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Using a light-cone gauge formulation for N =4 extended supersymmetry, it is shown that
an explicit breaking of the supersymmetry by the addition of mass terms does not disturb
off-shell finiteness to any order provided the sum of fermion masses equals the sum of sca-
lar masses and appropriate cubic interactions between scalars are included.

I. INTRODUCTIQQ

Calculations have shown that the N =4 extended
supersymmetric Yang-Mills' theory is ultraviolet
finite up to the three-loop order. Suggestive argu-
ments due to Ferrara and Zumino, Sohnius and
West, and Stelle indicate finiteness to all orders. A
proof of this (based on N =2 superfields) has been
advanced by Howe, Stelle, and Townsend. Recent-
ly, Mandelstam invented a light-cone gauge formu-
lation of the N =4 theory and used it to argue fin-
iteness to all orders: In this foririulation the off-
shell Green's functions appear to be ultraviolet finite
(although it is not yet clear that the light-cone gauge
does not introduce pathologies in the form of un-

physical singularities, operator ordering ambiguities,
etc.).

Such a remarkable theory would therefore seem to
merit further investigation. One of the main obsta-
cles to its being used as a realistic model is of course
the absence of any scale. There are no masses in the
supersymmetric Lagrangian and there would appear
to be no dimensional transmutation. It is a truly
scale-invariant theory. How can this scale invari-
ance be broken? One possibility would be simply to
assume that one or more of the scalar fields in the
system develop vacuum expectation values. The
vacuum is mestastable, however, and the minimiza-
tion of the effective potential does not determine
these values: They have to be regarded as constants
of integration. Although some of the gauge symme-
try would be broken in such a vacuum, the resulting
spectrum would contain many massless states. The

infrared behavior would be very singular, so making
the theory difficult to interpret.

Our proposal is to break explicitly the scale in-
variance, the supersymmetry, and the global SU(4)
which the theory possesses, by adding mass terms to
the original Lagrangian. We shall argue that this
can be done without disturbing the ultraviolet
behavior. It is not evident, of course, that breaking
supersymmetry softly by means of mass terms can
be achieved without reintroducing at least logarith-
mic divergences into the theory. And in fact we do
find that it is necessary to include trilinear interac-
tions among the scalars, together with the mass
terms, if finiteness is to be preserved. (Similar trilin-
ear interactions appear in massive N =1 supersym-
metric theories. )

In order to demonstrate finiteness we shall use a
light-cone gauge formulation of the N =4 theory
due to Brink, Lindgren, and Nilsson (BLN}. (This
formulation is presumably equivalent to
Mandelstam's, but we find that it is easier to work
with. ) The strategy is straightforward. First, to the
conventionally forniulated, N =4 supersymmetric
Lagrangian, in component notation, we add a fer-
mion mass telIIl. We then transforizi the component
Lagrangian to the light-cone gauge, a step which in-
volves elimination of the dependent (or nonprop-
agating} components. We then attempt to express
the resulting Lagrangian in terms of the BLN super-
fields. At this point it becomes clear that the light-
cone gauge Lagrangian must be augmented by ap-
propriate scalar mass terms and trilinear interac-
tions. Although the mass-dependent terms explicit-
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ly break the N =4 supersymmetry, the superfield
notation is important and useful because it permits a
relatively simple analysis of the ultraviolet conver-
gence of the broken theory.

The paper is organized as follows. In Sec. II, to
establish notation, the symmetric theory in the
light-cone gauge is reviewed together with the super-
fields of Brink et al. Section III is devoted to an ex-
planation of the finiteness arguments for the sym-
metric theory. We believe that Mandelstam's idea
can be expressed more clearly, and with some im-
provements, by means of the BLN superfields.
Mass terms are introduced in Sec. IV where, also,
they are expressed in superfield notation together
with the light-cone gauge interactions which they
generate. Scalar mass ternis and trilinear interac-
tions are introduced at this stage. It is shown by
treating the mass terms and mass-dependent interac-
tions as insertions that the ultraviolet convergence of
Green's functions is preserved. There are seven
masses in the theory (four for fermions and three for
complex scalars) with one relation [sum of scalar
masses equals sum of fermion masses, formula (4.7)]
among them. Finally, it is observed that the poten-
tial for the scalar fields in this theory now has a
stable minimum. This means that the infrared prob-
lem is reduced to the effects of the (unbroken) gauge
symmetry —a phenomenon familiar in QCD.

II. LIGHT-CONE GAUGE FORMULATION
OF N =4 SUPER YANG-MILLS THEORY

(H P gXC 'gp+II. c. )

2
g H PXHy'H XHap y5 ~ (2.1)

where the Yang-Mills vector A&, the chiral spinors
P, and the scalars H p are all in the adjoint repre-
sentation of the gauge group. Change-covariant
derivatives are defined such that

F„„=a~„a„A„+gA„xA„,—
V„I~=a„f~+gA„XP~,

VpH p =&pH~p+ gA~ XH~p .

The indices a and P, take the values 1, . . . , 4 corre-
sponding to a global SU(4) symmetry with respect to
which A& is a singlet, g~ a quartet, and H~p a real
sextet,

The Lagrangian, in four-dimensional space-time,
for the unbroken X =4 theory, ' can be expressed in
the form

,F„„fiFQ—+, —V'qH PV'„H—p

H p
———, e pysHy (2.2)

where Hy =(Hyb)*. The fields A, P, and H span a
single multiplet of the N =4 extended supersym-
metry, and the Lagrangian (2.1) involves one param-
eter g which is dimensionless.

The theory appears to be ultraviolet finite in the
sense that all gauge-invariant quantities computed
from it are ultraviolet convergent. Mandelstam has
given an argument whereby this convergence ex-
tends to off-shell Careen's functions in a particular
type of gauge, the light-cone gauge. We now review
some of the features of this gauge.

With the coordinates

~(x+x), x (x —x ),
(2.3)

u= (x +ix ), u= (x ix —). z

2 2

one can associate the covariant components

1 1~ (Ap+A3), A = (Ap —A3),v'2

1 . 1
(A, iAz—), A, = (Ai+iAr),

(2.4)

and similarly for the components of the gradient
operator 8&. In these coordinates the line element
takes the form

dx "dx„=2dx+dx —2du du . (2.5)

= d F+ V', F~ V'„F, — —-
where, since A =0, we have F+ ———8 A+.
Thus

——,(V,a A„+V,a A„—J ).1 (2.7)

The current J can itself be expressed in terrors of H
and the physical parts of g. To separate the un-
physical fermionic components, choose a basis

The light-cone gauge is defined by the condition
Ap ——A3, or

(2.6)

We shall regard x+ as the "time" coordinate so that
those equations of motion which do not involve 8+
will be treated as constraints. It is possible to for-
mally solve such constraints, thereby eliminating
"unphysical" components of the system. The first
component to eliminate is A+. One can do this by
solving the equation
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which diagonalizes yq and write
U e'~U

0&P&2m. .U~e U
(2.10)

0

(iV„X +gH pXX~) . (2.8)

One easily finds the constraint part of the Dirac
equation and solves it to obtain

g (a i P—)/&0
7

ga (a+i P)/zga
(2.11)

However, and this is the main point, it is possible to
erect an extended supersymmetry on this subgroup.
Introduce the anticommuting coordinates 0 and
their complex conjugates 0, a=1,2, . . . , N, such
that, under SO(1,1) && SO(2),

J = 2gX —XX. 'H'—X—a H, (2.9)

It is then possible to give the current J of (2.7) in
terias of physical components

Define the supertranslations

0 ~0+@
0~0+@ (2.12)

whereX =(X )' and H ~=(H &)".
The unphysical fields A+ and g can now be elim-

inated from the Lagrangian (2.1). The Lagrangian
for A„, X, and H p which results is rather compli-
cated. Its explicit foirri has been given in the paper
of Brink, Lindgren, and Nilsson. We shall not
reproduce it here in component forrrI, because these
authors have succeeded in developing a superfield
version which is much more compact [see (2.18)
below] and which we now motivate.

The light-cone gauge condition (2.6) breaks the
Lorentz group SO(1,3) to the subgroup
SO(1,1) )& SO(2), defined by

+ +~ +x ——+e —x —,

1x ~x + (ge eg)+—E6''
2

with x+, U, and U invariant. One can define super-
fields in the usual way and explore the consequences
of this supersymmetry. In particular, with the La-
grangian for N =4 super Yang-Mills, in the light-
cone gauge, expressed in terixis of such superfields
one can exploit the properties of superfield Feynman
rules to show that the Green's functions are finite.

It was shown by Brink et al. that all the physical
components of the N =4 theory could be accommo-
dated in one self-conjugate multiplet of the symme-
try (2.10)—(2.12). The multiplet is realized by a sin-
gle "chiral-type" superfield,

()( =exp( ——,ggiB ) . A„(x)+ 0 X (x)+ ggpH ~(x—)
l

,
e»'g. gg—g,(x)+

,
e»'g. gg—g,i a A„(x) (2.13)

It is chiral in the sense that 0 appears only in the
combination

where ()/80 is interpreted as a left derivative. The
conjugate operator is

l
z =x ——00,

2

which transforms under the action (2.12) according
to

z~z —ieg .

D = ——08

where 8/Bg is a right derivative. This means

D F(x,g, g) =D F(x,g, g),

(2.14')

+ —'g.a
g 2

(2.14)

This transforiiiation does not involve 0 explicitly.
It is useful to define the differential operator where the bar denotes complex conjugation, together

with a reversal of the order of anticommuting quan-
tities. With these definitions one can establish the
algebra
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tDa, DpI =0, ID,DPI =0,
ID.D PI = —5Pia

The superfield (2.13) is annihilated by D,
D /=0.

It also satisfies a reality condition

1
DiD2D3D4$ .

(2.15)

(2.16)

(2.17)

the real chiral superfield P. One can show that it is
given by

fi (D)(Ty(xi, gi)y(x2, 82)) =— 5i2,
E

where

5i2 ——5(xi —x2)5(gi —82)5(gi —82) .

Equivalent forms are

Both of the properties (2.16) and (2.17) are impor-
tant and useful in treating the ultraviolet-
convergence question.

Finally, it was shown by Brink et al. that the
hght-cone version of the Lagrangian (2.1) can be ex-
pressed in the form

W =W2+ W3+ W4,
where

g (Di) (Di)
( Tp(xi, gi)p(x2, 82) ) = —. 5)2

Bi Hi

iri (D )'(D )'
5i2 ~

d2 — 2

III. OFF-SHELL CONVERGENCE

(2.21)

W2 = f d'e d'e ,d—
2

w. = f d'ed4e —g
2

(px& p)

(px& p)

w, = f d'ed'e , g e (—()xe+)+R.c.
lB

(2.18)

A demonstration of the ultraviolet convergence of
off-shell amplitudes in the unbroken X =4 theory is
easily arranged. The first point to observe is that
the BLN superfield (2.13) has canonical dimension
equal to zero. The same is true of the coupling
constant g and the superspace measure d(M=d x4

Xd gd g. This suggests that the necessarily dimen-
sionless coefficient functions which would arise in a
functional Taylor expansion of the effective action
I (P) should all be logarithmically divergent, at the
worst. That is, on writing

)'(())= g f dpi ' ' ' dpE~(p» pE'g)

+ —,exp exp
XP(yi) P(PE), (3.1)

and the integrals over 8 and 8 are norrrlalized (our
definitions differ in detail from those of Ref. 8) such
that

ea

ipse

y
—ca+i py

d4g e 2a+2ipd4g —d4g 2a 2ipd—4g—

a e -+ a ,a„ e -'pa„, a„ e'pa„

(2.19)

under (2.10) and (2.11).
To compute amplitudes corresponding to the La-

grangian (2.18), one needs the free propagator for

1 r 1 1=

f de'e'=), . . . .

It is not difficult to verify that (2.18) is an invariant
with respect to the residual symmetry of the light-
cone gauge expressed in formulas (2.10)—(2.12). In
particular, we have

where p=(x, g, g), we know that the functions
I (pi, . . . , (ME,g) are dimensionless. They are associ-
ated with connected, one-line irreducible super-
graphs with E external lines, and it is not difficult to
set up Feynman rules for them. If naive power
counting can be trusted —and we shall assume that it
can—then only logarithmic divergences are to be ex-
pected. However, a more detailed examination of
the three- and four-point vertices to which the exter-
nal lines are attached shows that the true situation is
better than this. The main point of Mandelstam's
argument is that the external-line wave functions
P(pi) necessarily have at least one derivative, D,
D, or 8„, acting on each of them. In other words,
the dimensionless coefficient functions I (pi, . . . ,
pE ) are in fact given as derivatives of functions with
negative dimensionality and so are superficially con-
vergent. This means that there can be no ultraviolet
infinities at any order. The proof depends on the
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detailed structure of the vertices implied by (2.18).
We consider the three- and four-point vertices in
turn.

The three-point vertex is associated with the ac-
tion tel xli

The reduction to chiral forixi is achieved here by
means of the reality condition DiD2D3D4$ =a
Consider an infinitesimal variation of P and write

5Sq= f d x d 858.d~(x, e)+H. c. ,

S,= —,'g )| d'xd4ed'e— 1
Q.QXag+H. c. where J3 is chiral (but not real),

J = — lg[a ((Ij) xa„y)+a y x a„y+a„(a y xy)]
——ig X . &( .C. (3.2) = —ig[a (pxaQ)+a„-(a pxp)] . (3.3)

The latter identity results from the antisymmetry of the vector product. Now, an external line which attaches
to a three-point vertex couples to the operator J3. This effective coupling therefore takes the forni

~i'd4xd'88 '(~'e") z,, (~e) ,((( f=d'xd'8(a 8'*'dxa„8+a„e*'5 dxe), (3.4)

and one sees that one power of a or a„ is associated with each such external line.
At four-point vertices the situation is more complicated. From the action term

2

s, = — f d'xd'ed'8 (exa 8) (pxa 8)+ , exd dxe— (3.5)

one obtains the variation

5S,= f d'~d'ed'e(58 u+58 8),

where

u= — a yx, (yxa y)+a yx ' (yxa y) —yx(yxy)2 a 2 (3.6)

However, the variations 5P and 5P are not indepen-
dent. In order to get 5S4 into its most useful form,
write

X 'Q = X
2

'0

This appears to be singular. In order to show that
this singularity is harniless we reverse the order of
(D) and (D ), using the anticommutator
I D,D I = i a Sch—ematic. ally,

D 4
= f d4xd ed 85$ 2 u

(D) (D) (D)'(D)'
J4 —— u+ . u+

la
(3.9)

d4 d4858 (D) (D)
2

It follows that the effective coupling of an external
line to a four-point vertex can be expressed in the
orm

where the ternis indicated by dots are regular at
a =0. Inserting (3.9) into (3.7) and integrating by
parts, with respect to e, gives

4 4,„t (D) (D) (D)'(D)'
X u+ . u+

l

X X~ '
4 X~ + .C.

where the chiral operator J4 is given by

(D) (D)
2

(3.7)

(3.8)

4 4 ext. g4 —+D ext. 3 —+. . .

(3.10)

We have used the fact that the external-line wave
function must satisfy the reality condition
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(D) P'"'=a P'"'. In (3.10) the second term exhi-
bits one D acting on the external wave function.
Successive terms, not shown explicitly, would have
more powers of D {or a ). Only the first term is

potentially dangerous in that it might lead to loga-
rithmic divergences. To show that this does not
happen, we must examine the structure of (D)~u.
From (3.6),

, (D)'u =(D)' a yx ', (pxa y)+a yx, (|t xa y) —px(exp)

=a 'yx, (pxa p)+a a 'px, (pxa p) —yx(a 'exp)

=a 2a 'yx ', (yxa y) —a 'yx ' (yxa y) —yx(a 'pxy)

=a 2a 'yx ', (yxa y) —a yx ' (yxa y) +a yx(yxa y) —yx(a 'exp)

=a 2a 'yx ', (yxa y) —a yx ' (yxa y)+yx(yx y)

Hence one power of a comes out to act on P'"' in (3.10). The claim is therefore proved: Every external line is
associated with at least one derivative, a„or D. All vertex functions are superficially convergent and the
theory must be ultraviolet finite.

IV. MASS TERMS

Our purpose is to break the extended supersymmetry by introducing masses for the spinor and scalar com-
ponents. Of these the more problematical are the spinor masses because, in the light-cone gauge, they induce
new interaction terms. (It will turn out that new scalar interactions are implied as well, but their foriii will be
fixed by the finiteness requirement. ) In order to discover the new ferrmionic interactions it is necessary only to
introduce the mass terin in Lorentz-invariant component form, and then to eliminate unphysical components
as in Sec. II. The new interactions can then be seen as necessary for on-shell Lorentz invariance.

To the Lagrangian (2.1) we add the mass term

——,M Pg C '@p+H.c. , 4

where M p is a symmetric matrix. It then follows that the equation of constraint (2.8) must be replaced by

1

la iV„X M——pXP+gH pxXPV'2 (4.2)

When the unphysical components g are eliminated from (2.1) the following mass-dependent terms appear:

M rMrpXp. . X + ~2g . X .M p HprxX'+i&„XXg +H c.
la

(4.3)

To show that these tei-iris are compatible with ultraviolet convergence, it is natural to look for a superfield
expression of them so that the BLN forriialism, with these additions, can be used as in Sec. III. Our strategy is
then to examine the component structure of some terrms which are bilinear and trilinear in P and which contain
explicit 0 dependence. These terms, which explicitly break the N =4 supersymmetry [and the global SU(4)]
will be chosen so as to include ferriiionic pieces like (4.3). In addition, we must ensure that no vector mass
terms are implied and that the scalar masses and interactions are compatible with a stable, non-negative poten-
tial. If the form (4.3) is respected, and if there is no vector mass teiiii, then we can be sure that we are dealing
with a Lorentz-invariant and gauge-invariant theory. The finiteness question requires the use of light-cone
gauges but, once this has been settled, there should be no obstacle to using any other kind of gauge.

Consider the bilinear ter ill
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)I'd xd ed'e e'e, e'ecD, e D'8 =f d a X. X, +Xc Xc H—H, H —H„.
18 18 lB

(4 4)

Notice that it makes no contribution to the vector mass and that it is symmetric under the interchange 1= =2
(the scalar components are of course self-dual, H41 H——, H31 —— H—, etc.). This suggests that a suitable can-
didate for the mass teliiis would be

Sara= f d a d 8d 8g , a ae—89898Dae D 8, (4.5)

where a ~ is a symmetric matrix with vanishing diagonal elements. It yields the following masses:

M (A)=0,
M (X1 ) + 12 ++ 13 ++ 14

2

(X2) 1221 +1223 +ii 24
2

M (X3)=a31+a32+a34,3

M (X4)=a41+a42+a43,2

M (H14) +12++13++42++432

M (H24) +23++21+a43++412

M (H34) a31++32+~41++42 .

(4.6)

The six parameters a ~ are independent. Among the eight masses we have, in addition to M (A) =0, the rela-
tion'

M (Xi)+M (X2)+M (X3)+M (X4)=M (H14)+M (H24)+M (H34) .
More general mass terins could be imagined, but we have not pursued the matter further.

To obtain the interaction terms of (4.3) consider the trilinear expression

(4.7)

X 4
' )( = — X

1
X4 (H4 XX +iA„XX4) H, 4 H24 XH34—

Since our feflllion mass matrix is diagonal, according to (4.6), we can take

M" =Mi (a)=(a12+a13+a14)1/2

etc. It then becomes clear that the interaction part of (4.3) is contained in the trilinear teiin

Sa3 8 f d ad ed 8+M, (a)8 a,e eX 8+H.c.

(4.8)

(4.9)

(4.10)

which must be added, together with (4.5), to the BLN action (2.18). Note that (4.10) includes interactions
among the scalar fields as shown in (4.8).

To summarize, the total action is given by

S= f d ad ed () —,e, e+ —,g 8 (eXe„-8)+H.c.

(PXB P) (PXd P)+ , PxP-PxP—
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where a~p is a real, symmetric matrix and M~(a) is given by (4.9). The expression (4.11) is the foiiri taken in
the light-cone gauge by the manifestly gauge-invariant and Lorentz-invariant action

x —~Fp~ — l ~+ ~ p
'

p ~p

(H ~ f XC 'itip+H. c. ) ——, gM (a)(g C 'iti +H.c. ) —V(h)
2

where V(H) is given by

V(H) ™(H14)I Hi4 I
'+M'(H24)

I
H24 I

'+M'(H34)
I
H341'

g QM~(a)e ~~ Hp 'Hy~Hg~+H. c.+ H ~XH~ H~pXHrs

(4.12)

(4.13)

It is not immediately clear that the potential
(4.13) is an acceptable one. In view of the well-
known property of the original symmetric theory,
that its (purely quartic) potential vanishes in certain
directions (in the space of H~p), one might suspect
that the presence of cubic tei-ins in (4.13) would
cause it to be unbounded below. To settle this doubt
it is useful to express V in teriiis of three indepen-
dent complex scalars,

41=Hi4 42=H24 03=H34 ~

The potential now reads

(4.14)

The quartic teirii vanishes if and only if

p, X$, =0, p, XQJ =0, i,j=1,2, 3; (4.16)

otherwise it is positive. However, if (4.16) is satis-

V™,4'
I 0, I

'+M„'
I 6 I

'+M„'
+~~g( M141 4'2 X03+M24'1 )5'2 X4'3+M341 02

X$3+M4p*, .pz X$3+H.c. )

+g'g(P; XP, P;*X/,*+/; XP,
* P;'XP, ) .

(4.15)

fied, it is clear that the cubic teriiis in (4.15) also
vanish so that the potential reduces to its quadratic
part in these directions. Stability is therefore en-
sured if the three masses M14, M24, and M34 are
positive. This would seem to rule out the possibility
of spontaneously breaking the gauge symmetry, but
radiative corrections could alter the picture. '

Finally, we come to the question of finiteness. As
in Sec. III, we use the dimensional argument. In-
tegrals which are ultraviolet convergent by virtue of
the structure of vertices to which external lines are
attached will clearly remain convergent when masses
are introduced into the propagators. However, there
are new mass-dependent vertices to be considered.
These are characterized by the last term in (4.11)

gfdxdede+I (a'leD eex

(4.17)

With this interaction it can happen that 1/8 acts
on an external-line wave function, thereby raising
the superficial degree of divergence of the associated
graph. Such a potentially dangerous contribution
can be rearranged as follows:

g f d~xd ed eggg (a)e D e ex e'*'= g f d xd'ed'eg 'e'*' e exd
M~(a)D~

(4.18)

on integrating by parts with respect to 8 . Now the
operator M D /g3 which acts on the external wave
function has dimension + —,. This means that the
vertex is not dangerous: The convergence argu-
ments of Sec. III therefore apply also to the broken
theory. Off-shell amplitudes are ultraviolet conver-

gent in the light-cone gauge.
The Lagrangian (4.11) has no unbroken supersym-

metry: All four 8's appear explicitly. It is evident
though that N =1 supersymmetry can be recovered
by removing some of the mass-dependent tei-iris.
Thus, for example, the explicit dependence on 81
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and 8' is removed by taking

a12 a13 14

There results an N = 1 supersymmetric" theory
with the following multiplets:

(A,Xi), M =0,
(X2,H34), M =a33+a24,2

(X3 H34), M =a32+a34,2

(X4,Hi4), M =a4z+a43 .2

By eliminating 82 as well, i.e., taking

a23 =a24 =0,
one obtains N =2 theory with the multiplets

(A,Xi,X3,H34), M =0,
(X3,X4,Hi4, H34), M =a 34 .

V. DISCUSSION

We conclude that, barring technical difficulties
with the light-cone gauge, the explicitly broken
N =4 super Yang-Mills theory is ultraviolet finite.
The technical questions are not trivial, of course.
The presence of a nonlocal operator 1/8 could
perhaps give rise to unacceptable singularities in
physical amplitudes. We have nothing to say about
this. It can also be argued that operator ordering
problems might render higher-loop calculations am-
biguous. But if we suppose that all such problems
can be overcome, then we appear to have a nontrivi-
al four-dimensional theory which is free of ultravio-
let singularities.

The infrared behavior, though simplified by the
introduction of mass teriiis, is not trivial. Since our
potential has a stable minimum which preserves the
local symmetry, the theory has massless non-
Abelian vectors, like QCD. Perhaps the usual con-
fining mechanism would operate here as well. How-
ever, it must be emphasized that we do not have a
"running" coupling constant, in the usual sense.
The bare coupling constant of this theory should be
thought of as an observable quantity since one must

be able to express physical amplitudes in terras of it,
in a cutoff-independent way. (It may be worth
pointing out that the particular type of regulariza-
tion employed in any calculation is not important
now since there will never be a need to separate
divergent parts and cancel them with countertelins. )
Of course it is possible, and perhaps desirable, to re-
place the bare coupling constant with some "effec-
tive" parameter which relates more directly to ob-
servable quantities. The magnitude of such an effec-
tive parameter would of course depend on the ener-

gy scale E, used in defining it. However, it would
presumably not vary as (lnE)

Can such a theory be fundamental? At present
there are too many arbitrary parameters, and we
have no prescription for choosing them. It is tempt-
ing to speculate that the mass ternls are on the
Planck scale and that an appropriate choice of them
would cause this theory to generate massless
helicity-2 bound states, the graviton, and that the
Einstein theory (or even a composite supergravity
theory) will emerge as an effective field theory of
the low-energy sector. (For example, one might
hope that calculations of the Adler-Zee' ' type
could be carried out here. That is, it might be possi-
ble to compute G& unambiguously in terms of M.)

To conclude, the N =4 extended supersymmetry
theory softly broken by the addition of mass-
containing terms now appears even more of a re-
markable mathematical construction. This is
perhaps the only known ultraviolet-finite field
theory with inbuilt mass scales. To explore its im-
plications is a challenge that should not be over-
looked.

After this paper had been prepared for publica-
tion we received a report by Brink, Lindgren, and
Nilsson' which gives an alternative proof of finite-
ness, using their foiinalism, when no masses are in-
cluded.

Note added. We have futher examined the ques-
tion of spontaneous internal-symmetry breaking re-
ferred to at the end of Sec. IV.

We find that the potential (4.15) does have a non-
trivial minimum at which local symmetries are bro-
ken. To see this in simple teriris we take the six
parameters a ti to be equal so that

2 1 2 1 2 1 2 1 2 1 2 1 2
—,M = —,M = —,M =—,M = 4M =—M = —„M =a1 3 2 3 3 3 4 4 14 4 24 4 34

For the case of gauge SU(2) it is then easy to show that the point

0 0
0, Pq u, P3

————0
0 0



1490 M. A. NAMAZIE, ABDUS SALAM, AND J. STRATHDEE

with u = —(V 3+ 1)V a /g, is a local minimum.
Since the three vectors are mutually orthogonal, it is clear that the gauge symmetry is completely broken. It

would therefore seem that this model has no massless states and is thus both infrared and ultraviolet finite.
With larger gauge symmetries the range of possible symmetry-breaking patterns is larger and needs to be ex-

amined.
Another simple case can be analyzed without difficulty. Taking a i2 ——a i3 ——a i&

——0 so that N = 1 supersym-
metry is preserved, the potential reduces to the form

V=
~
Mi4rtpi+~&gpz X/3

~

'+
~
M24$2+~&gp3X$$

2

+
I M3443+~&gy, xyz I

+
l 4i Xd i+Wz X%2+43 X031

This potential has an absolute minimum (V=O) (M2gM34 )
'/ (M34M ig )

'

where

0
0 ~ $2= uz, p3 —— 0
0 0 Q3

Q3 =—(M i4M24)
'

The local SU(2) is again completely broken and the spectrum is free of massless states.
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