest to look at other groups. For
SU(5) and beyond an interesting new feature emerges: not
all Higgs boson representations are allowed if only fer-
mionic building blocks are available.

For example, in SU{5), 5 and 45 do couple to the funda-
mental fermions and so bound Higgs transforming as such
will be grown along with their dynamics. On the other
hand, the 24 and 75 {Ref. 9) do not couple directly to the
fermions and if they are required such scalars would have
to be introduced ab initio along with their dynamics. This
would lead to a model in which the initial Lagrangian
would contain only fermions and a set of scalar mesons
(e.g. , 24), and could still be locally gauge invariant and
scale invariant with an appropriate choice of interactions.
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