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Self-dual gauge field, its quantum fluctuations, and interacting fermions
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The quantum fluctuations about a self-dual background field in SU(2} are computed. The back-
ground field consists of parallel and equal uniform chromomagnetic and chromoelectric fields.
Determination of the gluon fluctuations about this field yields zero modes, which are naturally regu-
larized by the introduction of massless fermions. This regularization makes the integrals over all
fluctuations convergent, and allows a simple computation of the vacuum energy which is shown to
be lower than the energy of the configuration of zero field strength. The regularization of the zero
modes also facilitates the introduction of heavy test charges which can interact with the classical
background field and also exchange virtual quanta. The formalism for introducing these heavy test
charges could be a good starting point for investigating the relevant physics of the self-dual back-
ground field beyond the classical level.

I. INTRODUCTION

1

+Pv —2 ~PYIX+cItt (1.2)

with F&„a constant matrix. In distinction to the uniform
constant chromomagnetic 'field of the Copenhagen solu-
tion, the field strength of Eq. (1.1) corresponds to uniform
constant parallel chrom oelectric and chromomagnetic
fields, due to the requirement of self-duality. This re-
quirement is sufficient to ensure stability against localized

Non-Abelian gauge field theories are known to admit
nontrivial solutions to the classical equations of motion.
These field configurations are potentially of great interest
in determining the vacuum structure of the underlying
field theory. To be of physical relevance, these solutions
should have lower energy density than the trivial perturba-
tive ground state of vanishing field strength, and they
should also be stable against quantum fluctuations corre-
sponding to local deformations of the vacuum field.
Indeed, many authors have considered field configurations
of lower energy than the naive perturbative ground state
for one such theory, quantum chromodynamics (QCD). '

These configurations then serve as a starting point for
models of the QCD vacuum.

One of the simplest examples of this type of field con-
figuration which has lower vacuum energy is a pure uni-
form chromomagnetic field. The drawback to this solu-
tion is that it is unstable against quantum fluctuations.
However, it seems possible to obtain a stabilized ground
state by introducing a complicated domain structure of
randomly oriented chromomagnetic fields, which elim-
inates the long-wavelength destabilizing eigenmode. This
forms the basis of what is commonly called the
"Copenhagen vacuum. "

Another example of a field configuration with lowered
vacuum energy has been considered by Leutwyler for an
SU(2) gauge theory. It consists of a constant (anti) self-
dual Abelian vacuum field given by the vector potential

deformations of the given field configuration, and this is
explicitly shown in Leutwyler's one-loop calculation. The
major difficulty in this beautiful calculation is the ex-
istence of zero-energy modes which greatly complicates
the analysis. In this work, we will introduce massless fer-
mions to the former analysis and show that the fermions
succeed in damping the zero modes by giving them an ef-
fective mass, and simplifying certain aspects of the calcu-
lation. The result is that once the zero modes have been
lifted, all quantum fluctuations about the field of Eq. (1.1)
become easily integrable to one loop. This also allows
simplified expressions for quantum field propagators, and
may lend itself more easily to further investigation of the
physical implications of this self-dual vacuum field.

In Sec. II of this paper we will establish our notation
and begin the computation of the effective Lagrangian
generated by the gluon fluctuations about the self-dual
solution of Eq. (1.1). We will proceed up to the point
where the fermions are needed to damp the zero modes.
In Sec. III, it is explicitly shown how the fermions damp
the zero modes, and the magnitude of the effective mass
generated for the zero modes is computed to one loop in
the fermion fields. Section IV contains the completion of
the computation of the effective Lagrangian generated by
the gluon fluctuations begun in Sec. II, utilizing the stabil-
ization of the zero modes. In Sec. V it is shown how very
heavy quarks would be included in the Lagrangian, and ef-
fective interactions induced as the light degrees of freedom
are integrated out. This gives a formalism of "test
charges" in the theory that will be useful in determining
the physical implications of this self-dual vacuum field
configuration. Finally, in Sec. VI we summarize and
make some concluding remarks.

II. GLUON FLUCTUATIONS
ABOUT THE CLASSICAL FIELD

For simplicity we will restrict ourselves to the gauge
theory of SU(2). The analysis of the vacuum fluctuations
will be carried out in Euclidean space, recalling that the
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WE ———4' Fp (2.3a)

Euclidean functional integral is a legitimate representation
of physical amplitudes defined in Minkowski space. The
schematic correspondence is

(A'ie iA)=Nf [&A]e e, (2.1)

where all quantities on the left side are defined in physical
space, with

~

3 ) a gauge field configuration at t =0 in the
Schrodinger representation, and H the Hamiltonian. The
right-hand side involves an integral over unphysical Eu-
clidean field configurations with the proper boundary con-
ditions 3 (t =0)=A and 2 (t = T)=A'. The Euclidean ac-
tion is SE and X is a normalization constant. Our concern
will be the use of.&he Euclidean functional integral,

Z~=N f [&A]exp fd x W~

—:N'exp fd x W~ (2.2)

to compute the effective Lagrangian WE generated by
vacuum fluctuations about a classical field configuration.
The Lagrangian for the pure SU(2) theory is given by

with

g~bg ~b~g &

P P P (2.5)

As stated in the Introduction, the field configuration of
interest that satisfies Eq. (2.4) is explicitly given by

(2.6a)

with the imposed self-duality condition

(2.6b)

This corresponds to space-time constant parallel chro-
momagnetic and chromoelectric fields. A space-time
coordinate rotation aligns the fields in the z direction, cor-
responding to the specific form

Fo3 ——F&2 ——8, all other F&,——0 (2.7)

with 8 the constant field strength of, as yet, arbitrary
magnitude.

The functional integral will be analyzed in the region of
the field configuration A&. The fields will be param-
etrized as

with Aq(x) =A p(x)+bp(x). , (2.8)

(2.3b)

The classical equations of motion generated by this La-
grangian are

(2.4)

and the Lagrangian can be expanded in powers of the
small fluctuation bz. With this parametrization for the
fields, and introducing a background gauge-fixing term
with the associated Faddeev-Popov determinant AFp, the
Euclidean functional integral becomes

Z~ N f [u——b]~i;,e p fd"xI —'F„'g„'„+,'—b„[p„„(D—D ), (D„D ), —2g&~'F" ]b

+ ,' ab„'(DpD„)"—b'+0 (b ) I (2.9)

where "barred" terms depend only upon the background field. Choosing the gauge parameter to be a= 1, and rewriting
the appropriate Faddeev-Popov term yields

ZE ——X b exp d x ——,F„'
@ + —,b&O&' '+lnDet —D D +0 b (2.10a)

with

(2.10b)
& exp — ~ & hump v

The one-loop approximation will be used in computing the
effective Lagrangian from Eq. (2.10). This corresponds to
retaining only the terms quadratic in b& in the exponent.
In order for the one-loop computation to make sense,

fd x 'b( )xB P~'„( )x(0 . (2.11)

=Det '~ Mp'„——exp( ——, Tr lnM'„' ) .

Using Eq. (2.2) yields the effective Lagrangian

+Trln( DD )'—
(2.12)

(2.13)
If this is not the case, the background field A & is unstable
against quantum fluctuations in the one-loop approxima-
tion.

Formally, the integration over the b& fields can be done
using B~P', =Lb„' . (2.14)

The traces can be most easily evaluated by determining the
eigenvalues of the operators —6& and —D D and sum-
ming. The eigenvalue equation to solve is
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V b =Lb„, (2.15a)

From the explicit form of A & from Eqs. (2.6) and (2.7), it
follows that the eigenvalue equation for b& does not con-
tain the background field, and becomes

(D D )scabs Qpn

yielding the eigenvalue spectrum

A, =2gB(n +m +1) .

(2.21a)

(2.21b)

with solution

b~=EQ ~, A, = —p (0 . (2.15b)

Now, knowledge of the normal mode spectrum allows
the evaluation of WB from Eq. (2.13) using the identity

The eigenvalue equations for the eigenmodes in the
color directions orthogonal to the 3-direction are

5)s V — +igx~F d~ +2igF „b„=gb

(2.16)

where b& bz+ib——& The .equation is further diagonalized
by considering the following linear combinations of
Lorentz indices, b 0+; 3

——b 0 +ib 3, giving

V — +igx~F~~B~+2gB b Q+j 3 —Xb 0+j3
gBx

(2.17a)

V — +'g F 8 +2gB b];2 ——A,bi2 gBx

(2.17b)

Complex-conjugate equations exist for b&+ The.se equa-
tions can be easily solved by the following procedure. De-
fine the operators

lna = — e (2.22)

—2gB(n+m +1)s) (2.23)

where c is determined from the eigenmode normalization
when taking the trace, and c =g 8 /4' as shown in the
Appendix. This expression for WB appears divergent for
s~0, but this is the normal ultraviolet singularity re-
moved by standard renormalization, as will be shown in
Sec. IV. The divergence that does need further considera-
tion is the infrared singularity as s —+ oo when n =m =0.
The origin of this problem is the existence of zero modes
of the operator e&„, and the lack of damping for the
Gaussian integrations in these directions of field space.
Our solution to this problem will be to show that the in-
troduction of massless fermions gives these zero modes an
effective mass term, making the integrations of Eq. (2.23)
well behaved.

Ignoring constant terms that do not depend upon the
background field,

eff & a a= —4Fpgp,

+2c
~ ds

( e 2gB(n+m)—s+ 2gB(n—+m+2)s
s m, n =0

ap ——Bp+ Bxp, a ~
———Bp.+ Bxpg

and form the linear combinations

C—:a 0+ia 3, C —=aQ —ia3

D =—ai+ia2, D=—a& —ia2

which satisfy the commutation relations

[C,D ]=[C,D]=[C,D]=0,
[C,C )=[D,D ]=2gB .

(2.18a)

(2.18b)

(2.18c)

III. MASSLESS QUARKS
AND THE GLUON ZERO MODES

Massless quarks in the fundamental representation of
SU(2) can be introduced into our previous analysis at a
point just before the integrations over the small gluon
fluctuations b& were begun. The integrand of the Euclide-
an functional integral of Eq. (2.10) changes by a multipli-
cative factor

Zg" '= f [&g][Q'g]exp fd x g(iQ gg gb()P— —

The eigenvalue equation (2.17) can be rewritten as

[—(C C+D D) 2gB+2gB]b()—+;3 ——Ab()~;3 . (2.19)

The commutation relations quickly yield the following
eigenvalue spectrum:

with

2

(3.1)

(3.2)

bo+'3, A, = 2gB(n +m +2)—
bo;3 A, = 2gB(n+. m), —

bi+,.2.. A, = —2gB(n+m +2),
b, ;2. A, = —2gB(n+m),

(2.20)

The cr matrices are the usual Pauli matrices of SU(2) and
the Euclidean y matrices have the convention

(3.3)

The integration over the quark fields of Eq. (3.1) can for-
mally be done yielding

for n, m =0, 1,2, . . . , and similar expressions for b~.
Identical analysis goes through for the operator DD, —
with the eigenvalue equation

Zg""'=Det(ig —gA —gl)
=exp{Tr[ln(i()) —gA —gb')] I . (3.4)



1428 CURT A. FLORY 28

This constitutes a contribution to the effective Lagrangian
of Eq. (2.13), which will be denoted as

b,Wz ——Tr[ln(ig gg —gP)] . (3.5)

The logarithm can be expanded in the small field b& to
quadratic order, in keeping with the one-loop approxima-
tion of Sec. II. Using the notation i@=i 0 gj—,

am'"= Tr[ln(ig)]+g Tr .—y

r

1 —Xs 1+y5
SQ(x,y) = iP„().(x,y)

2
+&(x,y)i'

S& (x,y) =b, (x,y)

The function h(x, y) is defined as

(3.8c)

(3.8d)

2
g Tr
2

0 +O(b') .
ig— —ig

(3.6)

k(x,y)=(x, yl, (3.9a)

which has the simple representation for the field A
&

of

The first term is the usual fermionic one-loop contribution
to the vacuum polarization which will not be included
here. The second term can easily be shown to give a van-
ishing contribution by using the short-distance form of the
fermion propagator, while the third term is the source of
the gluon zero-mode mass term. Keeping only this term
in b, WE and writing everything in coordinate space, the
contribution to the effective action becomes

—g8(x —y) /8
b, (x,y) = exp

4 (x —y)

l CT3gFpX~ p
4

(3.9b)

8 C

Mz' (x,y) = ——,
' Tr y„SQ(x,y))y„SQ(y, x)

2

Simple Dirac algebra involving the chiral projectors in the
m —+0 limit yields

~~rr=g' fb'„(x)M„"„(x,y)b'„(y) d x d y,
where

(3.7a) 0 C——, Tr y„S &(x,y)y„S&(y,x)V

a C

M„"„(x,y) = ——,
' Tr y„S(x,y)y, S(y,x)

2

a ~C——, Tr y& S~(x,y)y„S ~(y,x) . (3.10)"2 '
2

(3.7b)

and

1S (x,y) = (x
— y ) (3.7c)

(3.8a)

with

is the fermion propagator in the background field 3 &.
Equation (3.7b) can be quickly evaluated if the fermion
propagators are known. There is a technology for deter-
mining fermion propagators in background self-dual fields
that was developed by Brown et al. originally for use in
instanton calculations. Since 3 & is also a self-dual field,
the formalism can be carried over directly.

There is one complication to this procedure which is
easily ameliorated. The fermion propagator in a self-dual
field contains zero modes, making the naive expressions ill
defined. However, we can temporarily introduce a small
fermion mass term m to regulate the zero modes, and
show that in the end, due to the chirality structure of the
propagator our result is finite and independent of m in the
m ~0 limit.

Brown et al. derive a Laurent series in m for the fer-
mion propagator of which the first few terms are

S(x,y)= S &(x,y)+SQ(x,y)+mS~(x, y)+O(m )
1 2

CP(x) =0, D()I)(x)=0,
which leads immediately to the solution

y(x) =me-&'"'",

(3.12)

(3.13)

where N is a normalization constant. Using the fact that
P(x) is even in x, and that M&' (x,y) will only be needed in
the integrated form of Eq. (3.7a), allows one to average
M„"„(x,y) over the coordinates x and y at any stage in the
calculation. This greatly reduces the available tensor
forms for M&' (x,y) and we have the simple representation

Mz'(x, y) = " T, (x,y)+ " Tq(x,y), (3.14)
4 ' 4a'

Note that this expression is independent of m as previous-
ly stated.

Equation (3.10) could be evaluated in a straightforward
fashion using Eqs. (3.8) and (3.9). However, by making a
brief digression into the form of the gluon zero modes
which are contracted with M&'„(x,y), and then looking at
the symmetries of the integrations over x and y, the ex-
pressions to evaluate become much simpler. The equation
for the gluon zero modes, generically denoted by P(x)
(representing bQ (3 b] (p bQ++(3 or b&++, 3), is gotten
from Eq. (2.19),

(C C+D D)P(x)=0 . (3.11)

The solution is easily determined by demanding

S &(x,y) =[5 (x —y) —Q„b,(x,y)Q„] (3.8b)

where T& and Tz can be calculated by doing the appropri-
ate tensor projections of Mz' and doing the suitable coor-
dinate averages. Straightforward calculation yields
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3 2B2 2

M„"„(x,y)= "'5 (e) —+gB+g 8 e 5,35,3+ —"—b, (e) —2+gB+ cos(gF &e R&)(5,(5„+5,25, 2)2 2 2

FPv 2 3g B e+ b, (~) gB+ cos(gF &e R&)e3„,2B 2
(3.15)

where

and

—gBe /2
&(~)=

(4m@)
(3.16a)

u,gB
b, A, =b.A, (8)—)s),A,(0)=-

16m.
(3.19)

fermions in the background field. This eliminates the 8-
independent singularity for e~O, and yields the finite re-
sult

(x —y)„(x+y)„e„=
2 2

(3.16b)

Equations (3.7a), (3.13), and (3.15) can now be used to
compute the corrections to the gluon-zero-mode eigen-
value AA, due to the massless fermions. Denoting the
gluon zero modes by [bz(x)]

g fd x d y [b'„( )x]™M„"„(xy)[b', (y)]'

fd x[b&(x)] [b&(x)]'

(3.17)

which can be reduced to
r—2gBe

', fd'e', +2gB+—3g28'e'
Sm E'

(3.18)

From this we must subtract the value of the eigenvalue
one obtains for 8 =0 to get the contribution due to the

I

As previously claimed, this is a nonzero stabilizing con-
tribution to the gluon zero modes, and must be added to
the zero-mode eigenvalue of Eq. (2.20). All the integra-
tions of Eq. (2.23) necessary to compute WB become well
defined due to the "lifting" of the zero modes, and these
integrations will be done in the next section.

IV. DETERMINATION OF W'

Including massless quarks in the preceding analysis has
generated a contribution to the zero eigenvalue of the
gluon zero modes of Sec. II. Specifically, for the eigen-
values of the n =m =0 modes for bQ '3 b] '2 bQ+'3,
and b i++;2 of Eq. (2.20), the eigenvalue changes from zero
to ( asgB/16') —due to the fermionic interactions. As a
result, the expression for Wz in Eq. (2.23) must be al-
tered by subtracting off the term corresponding to the ill-
defined uncorrected zero mode, and adding the well-
defined corrected term. Equation (2.23) becomes

B ~djeff 82+ g f S g (e 2gBs(n+m)+e2gBs(n+—m+2) 2gBs(n+m—+1))
n, m =0

gB f ds gB ds &gB
+ exp —s

s 2~2 o s 16m
(4.1)

Using the simple identity

00

(1—x)
= g (x)" for x & 1 (4.2)

~
I
B=Q=O

aw
~1/2 2=P

(4.4a)

(4.4b)

gives the following expression for Wz ..

jeff 82 g 8 ds2 2

2m

1

4 sinh2(gBs )

asg+ exp —s
16m.

(4.3)

This expression must be renormalized in the usual way,
and we choose the renormalization conditions of Coleman
and Weinberg. The conditions on the renormalized La-
grangian W are

where P = ,'F&g& B. T—he condit——ion of Eq. (4.4a)
merely corresponds to demanding that the energy density
in the absence of background fields is zero. Condition
(4.4b) is dependent upon the fact that we worked in back-
ground gauge. ' In these gauges the gluon-wave-function
and vertex-function renormalizations are equal and cancel-
ing, leading to a simple overall renormalization of the ac-
tion. The counterterm has the universal form of ZS,),»,„(,
with Z being independent of the choice of gauge function.
As a result, the usual renormalization conditions can be
expressed by means of the function W only, as in Eq.
(4.4).
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The renormalized Lagrangian WE to be calculated iseff

thus

~ eff jeff g2 ~~
E E gB2

(4.5)

A straightforward computation of this finite expression
gives

11 B
24~

(4.6)

Correspondence with Eq. (2.1) gives the vacuum energy
density e:

11g Bg=8 + [1n(8/p ) ——,],
24m

(4 7)

which naively has an energy minimum away from the per-
turbative vacuum of B =0. This result agrees with the
computation of Leutwyler, and has the same caveats with
regards to interpretation as the true vacuum energy.
These caveats will be discussed in Sec. VI.

The simplification we have encountered in arriving at
Eq. (4.6) is that the gluon zero modes have been effectively
eliminated by introducing massless quarks. While this has

I

made the computation of Wz more straightforward, it
also facilitates further analysis of the physical ramifica-
tions of the background self-dual field. The lifting of the
zero modes has made the gluon propagator well defined in
a simple way. Consequently, heavy test charges (quarks)
can easily be introduced into the theory with well-defined
interactions, and the physical effects of the background
field can be determined beyond the classical dynamical
level of heavy quarks interacting with the background
field. We can now easily include how gauge quanta are
exchanged between the test charges, which is presumably a
crucial part of the dynamics in a confining field theory.
This incorporation of heavy quarks is the subject of the
next section.

V. INTRODUCTION OF TEST CHARGES

In order to better investigate the physics dictated by the
background field configuration of 3 &, we will introduce
test charges in the form of massive quarks. They can be
introduced as a multiplicative term in the integrand of the
functional integral of Eq. (2.10). Let us further proceed to
the point where the light fermions have been integrated
out, regularizing the gluon zero modes. The form of the
functional integral with the massive quarks included is

ZE N f [D——'b]exp fd x[ —,'Fzg z„+—,b„'Bz'„'b'—+O(b )+V(i9 gg gl—M—~)%+—Trl (nDD )]—, (S.l)

where 6&'„' is the operator of Eq. (2.10b) with the zero-mode eigenvalues corrected by the light-quark contribution. Since
the zero modes have been eliminated, e&" is an invertible operator. This allows the elimination of the term linear in b&
by shifting the gluon field,

(5.2)

The Jacobian of this transformation is unity, and the functional integral in terms of the shifted fields becomes
P

ZE N f [&b——]exp fd x —4F„'g „'„+,
' b„'6 „''„'b'„—+O(b')+Trln( DD )+%(i—Q gj M&)+— —

2

'Py~ 0'(8 p~ ) 0'y„ (5.3)

Now, the integration over the gluon fluctuations can be done to one loop as before, giving the effective Lagrangian of Eq.
(4.6) plus interaction terms for the massive quarks,

(5.4)

The computation of (e&'„') is straightforward but tedious. It is defined by the integral

(x
~
(e&„) ' ~y) = —lim f ds exp[s[5&„(D D )

' 2ge "'F& e]—I—
(5.5)

where e is used to regulate the original zero modes, which are then subtracted off and replaced by the proper expression
for the modes regulated by the fermionic generated term, A, =e,gB/16m. Using the expression for the transverse
a,c = 1,2 components,
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(x
~

exp(sD D ) ~y) = B
exp

,
4ir sinh(sB)

Fzpx~ pcoth(sB)+i (Fi) (F3) (5.6a)

which can be checked by verifying

exp(sD~D~ )
I y ~ =O

ds
(5.6b)

and also using the explicit expressions for [b&(x)]~ from Sec. III, we find Eq. (5.5) to be

(x
~

(6„'") '
~y) = — exp( gB—e )exp[i(F3)gF pe Rp]

16~

i ( Fi)Fq„
8

—exp(2gBe )Ei ( —2gBe ) —C —in(2gBe )

+ 5&„2+2exp(2gBe )Ei ( —2gBe ) (F3)—1 5,35,35„
gBe 16~'~'

(5.7)

In these expressions, (F3) is the SU(2) adjoint generator in
the three-direction, Ei (x) is the exponential integral, C is
Euler's constant, and e&

——(x —y)&/2, Rz=( x+y)z/2 as
before.

Given the closed form for (e&'„') ' of Eq. (5.7) and
of Eq. (5.4), the dynamics of heavy quarks in the

background field A & can be investigated beyond the purely
classical level. The first term in Eq. (5.4) corresponds to
the classical background field interacting with the heavy
quarks, and the second term allows the quarks to exchange
virtual quanta. It must also be noted that the usual naive
confinement criterion in terms of Wilson loops cannot be
employed in this formalism due to the inclusion of
dynamical fermions and their attendant screening effects.
With this caveat, this would be the starting point for in-
vestigating the background field with heavy test particles.

VI. SUMMARY AND CONCLUSIONS

The quantum fluctuations about a self-dual background
field in SU(2) have been computed. The background field
consists of parallel and equal uniform chromomagnetic
and chromoelectric fields. Determination of the gluon
flucutations about the background field yields zero modes,
which are found to be naturally regularized by the intro-
duction of massless fermions. This allows a simple com-
putation of the vacuum energy by making the one-loop in-

tegrals over all normal modes Gaussian and damped. It
also makes the gluon-fluctuation propagator well defined,
and facilitates the introduction of heavy test charges
which can interact with the background classical field and
also exchange virtual quanta.

The one-loop computation of the vacuum energy yields
the familiar expression

11 Be=B + [1n(8/p ) ——,
' ], (6.1)

24m

which agrees with the formal (but unstable) case of the
pure chromornagnetic field. The vacuum energy has a

I

minimum at nonzero 8 =p exp( —24m. /llg ); however,
this value of 8 is too small for the one-loop approximation
to be valid. It is well known from renormalization-group
analysis that the loop expansion for the effective Lagrang-
ian is only under control for strong fields, which corre-
sponds to the short-range behavior of gauge theories. "
However, the interesting existence of a minimum at
nonzero B can remain qualitatively valid beyond the one-
loop approximation provided the P-function goes to infini-
ty sufficiently fast for strong coupling. '

The physical significance of the field configuration is
difficult to ascertain, even with the previously mentioned
nice features. It is an extermely ordered state stable under
local deformations, but it is not clear that this stability
would not be overridden by phase space as large fluctua-
tions are incorporated. A manifestation of this extreme
ordering is the apparent breaking of Lorentz invariance
due to singling out a direction for the field. (The problem
of restoring this symmetry by averaging over field direc-
tions is under investigation, along with the attendant prob-
lem of violation of cluster decomposition for the unphysi-
cal gauge fields. )

Even with these caveats, the study of this field configu-
ration may yield insight into the vacuum structure of
QCD. The formalism for introducing heavy test charges
into the theory should be a good starting point for investi-
gating the relevant physics.
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APPENDIX

The normalization constant to be computed, c, that
occurs in Eq. (2.23) is defined by the relation
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Tr[exp(s 6&„)]= lim (x
~
exp(s6&„)

~ y )
x~y

=—cgexp( —sA, „),
m, n

gives

(
—6„"„Ib'„~I

CtC+DtD IP(x) =A/(x)

with

(A2)

where A, „are the eigenvalues of the operator —6pb. The
color and spin multiplicities of the eigenfunctions have al-
ready been incorporated in the main text, and here c must
be computed as the normalization of one eigenmode, with
careful attention paid to the remaining degeneracies.
Denoting the eigenfunctions generically as P(x), Eq. (2.19)

I

[C,C ]=[»D ]=2gB . (A3)

Given the above commutation relations and the form of
Eq. (A2), it is clear that the eigenfunctions can be cata-
loged by the quantum numbers of a two-dimensional har-
monic oscillator (n, m) Using this representation, Eq.
(Al) can be simplified using the completeness of states:

Tr[exp(s6„'"„)]=lim g (x
~

n'm')(n'm'
~
exp(s6&„)

~

nm )(nm ~y) =lim g(x
~

nm)(nm ~y)exp( —sA,„).
~ ~&nmn'm' &nm

Furthermore, the excited states can be written as raising operators acting on the ground state
~
0),

(C„)"(D„)
Tr[exp(s6&„)]= lim g (x

~

0) (0
~ y ) (D~ ) (C~ )"exp( —sA,„).

y „(2gB)"+ n im!

(A4)

(A5)

What must now be calculated is (x
~
0) (0

~ y ) which is nontrivial due to the eigenfunction degeneracy, as will be shown
below. The ground-state wave function is defined by

Pp(x) =—(x
~

0) Cgp(x) =Dip(x) =0
Solving Eq. (A6) using the differential forms of C and D yields

2

gB gB (x —z) igF&W„z„
Pp(x) —Pp(x;z) =

2m
exp — +

4 2

(A6)

(A7)

where (gB/2m)is go. tten from normalizing in x, and z„ is an arbitrary parameter, revealing the previously mentioned
eigenstate degeneracy. This degeneracy implies that a general solution can be formed from an arbitary linear combina-
tion of the solutions (A7),

Pp(x)= f$0(x;z)F(z)d z, (A8)

where F(z) is any function. This implies that Pp(x;z) can be interpreted as a projection operator onto the ground-state
sector of function space, provided it also satisfies the relation

$0(x;y) = fP (x0; )Pz(z0;y)d z . (A9)

This is easily verified using Eq. (A7). Thus we have shown

Pp(x;y) = (x
~

0) (0
~ y ),

which can be used in Eq. (A5). This yields

(C„)"(D„)
Tr[exp(s6&„)]=lim g Pp(x;y)(C~)"(D„) exp( —sA,„,„),

3 „~ (2gB)"+ n!m!

which becomes, after using the differential forms of C„and D„,

(A10)

(A 1 la)

[(xp+ix3) (y0+ y3)] [(xi+ x2) —(yi+iy2)]
Tr[exp(s6&„)]= lim g $0(x;y)(C~)"(D~) exp( —sX „) .

&nm 2"+ n fm!
(A 1 lb)

The only terms in this sum that do not vanish in this limit x ~y have the differential operators in Cz and Dz acting on
the terms (x —y), rather than $0(x;y). The simple derivatives give

2

Tr[exp(s6&„)]= lim ggp(x;y)exp( —sA,„)= +exp( —sA, „),
X~+ nm

and thus c = (gB/2m ) .
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