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A simple but rigorous solution of the infrared problem is obtained. The basis of this solution is a
factorization of the operator corresponding to the Feynman coordinate space plus all electromagnet-
ic corrections to it into a product of two operators. The first is a unitary operator that represents

precisely the contribution corresponding to classical electromagnetic theory. The second is a residual

operator that is free of infrared problems. This factorization is exact: no soft-photon approxima-
tion, or any other approximation, is used. Both the unitary operator and the residual operator are
expressed in simple forms amenable to rigorous mathematical analysis. The central technical result

of this work, namely the exact yet simple organization of all contributions corresponding to classical

physics into unitary factors, may have other important uses.

I. INTRODUCTION

The well-known "infrared catastrophe" in quantum
field theory consists of the following fact: the electromag-
netic corrections to the S matrix are represented by in-
tegrals whose contributions from very soft photons often
diverge. A way around this difficulty was indicated by
Block and Nordsieck, ' who showed, in some simple cases,
that these infrared-divergent contributions cancel out of
the expressions for the observable probabilities, provided
the nonobservability of very soft photons is taken into ac-
count. The Block-Nordsieck observation has been general-
ized in a series of works that have culminated in the cen-
tral work in this field, the paper of Yennie, Frautschi, and
Suura (YFS). These authors gave lengthy arguments to
support their contention that all of the infrared-divergent
contributions to the S matrix can be collected into ex-
ponential factors that cancel out of the expressions for ob-
servable probabilities. However, at the end of a technical
appendix to their paper YFS listed some of the difficulties
with their arguments, and concluded that a rigorous proof
of their conjecture would probably be prohibitively com-
plicated. The difficulties with the YFS arguments are
particularly serious when the S matrix is evaluated at a
singularity.

The YFS infrared separation was used by Chung to de-
fine an infrared-finite S matrix: infrared finiteness was
(presumably) achieved by incorporating the YFS infrared
factor into coherent initial or final states. This infrared-
finite S matrix was examined by Storrow, Kibble, and
Zwanziger, who found that the pole singularity normally
associated with a charged stable particle was converted by
the effects of soft photons to a nonpole form.

Such a change in the character of S-matrix singularities
could be as catastrophic as the infrared divergence itself,
for the character of singularities in momentum space
determines asymptotic behavior in coordinate space. ' In
particular, the pole singularity normally associated with
stable particles is the unique momentum-space singularity
that gives the inverse-cube-law falloff in spacetime that
physically characterizes stable particles. Consequently,
any modification of the pole character of singularities as-

sociated with charged particles would jeopardize the abili-
ty of the theory to accommodate stable charged particles.
This problem is the electrodynamic analog of the chromo-
dynamic problem of confinement.

This apparent disruption of the stability of charged par-
ticles has serious consequences. It causes the apparent
breakdown ' of the usual reduction formulas, which arise
directly from the factorization property of the pole singu-
larities normally associated with stable particles. Morever,
it upsets the connection between relativistic quantum
theory and the experimentally measured quantities. For
the basis of this connection is, again, the factorization
property of the pole singularities normally associated with
stable particles.

The difficulties arise from a breakdown of the YFS ar-
guments at singularities. One important YFS assumption
is that (e' —l) is of order k. For finite x this is true.
But singularities are controlled by asymptotic limits in
which x has passed to infinity. Thus the assumption is
not valid at singularities.

The purpose of this paper is to show how the infrared
problem can be solved exactly, with all terms retained and
compactly represented, by making essential use of coordi-
nate space. That coordinate space should be needed is not
surprising. It was recognized from the outset' that the in-
frared problem is essentially that of separating out the
contributions corresponding to an appropriate classical
electromagnetic radiation field. But classical fields are
described in coordinate space, and so are their sources.
Moreover, by saying in coordinate space one avoids in-
tegrations over the asymptotic spaceiime regions that are,
from the coordinate-space point of view, the source of the
infrared problem.

Examination of Storrow's calculation reveals clearly the
specific difficulty with the momentum-space approach.
To represent an appropriate classical contribution Stor-
row, following Chung, introduces a coherent state that
corresponds (for small k) to the classical electromagnetic
field radiated by a classical charged particle whose initial
and final velocities correspond to the momenta of the ini-
tial and final charge-particle states of the scattering ma-
trix. In momentum space no particular coordinate point is
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favored. Thus the point of intersection of the initial and
final classical trajectories is placed arbitrarily at the ori-
gin: certain factors e' are replaced by unity. This re-
placement is perhaps justifiable in certain situations, but
certainly not on the singularity surface p =no if the na-
ture of the singularity on this surface is the point at issue.
For this momentum-space singularity arises, via Fourier
transformation, from those asymptotic coordinate-space
regions that correspond to the physical possibility of a
one-charged-particle-exchange process in spacetime. It is
the asymptotic rate of falloff of this spacetime process
that determines the nature of the singularity. ' The elec-
tromagnetic field radiated by this classical one-charge-
particle-exchange process has two parts: it consists of the
(bremsstrahlung) radiation associated with the two
separate deflections of the charged particle. These two de-
flections occur in two different spacetime regions. The
overlap between this physically relevant radiation field
and the one used by Storrow, in which both source regions
are placed together at the origin, vanishes in the asymptot-
ic limit that determines the nature of the singularity.

To deal adequately with this situation it is necessary to
represent the sources of the electromagnetic field in coor-
dinate space. Then one can introduce those classical
fields, and the corresponding coherent states, whose space-
time source regions are at or at least near —the spacetime
points where the charged-particle deflections occur. The
radiation field must be tied in this way to the locations of
the particle deAections if one wishes to calculate the phys-
ical rate of falloff.

These considerations physically motivate the use of
coordinate space. But what allows the problem to be neat-
ly solved is the exceedingly simple way in which the clas-
sical and nonclassical contributions separate in coordinate
space.

Consider first a process involving no external charged
particles. Let D be a Feynman diagram involving n neu-
tral external particles, no initial or final charged particles,
no photons, and at least one external particle incident on
every vertex. Let E (x)=E (x i, . . . , x„) be the Feynman
coordinate-space function corresponding to D. Let L(x)
be the spacetime polygon(s) formed from the charged lines
of D The vertice. s of L (x) are placed at the points speci-
fied by x. Let F,~(x) be the (x-dependent) operator in
photon space that represents the sum of F (x) plus all
corrections to it represented by diagrams D' consisting of
D plus any number of photon lines, each connected at one
or both ends somewhere into the set of charged lines of D.
Then one principal result is that F,~(x) can be expressed
as follows:

F,p(x) = U(L(x))F,p,(x) .

Here U(L(x)) is a simple well-defined unitary operator in
the space of photons. Acting on the photon vacuum it
creates the coherent state that corresponds to the classical
electromagnetic field radiated by the charged particles
moving (in the manner of Feynman) around the spacetime
polygon(s) L (x).

The operator F,„,(x) is a residual operator that is free
of infrared problems. It is a sum of terms corresponding

to D and the various diagrams D'. Each term can be
transformed into momentum space with no infrared diver-
gence.

The basic formula (1.1) is obtained by separating each
photon interaction ( i—ey&) into its "classical" and "quan-
tum" parts by means of formula (2.3) of Sec. II. The uni-
tary operator U(L(x)) represents the contributions of all
"classical" photons. These are the photons that couple
into the lines of D only via classical couplings. The
remaining photons are called quantum photons. They
have a quantum coupling into a charged line of D on at
least one end. Their contributions, together with the origi-
nal function F (x), give F,z, ( x).

Taking the photon momentum-space matrix elements
and performing the Fourier transform x~q one obtains
the momentum-space function (k'

~

F,~„(q) ~

k"). In
momentum space the quantum coupling takes a very sim-
ple form. To exhibit this form let

p+m . p+lg'+m
p m+—iO " (p+k) —m +iO

This function represents part of the original Feynman
momentum-space function. Replacement of the original
coupling ( icy„—) by the quantum coupling replaces this
function G&(p, k) by

1

Gp(p, k) —f Gp(p+ak, O)da . (1.3)

This has one more power of k than G&(p, k). This extra
power of k eliminates the infrared divergences.

The plan of the paper is as follows. The basic formula
(1.1) is derived in Sec. II. It is a simple consequence of the
Ward identity. Some general features of this formula are
described in Sec. III. The main point is that the connec-
tion to physics involves transition amplitudes, and these
are expressed by folding the coordinate-space function

F,~,(x) directly into the coordinate-space wave functions
of the external particles of D. Thus one never introduces
the Fourier transform of the function F,~( ).xThe opera-
tor U(L(x)) is given a simple, closed form in coordinate
space, and is not tranformed to momentum space. The
function F,~„on the other hand, can be computed in
momentum space, and then transformed into coordinate
space.

The contribution to F,&, that arise from diagrams
D'&D are discussed in Ref. 9. This paper deals mainly
with U(L(x)}E (x). It is concerned with the contribu-
tions of the classical photons, which are the ones associat-
ed with the infrared divergences.

In Sec. IV the simple closed-loop triangle diagram D of
Fig. 1 is considered. It is shown that when the function
U(L(x))F (x) is folded into the external-particle wave
functions, in order to obtain physical scattering ampli-
tudes, the charged-particle loops are effectively confined
to finite spacetime regions, and that, consequently, there
are no infrared divergences in these closed-loop ampli-
tudes. This provides a rigorous starting point: these
closed-loop amplitudes are finite and well defined without
infrared cutoff or fictitious photon mass.



1388 HENRY P. STAPP 28

lim (A. ~ )A(AX) =cA]A2Ai,
A~00

(1.4)

with an appropriate constant c, defines the amplitudes A &,

32, and 3 3 associated with the three vertices of D

In Sec. V the coordinate-space procedure for obtaining
amplitudes with charged initial and final lines is discussed
in general terms. The procedure starts with processes in
which all charged particles are confined to closed loops.
Then the wave packets of the external particles are shifted
to infinity in a way such that certain partial processes are
shifted to infinity. If the photons were not massless then
the dominant asymptotic form in this limit would factor-
ize into a product of separate factors. These factors can
be identified as the scattering amplitudes for the separate
subprocesses, once appropriate geometric falloff factors
are extracted. The program here is to show, with the aid
of the basic formula, that this factorization result contin-
ues to hold also in the presence of interactions to all orders
with massless photons, and that the geometric falloff fac-
tors are exactly the same as for the case with no massless
particles. This type of falloff corresponds to pole singu-
larities, and to the fact that the charged particles pro-
pagate over macroscopic distances like stable particles.
What must be shown, then, is that the dominant asymp-
totic term has exactly this factorized form, with the pre-
cise rate of falloff that corresponds to stable charged par-
ticles, and that the residual factors are finite. These resi-
dual factors define the scattering amplitudes for processes
with charged-particle external lines.

Section VI describes the mathematical details of the
canonical connection between the notion of a stable physi-
cal particle, as characterized by macroscopic spacetime
behavior, and the pole singularity (p —m +iO) '. This
connection has been mentioned repeatedly in the Introduc-
tion, and is basic to the present work.

The main results are in Sec. VII. The aim is to show
that the spacetime behavior that is normally associated
with the pole singularity, and that characterizes stable
physical particles, is not disrupted by the classical photons
and that, consequently, the amplitudes associated with
processes involving charged initial and final particles can
be extracted from the asymptotic limits of amplitudes fo
processes in which all charged particles are confined to
closed loops. Specifically, one begins with a transition
amplitude A (X)=A(X],X2, X3) associated with diagram D
of Fig. 1, in which the charged particle is confined to a
closed loop. The coordinate-space wave functions of the
external particles effectively confine the three vertices at
x~, x2, and x3 to finite neighborhoods of X&, Xz and X3.
A scaling X;~AX; is then introduced: the external-
particle wave functions are shifted to infinity as A,~~.
The two external-particle wave functions associated with
each individual vertex i are translated together by the
amount (A, —1)X,.

In the absence of photons the limit

—1]U (L(x)) . (1.5)

Very soft photons are not detected. Hence for suffi-
ciently small 0 the contribution to the probability from
the leading factor Un{L(AX)) in (1.5) occurs in the ex-
pression for the probability in the combination
Uii(L(AX))Un(L(AX)}=1. This means that for suffi-
ciently small Q the contributions to the probability arising
from the first term in (1.5) alone has no contribution at all
from the classical photons with k in Q. On the other
hand, the effect of the coordinate-space wave functions of
the initial and final particles effectively confines
x —(x ]~2 x 3 ) to a neighborhood of AX. This has the
consequence, proved in Appendix 8, that the contributions
to the probability involving the second term in (1.5) can be
made an arbitrarily small fraction of the contribution
from the first term of (1.5), by making 0 sufficiently
small. For the norm of

[Un '(L(AX)) Un(L(x)) —1]

effectively approaches zero. Thus the contributions to the
transition probability from the classical photons with k in
Q can be made arbitrarily small by making 0 sufficiently
small.

Because the contributions of quantum photons with k in
Q becomes vanishing small with Q, almost the entire con-
tribution to the probability from photons with k in a suffi-
ciently small A comes from the single final state
Un(L(AX})

~

vac). This is physically reasonable: this is
the coherent state that corresponds to the classical elec-
tromagnetic field radiated by a charged particle traveling
(in the manner of Feynman) around L(AX). If one wishes
to deal with coherent-state amplitudes that give the bulk
of the contribution to the probability then one should use
this state as the basic coherent state from which the other
states are constructed. The infrared finiteness of these
amplitudes is assured by essentially the same argument
that ensures the infrared finiteness of the probabilities.

The question of factorization must be examined. The
factorization of the contributions arising from the factor
I',~, alone is assured by its infrared finiteness. The factor-
ization of the part of limA, ~ A(AX) arising from the
classical-photon factor U(L (x) ) must be proved.

The factor U(L(x) }has the form

To show that this limit exists and factorizes also in the
presence of the classical photons one may separate
U(L(x)) into factors Un(L(x)) and U (L(x)) that act
nontrivially on the photon states constructed from pho-
tons whose momentum-energy vector k lies either inside or
outside a small neighborhood Q of the point k =0, respec-
tively. Then

U(L (x) ) = Un(L (x) )U"(L (x) )

=Un{L(AX))U {L(x))

+ Un(L(AX))[Un '(L(AX))Un(L(x))

U(L(x)) =exp[{a*J(L(x)})]exp[{ J*(L(x)).a )]exp[ ———,f iJ*(L( ),kx) J(L(x),k)d k(2]r) (k +iO) '], (1.6)
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where simple resolution of the infrared problem also away from
singularities.

ikXi= —ege Zip Zi+1,p
z;-k z;+1 k

J&(L(x),k) = ie—f dx„e'
3

Zg p lkx lkx= —e e ' —e
, z; k

(1.7)

II. THE BASIC FORMULA

Consider first the coordinate-space Feynman amplitude
corresponding to a strong-interaction diagram D. Suppose
the internal lines correspond to a charged, spin- —, particle
closed loop. The Feynman amplitude then has the form

F (xi, . . . ,x„)=F (x)
In the third line of (1.7) the current operator is expressed
as a sum of contributions associated with the three ver-
tices. Thus U(L(x)) can be expressed as a product of
three factors, one associated with each of the three ver-
tices, times a factor containing the cross terms. To prove
factorization it is necessary to show that contributions
arising from the cross terms fall off faster than A,

Since the factor F,~, already gives a factor A, it is
necessary only to exhibit some additional falloff of the
cross terms.

Falloff of the cross terms is exhibited first in a context
in which one ignores the contribution from photons with k
in some region 0, chosen small enough so that the ignored
contributions give negligible relative contribution to the
transition probabilities. But the more important factoriza-
tion result deals the amplitude A'(~) obtained by intro-
ducing the appropriate coherent state, so that the ampli-
tude itself is well defined even when 0 is contracted to the
point k =0. These amplitudes are also shown to factorize:
limA, A'(~)=A (A2A3. The separate factors are in-
dependent of the closed-loop process from which they are
extracted. They can be identified as the scattering func-
tions for processes with charged external particles. In this
asymptotic expression there are no contributions from
classical photons that are emitted at one of the three ver-
tices and absorbed at another: all such cross terms drop
out of the asymptotic limit.

Explicit closed expressions are derived for the full clas-
sical photon contributions to each function Ai, both in the
special case corresponding to diagram D of Fig. 1, and in
the general case. These contributions arise from the fact
that the coordinate-space variables corresponding to the
vertices of the Feynman diagram representing subprocess i
will, in general, not all lie exactly at the point LV; used in
the definition of the coherent state associated with this
subprocess. These expressions, together with the expres-
sions for the quantum-photon contributions derived in pa-
per II, give compact infrared-finite expressions for the
scattering amplitudes of processes with initial and final
charged particles evaluated away from singularities. Thus
the method described here, though developed to deal with
the delicate situations that arise at singularities, provides a

= Tr+(V iSp(x;,x; i)), (2.1)

where xo ——x„, the V; are strong-interaction vertex parts,
and

~4 —iP (X —X &)P. e i

ESp(x;,x; i)=i f (2~)4 p; —m +i0
(2.2)

Associated with this function there is a spacetime closed
loop L (x) =L (x;, . . . , x„), which is the n-sided spacetime
polygon with cyclically ordered vertices located at the
cyclically ordered set of points x = (x;, . . . , x„).

The electromagnetic corrections to the function F (x)
are now considered. A typical correction will be
represented by a Feynman diagram having many photon
lines incident on each of the n internal line segments of D
The photon coupling at any vertex that lies on the portion
of the charged line of D that runs between x; 1 and x; is
now separated into its classical and quantum parts by the
equation

icy~ C—~(kj.,z——; )+Qq(kj, z; ), (2.3)

where e is the e.m. (electromagnetic) coupling constant
and

C„'(kj,z; ) = iez;&JgJ—(z; kj )' (2.4)

zi ——xi —xi (2.5)

and kj is the momentum-energy of the associated photon.
Consider now the part of the Feynman diagram D cor-

responding to the original line segment i, which runs from
x; 1 to x;. Suppose I; external photons with quantum
couplings Q& (kj,z;) (j=a,b, . . ), are conn. ected in the or-

J
der (a, b, . .) into this l.ine segment i There is.a new coor-
dinate variable xjj &(a,b, . .), for each . inserted photon.
Integration over these new coordinate variables xj yields a
function of x; and x; i, and of the momenta kj and spin
indices vj of the m; photons. For example, if m; =2 then
this function is

G( k k
Pi ip, x, +i(p;+—k~+kb)x,d~

xi &xi —1i a ~+a ~ b~+b 4e
(2m. )

(2.6)X Q'„(k„z;)— Q'„(kb, z; )
p; —m p +a, —m b p, +a.+a'b m—
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(m,. )=G '(x x i) (e ' —e ' ') (2.7)

where k.z=k"z& ——kz, etc. , and the variables associated
with the photon quantum interactions are still suppressed.
This result (2.7) is a simple consequence of the Ward iden-
tity

This function with the variables k„kb, v„and vb associ-
ated with the two photons a and b suppressed will be
represented by the symbol G' '(x;~; ~).

(m,. )For arbitrary m; the function G ' (x;,x; ~ ) is the
natural generalization of the expression in (2.6) to the case
where the ordered set (a,b, . . . ) has m; elements.

(m;)
Consider next the function 6 ' (x;~; &) and the

corrections to it associated with the classical coupling into
the line segment i of D of a photon with momentum-
energy k and spin index p. This line already contains m;
coupling of Q type. The classical coupling can be inserted
into any one of the m;+1 segments into which line seg-
ment i is separated by these m; coupling of Q type. The
sum of the Feynman functions corresponding to these
m;+1 different possible insertions of this classical cou-
pling C&(kj,z; ) into line segment i is

g G„,' (x;,x; ),k)
g=1

(,. )=G„' (x;,x; ),k)

ing the classical coupling is, by virtue of (2.9), simply

gF~, '(x, k) }=Fq,(x,k))

=F (x)( ie—) f dx„e

F—(x)Jp, (L(x),k, ) . (2.11)

=F~,„(x,k ),k2)

That is, the sum of the Feynman functions corresponding
to all ways of classically coupling a photon of
momentum-energy k1 and vector component IM1 into the
closed loop L(x) of D' is simply the product of the origi-
nal function F (x) with ( ie) t—imes the line integral of

ik)x
e dx& around the n si-ded spacetime polygon L (x).

P&

Let the total number of photon couplings in D' in the
above calculation be m =pm;. Then the sum over s on
the left-hand side of (2.11) is a sum over m+n terms,
each of which is represented by a diagram with m +n + 1

intervals. A second photon, of momentum k2 and spin
component p2, can be classically coupled into this collec-
tion in (m +n)(m +n +1) different ways. The sum of
the Feynman functions corresponding to all of these
(m+n)(m+n+1) ways of classically coupling the
second photon is

gE„,„' (x,k (,k2 )

l (ik')
l

p mp+—Jg' mp+ —lg' m—(2.8)

Equation (2.7) can also be expressed in the more compact
form

G&
' (x x; ~k)=G ' (x x; &)( ie) —dx&e'

i —1

(2.9)

Consider next any Feynman diagram D' obtained by at-
taching into each line segment i of D a set of m; photon
lines. Each photon line of D' is required to begin or end
on a g-type vertex lying on one of the n segments of D.
The Feynman function corresponding to D' can be ex-
pressed as

FD (x)=Trg V~G
' (x;,x; ~), (2.10)

where the momentum-energy variables (kj, v~) associated
with the photons of D' are suppressed.

A photon line with classical coupling may now be in-
serted into any one of the m;+1 segments of any one of
the n original line segments of D. The sum of the Feyn-
man functions corresponding to all of these ways of insert-

s

(2.12}
More generally, the sum of the Feynman functions cor-

responding to all possible ways of classically coupling a set
of X photons into any fixed diagram D' that is construct-
ed from D by the addition of photon lines that couple into
the loop L (x) of D is

Fq . . .„(x,k), . . . , k~)

X ~ I

=F (x)( ie) g f —dx& e
i=1

—=E '(x)IHJ„.(L, (x),k, ) .
i=1

This result follows directly from the Ward identity (2.8).
Suppose now a photon is emitted with classical coupling

from some point on the fermion closed loop in D' and is
absorbed with classical coupling on some other point on
this loop. Summing over all possible line segments of D'
upon which the two ends of the photon line can begin and
end, and dividing by two to compensate for a double
counting, one obtains the contribution to the Feynman
function

2 d 4k —ik{x'—x")
bE (x)=F(x) — f dx„' f— dx„"f i

2
=F '(x) — ' f f dx' dx "iD~(x' x"), — (2.14)
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where DF is the scalar part of the Feynman photon propa-
gator. Its real part, which comes from the principal-value
part of DF(k) = (k—2+ie) ', is

just F (x)[i@(L(x))] /m!, where the factor (m!)
compensates for multiple overcounting. Thus the sum of

and all these Coulomb corrections to it is just

ReDF(x' x"—) = 5((x' —x") ) .
4m

(2.15) F, (x) =F (x)exp[i@(L(x))] . (2.17)

This gives a Coulomb" contribution A&F to ~ that
is F (x) times

i@(L(x))= f f dx' dx "5((x' x"—) ) .

(2.16)

The factor @(L(x)) is the classical action corresponding
to the motion of the charged particles along the spacetime
paths defined by the polygon L (x).

The contribution from the effect of m such photons, is
I

Thus if a classical photon is defined to be a photon that
couples into L only via the classical interaction then the
net effect of all of the virtual classical photons is simply
to multiply the original function F (x) by the Coulomb
phase factor exp[i@(L(x)}] associated with the polygon
L (x).

The real (as opposed to virtual) classical photons corre-
spond to the term ir5(k ) in ikey(k)=i(k +ie) '. The
real classical photons that are both emitted and absorbed
on the closed loop L (x) give a contribution to (2.14) of the
form

4

bRF (x) =F (x)exp ——,
' f 2ir5+(k )J'(L(x),k)( g"")J„(—L(x),k)

—=F (x)exp[ ——,
' (J (L (x) ) J(L (x) ) }], (2.18)

where A(L)=e p[ —(J*(L)a}] (2.23)

and

5+(k )=8(k())5(k )

J&(L(x),k) = ie f —dx&e'~

J„'(L(x),——k)

=J~(L(x), —k) .

(2.19)

(2.20)

F D (x) (a" J(L(x)))FD (x)e —(a J*(L(x)))
OP X =8

OP

i@(I.(.x) )—(J*(L(&)).J(L (~))) /2Qe (2.24a)

The full Feynman operator function corresponding to
F (x) plus all electromagnetic corrections associated with
Feynman diagrams that have no charged lines other than
the loop L (x) is, therefore,

=—( 'J(L( ))& . (2.21)

In the final line of (2.18) a bracket notation similar to
Kibble's is introduced.

Real photons with classical couplings can also be emit-
ted and absorbed from the charged-fermion loop. It is
convenient to consider the S matrix to be an operator in
the space of the external photons. The photon emitted by
the classical photon coupling to the closed loop L(x) is
created by the operator

a4ka*(L(x))=f 2n5+(k )a&(k)( g"")J„(L(x),k}—
(2ir)

Here F,~(x)=QF,~(x) is the sum of photon-space opera-
tors F,~(x) that corresponds to the set of all Feynman dia-
grams D' that can be constructed by connecting onto the n

internal line segments of D some combination of photon
lines, with, however, the condition that each photon line
must be coupled at one end or the other into some internal
line segment i of D with a quantum coupling Q„'(kj,z;).
The operator F,~(x) corresponding to D' is constructed
from the corresponding Feynman function
F (x,ki, . . . , k ) by the formula

d4k-
F, (x)=f:+— (2vr)5(k )a(k ):

i (2m)

If M such photons are created then the operator that
creates the final state is (a J(L)} (M!) ', where the
factor (M!) ' compensates for an overcounting of Feyn-
man diagrams. Thus the operator that creates the full set
of final photon states generated by the classical coupling
to the fermion closed loop L is

C(L) =exp[(a .J(L)}]. (2.22)

Similarly, the operator that annihilates the set of initial
photons that are absorbed by the classical coupling to the
closed loop L is

&&F (x k), . . . , k ), (2.24b)

where a(k )=a( —k~)=a (k ) creates a photon of
momentum-energy kz if kz &0, and the two colons imply
a Wick normal-ordering of the product of operator a(kj)
that they enclose.

As our interest is in infrared rather than ultraviolet
problems we shall restrict all k integrations by
8(2K —

~

k
~

)8(1(.—
~

k
( ), where IC is some very large

number. This cutoff factor will, for example, replace the
factor 5((x i —x 2 ) ) that arises from (2.14), and that
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occurs in (2.15), by its nonultraviolet part, and will render
all quantities occurring in the above formula (2.24) well
defined.

Let F,~ (L (x) ) be the part of the operator F,~(L (x) ) of
(2.24) that comes from the original part F (x) of the
operator F~~(x). Introducing, for any function f(k), the
notation f(k) =f ( —k) one obtains from formula (2.24)

F, (x)=F (x)exp[(a J(L(x)))]exp[(J(L(x)) a)]

&& exp[ —, (J(L (x)).J(L (x) ) ) ]exp[i&(L (x) ) ]

F,„'(x)=exp((a J))exp((J a))

Xexp —,(J J)+i@

X [F.„'(x)—(J.g) ]

=U(L( ))(( Q)+(Q )

--,'&Jg&+-,'&Q.J&+ (J g&„). (2.32)

=F (x)U(L(x)) . (2.25)

Consider next the part F,~ [P&, . . . , P~] of
F [P|, . . . , g&] in (2.24) that comes from the part of
F,~( x) that corresponds to diagrams D' having exactly
one quantum coupling. The sum of the terms FD~(x) of
(2.24b) over all diagrams D' having a single quantum cou-
pling to an external photon line (and no other photon cou-
pling) is

4
g'F,p(x)=g' I 2rr5(k )a(k)F (x,k)

(2m )

k +i@~(k +ie)
~

k
~

(2.33)

Here k is the momentum-energy of the photon emitted by
the quantum coupling and absorbed by the classical cou-
pling. Thus (5.11) can be written in the form

F,~ (x)= U(L (x))F,&',(x), (2.34)

Note that the sign of the contribution associated with
the emission of a real (as opposed to virtual) photon from
a quantum coupling to L(x), and its subsequent absorp-
tion by the classical coupling to L (x), has been reversed.
This reversal of sign is represented by the following
change of the Feynman denominator associated with the
propagation of the Q —C photon:

—= &a.g&+(Q a), (2.26) where the subscript r stands for the retarded character of
the propagator in

where the first and second terms on the right-hand side of
(4.5) correspond to the first and second terms in

2~6(k') =2~6+(k)+2~5 (k), (2.27)

+ —,
'

(Q J)+i(J Q)pv, (2.28)

where the last three terms come from the diagrams D'
that have a photon line with one quantum coupling to
L (x) and one classical coupling to L (x), and

J„(k)(—g"')Q (k)
& J'Q &pv=p& (2')' k

(2.29)

where PV stands for principal value.
The basic formula (2.24) can be written in the slightly

more convenient form

respectively.
The operator F,~'(x) arising from the sum of F,~(x)

over all D' having exactly one quantum coupling is then

F.„'(x)= &a g &+ &Q a &+-,' &J Q &

F,~'„(x)= (aQ(L (x)) )+ (Q(L(x)) a )

J„(L(x),k )( g"")Q„(L(x),k—)+i
(k'+i~)'

~

k ~'

(2.35)

This result can be extended immediately to the contri-
butions to F,~(x) with arbitrary numbers of quantum cou-D

plings. One obtains

F,p(x) = U(L(x))F,p,(x), (2.36)

where F,z,(x) is the same as the F „~(x) in (2.24b) except
that each F (x ~, k&, . . . , k ) is replaced by
F„(x,k, , . . . , k ), which is calculated from the Feynman
rules modified by the change in denominator shown in
(5.13) and (5.14) for each photon line that links a quantum
coupling to L (x) to a classical coupling L (x). This is our
basic formula.

F,~(x) =exp((a J ) )F,~(x)exp(( J a ) )

X exp( —, (J.J ) + I @), (2.30)

III. FEATURES OF THE BASIC FORMULA

In this section some general features of the basic formu-
la (2.36) are discussed.

[exp( (J,a ) ), (a, Q ) ]= (J,Q )exp( (J,a ) ) .

Thus the part of F,&(x) coming from F,~'(x) is

(2.31)

where J=J(L (x) ) and N= @(L(x)). The term ( Q a ) in
(2.28) commutes through exp(( J a )), but (a Q ) does not:

A. Isolation of infrared problems

A principal result of this work, and the paper that fol-
lows, is that the infrared problems are confined to the
operator U(L(x)) that appears in (2.36): the residual ef-
fects involving quantum couplings produce no infrared
divergences.
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B. Connection of physics

For clarity of presentation the strong-interaction dia-
gram D will often be taken to be the simple one illustrated
in Fig. 1.

The quantity F,p(x) given in (2.36) is an operator in the
photon space. It is connected to physics via the transition
operator Top[/&, . . . , g)v], which is obtained by folding
into F,p(x) the wave functions QJ(xj ) of the initial and fi-
nal particles of the strong-interaction process represented
by diagram D. Ifj specifies a final particle then p&(xi) is
the complex conjugate of the usual wave function of this
particle. Thus

n N

T.pÃi . A ]=IQd'x g4, (x;(,))Fop(x),

(3.1)

where i(j) is the label of the vertex i upon which external
line j of D is incident.

C. Connection to classical -physics

The operator U(L(x)) in (2.36) is closely connected to
classical phyics. The phase N(L (x)) is the contribution to
the classical action from the motion, in the manner of
Feynman, of a classical charged particle around the closed
spacetime loop L (x). The other three exponential factors
combine to give a unitary operator which, when acting on
the photon vacuum, creates a coherent photon state. This
coherent state is the one associated with the classical elec-
tromagnetic field radiated by a charged particle moving
around the closed spacetime loop L (x). These results fol-
low from Kibble's formula (15), in Ref. 5, first citation.

D. Exactness of basic formula

Formula (2.36) is exact. No soft-photon approxima-
tion —or any other approximation —has been used to reor-
ganize the photon contributions into the form (2.36), in
which the infrared problems are confined to exponentials
related to classical physics.

IV. SMALLNESS OF THE SOFT-PHOTON
CONTRIBUTIONS IN CERTAIN SIMPLE SITUATIONS

The transition operator T»[gi, . . . , g)v] is calculated
by folding the initial and final wave functions QJ. (xj ) into
the operator F,p(x) of (2.36). The detailed properties of
the contributions to F,p(x) that come from the diagrams

D'&D will be examined later, in paper II. Thus we shall
concentrate here on the part T, [gb. . . , g~] of
T, [gi, . . . , g)v] that arises from the part ED(x) of
F,p(x). Because all the contributions to TDpo[1(),, . . . , P~]
have very simple forms it is easy to obtain rigorous
bounds on the magnitude of various specified contribu-
tions to it.

We shall suppose that the Pz(p) are infinitely differenti-
able functions of compact support. Then for each external
particle j there will be a dominant region, " in which

~
PJ(x)

~

can be appreciable, and a "tail region, " in which
~
PJ(x)

~

is very small and falling off faster than any in-
verse power of the spatial distance from the dominant re-
gion. (See Ref. 7 for discussions of these properties. )

In calculating the transition amplitude the coordinate-
space wave function PJ(xj ) is evaluated at the point
xj ——x;(j), where i (j) is the vertex of D upon which exter-
nal line j of D is incident. Consider, for definiteness, the
diagram D of Fig. 1, and the corresponding transition am-
plitude T,p [it)b. . . , $6].

Suppose the supports of the six wave functions in p;/p;
space are disjoint. Then the dominant regions associated
with the six wave functions will be asymptotically disjoint.
In particular, the maximum of the absolute value of the
product of any two wave functions in the region lying out-
side a ball of Euclidean radius R centered at the origin
will fall off faster than any power of R '. Consequently
the contribution to T,p [gi, . . . , P6] from very soft pho-
tons is negligible.

To see this let Q(b) be the k-space region

Q(b)=—Ik;
~

ko~ &2b,
~

k
~

&bI . (4.1)

+ e3(x2) P4(x2)es(x3)ii'6(x3 )

&&[Un(L(xi, x2,x3))—l]F (xi,x2,x3)

I.et W(R) represent the x-space region

W(R)—:tx;
~
x;

~ p„,) &R,i e I1,2, 3I J .

(4.2)

(4.3)

And define Top [g~, . . . , i(t)6]n ~ and T p [fi, . . . , $6]ii to
be the parts of T, [gi, . . . , $6]n arising from the integra-
tion regions x HA and x EW respectively.

The unitary operator Un(L(x)} has unit norm. Hence
for every b the norm of Un(b)(L (x))—1 satisfies

And let Un(L (x)) be the operator U(L (x) ) with all k in-
tegrations restricted to the region Q(b). The difference be-
tween Un(L (x)) and the value it would have if there were
no contributions at all from k EQ photons is
Un(L (x))—1. Hence the contribution to T,p [f(, . . . , 1()6]
from the k H 0 photon is

DO
Top [f1~ . ~ P6]Q

:—J dxidx2dx3$((xi )$2(xi )

i Uri(b)(L(x)) —1
i

& 2 (4.4)

Xp

FIG. 1. A simple strong-interaction diagram D. The dotted
external lines represent neUtral particles. The solid triangle cor-
responds to L(x)=L(x~,x2 x3). iFD(x)

i
&C . (4.5)

The ultraviolet cutoff ensures that the functions
( SF(x; —x; i)

~

are bounded. Hence
~

E (x)
~

is bound-
ed:
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I
F.p'[4) .46]Q(b') "I «~2. (4.6)

Consider next the remaining part
T,p [1(), . . . , $6]n(b) ~(z(,)). Take b &&R(6) '. Then the
exponential factor exp(ikx') in (2.20) is close to unity, and
its integral around the closed loop L (x) enjoys a bound of
the form

I
J„(L(x),k)

I
&ckR (4 7)

Insertion of this bound into (2.14), with the k contour
distorted into a semicircle of radius 2b, gives for the abso-
lute value of e /2 times the integral (2.14) a bound

c'(bR) «1, (4.8)

where c' is some constant. Exponentiation preserves
essentially this bound: for sufficiently small b

I
&0I U n()b(L( x)) —1 I0&

I
&2c"(bR) (4.9)

Here
I
0 & is the photon vacuum. The boundedness of

F (x),x2~3) then ensures that for some sufficiently small

b =b(6,R(6))=b(e) ~0
the following bound holds:

I & o
I
&.p'[@). 06]n(b(e)), %(R(e)) I

o &
I

& «2
(4.10)

This result, combined with (4.6), shows that for 6~0,
however small, there is a b(E) such that

I
&o

I
r.p'[@), , Aln(b(, )) I

o&
I
«. (4.11)

In other words, the contribution to the transition ampli-
tude &,p [g), . . . , g6] from the very soft photons k HA(b)
can be made arbitrarily small by choosing b sufficiently
small.

V. DISCUSSION OF INFRARED DIVERGENCES

True infrared divergences do not arise if all charged
particles are confined to finite spacetime closed loops.
This fact is exploited in the procedure adopted above: the
expressions are made free of infrared divergences, and
hence amenable to rigorous mathematical analysis, by con-
sidering transition amplitudes corresponding to processes
in which the charged particles are confined to closed
loops, which are kept effectively finite by the damping
provided by the wave functions PJ(x) of the initial and fi-
nal particles.

Infrared divergences traditionally arise in processes in
which some of the initial or final particles are charged:
the momenta of initial and final particles are then restrict-
ed by mass-shell constraints, which muse the singularities

These two bounds, and the faster than any power of R
falloff of the maximum of the absolute value of the prod-
uct of any two wave functions ensures that the norm of

DO W(R)
~op [41& ~ ~ ~ 46]Q(b)

falls off faster than any power of R '. Hence for any
e~ 0, however small, there is an R =R(E) such that for all
b

of certain Feynman denominators at k=O to produce
divergences.

One may, of course, consider all charged particles in the
universe to be confined to closed loops. In a certain nar-
row technical sense this would solve the infrared-
divergence problem: there would be no strict divergences
of TDp[1it(, . . . , p„] for the entire universe. But this is not
a physically adequate solution of the problem, for the fol-
lowing reason: the closed loops, though finite, will be
huge, and the factors @(L(x)) and &

J"(L (x)) J(L (x)) &

both diverge logarithmically under dilation of the closed
loop. Thus for loops the size of the universe these quanti-
ties are, for all practical purposes, infinite. No predictions
about laboratory phenomena should depend on such num-
bers. The theory, to be useful, must allow the predictions
about local phenomena to depend only on local specifica-
tions, not on the detailed ancient history of the particular
electrons that are being used in some experiment. Some
factorization is required to extract the local aspects.

Usually this factorization is achieved by means of the
pole-factorization property. In the absence of massless
particles one can show that if the sources of various parti-
cles are far away from a certain reaction among these par-
ticles then the only significant part of the larger process
that includes also the sources comes from the residues of
the poles singularities associated with the exchanged parti-
cles. The net residue is a product of separate factors, one
for each source and one for the interaction. In this way
the descriptions of the sources of the particles of the reac-
tion can be effectively separated from the description of
the reaction among them. Were it not for this pole-
factorization property, or some similar property, the
whole universe would have to be considered as a unit.

The residue of the pole is evaluated by restricting the
exchanged particles to the mass shell. But a restriction of
a charged particle to its mass shell brings us back to the
traditional infrared divergences. Thus the procedure of
starting from a universe in which all particles are confined
to closed loops does not, without further analysis, solve
the problem. One must establish the requisite factoriza-
tion properties, which are in any case needed for a satis-
factory theory of particles, and must confirm that the resi-
dues are finite. These residues will represent the ampli-
tudes for processes with charged external particles. We
now proceed to those tasks.

VI. SPACETIME POI.E-FACTORIZATION PROPERTY

Suppose the initial and final momentum-energies of a
many-particle reaction are related in a manner that per-
mits a classical one-particle-exchange process of the kind
shown in Fig. 2.

The Feynman rules ensure that the scattering function
of the overall process will have a pole-type singularity
i 2m (p m+i 0)—', and that the residue of this pole is
simply the product of the scattering amplitudes associated
with the two subprocesses. The "discontinuity" associated
with the pole is the difference of the boundary values from
the upper and lower half-planes in p, and is therefore
2vr6(p —m )2m times the product of the scattering func-
tions of the two subprocesses.
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FIG. 2. A one-particle-exchange process. Momentum-energy
is conserved in each of the two subprocess, and the intermediate
particle momentum is denoted by p.

(gz gi) = J ~ gz(p)2m5+(p —m )2mitji(p),
(2m)

(6.1)

is equal to the result of folding the wave functions

PJ (j= 1, . . .6) of the external particles of the overall reac-

The pole character of this singularity and the fact that
the residue factorizes in this way is crucial to the interpre-
tation of quantum theory. It ensures that stable particles
behave as stable particles should. Suppose, for example,
that we fold in the wave functions of the initial and final
particles of the overall reaction. Then the first (lower) in-
teraction can be regarded as a subreaction in which a par-
ticle of mass m is produced, and the second interaction
can be regarded as a subreaction in which this particle is
detected. If these two subreactions are far apart then the
rate at which the transition probability decreases as the
two subreactions are moved further apart must be in ac-
cord with classical ideas about the flux of stable particles
emerging from a source that is small in comparison to the
large distance between the source and the detector.

If we take the momentum-space wave functions of the
initial and final particles of the overall process to be infin-
itely differentiable functions of small compact support,
and if the scattering functions for the two subprocesses are
nonsingular in the regions defined by these small compact
supports, then the scattering function fi(p,p3,p4,—p5, —p6) of the first subprocess folded into the wave
functions P&(p3)$4(p4)(t)5(p&)$6(p6) of this subprocess will
give an infinitely differentiable and compactly supported
wave function g~(p) of the particle produced in this first
subreaction. Similarly, the scattering function
fz(pi,pz, —p, —p7, —ps) of the second process folded into
the wave functions P&(p&)gz(pz)$7(p7)P(p8) of this sub-
process will give an infinitely differentiable and compactly
supported wave function gz( —p)—:Pz(p) of the particle
detected at the second reaction. Thus the transition am-
plitude associated with the preparation of a particle
represented by wave function gi(p), and the subsequent
detection of a particle represented by (complex conjugated)
wave function Pz(p), namely,

2' 7
limr~ OO Pl

e' ( y, .it, ) =yz(mv)q, (mv) . (6.3)

In terms of probabilities this relationship becomes
3

27Ti-
11m 2 mv ) Plv

(6.4)

This result allows the squares of the magnitudes of the
momentum-space wave functions Pi(mu) and gz(mu) to be
identified as flux densities for emission and absorption of
particles moving in the direction U. The factor ~ corre-
sponds to the fact that stable particles do not disappear or
materialize while moving from the source to the detector:
the probabilities in the macroscopic domains have the
same geometric falloff as the probabilities for classical
stable particles.

If one were to increase the degree of the singularity then
the falloff would become too slow. And if one were to de-
crease the degree of singularity then the falloff would be-
come too fast.

tion into the discontinuity 2+5(p —m )2m of the overall
scattering function.

We are interested in the dependence of this amplitude
on the location of the detector. Thus we translate the
wave functions PJ(xj) of the external particles of the
second (detection) subprocess by a vector b.x =mr, where
U = 1 and U & 0. This is achieved by the change

QJ(xj )~(hi~(xj ) =QJ(xj.—M ) .

This change induces the change

NJ(pg) 0 (p'J)=4'(pj) '

in the momentum-space functions. Then momentum-
energy conservation in the second process yields the result-
iilg cllailge iil Qz(p):

(6.2)

Actually, we are interested in the rate of falloff of the
transition amplitude of the overall process itself as the
magnitude r of the shift Ax tends to infinity. However, if
we had used in place of (p m—+iO) ' the boundary
value (p m —i 0)—' then this modified transition ampli-
tude would fall off faster than any power of r. Thus,
modulo these terms that fall off faster than any power of r
we may use, in place of the actual pole form
i(p m+—iO) ', rather the difference (or discontinuity)

i(p m+i—O) ' i(p —m ——iO) '=2m. 5(p —m ) .

Then, in the notation of (6.1) and (6.2), the question be-
comes: what is the rate of falloff of ( fz fi ) as ~~ oo?

This question is answered by the following corollary to
a theorem proved in Appendix A.

Corollary A. Suppose Pz(p)g, (p), considered as a func-
tion of the three-vector p, is continuous together with its
first and second derivatives, and vanishes for

~ p ~
)R& oo. Then for any real v satisfying u =1 and

v ~ 0 the following limit holds:
' 3/2
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The connections described above show that one cannot
expect to extract reliable information about the singularity
structure of a function from an approximation to it that
disrupts its asymptotic behavior in coordinate space. For
the asymptotic structure of transition amplitudes in coor-
dinate space determines the analytic structure in momen-
tum space, and vice versa. '

Storrow examined the question of the effect of infrared
photons on this pole singularity and concluded that the
usual pole form (p m—+i 0) ' was changed to
(p —m +iO) ' ~, where P was of order of the fine
structure constant. Such a form would entail large devia-
tions in the macroscopic regime from the classically ex-
pected behavior of stable particles.

These pole-factorization results are not disrupted by the
infrared photons. Equations (7.1), (3.1), and (2.36) give

3 6
A(m)= f /d x;gq '"'(x;(J))U(L(x))F, ,(x) .

Let 0 be some small neighborhood of the point k=0.
Then U(L (x})can be written in the form

U(L (x))= Un(L (x))U (L (x))

=Un(L(~))U (L(x))

+ Un(L (~)}[Un '(L (~)) Un(L (x) )

—1]U (L(x)), (7 3)

VII. TRIANGLE-DIAGRAM FACTORIZATION
AND AMPLITUDES FOR PROCESSES WITH

CHARGED INITIAL AND FINAL PARTICLES

These pole-singularity considerations can be carried
over to reactions such as the one illustrated in Fig. 1, in
which a charged particle runs around a closed loop.

Let X1, X2, and X3 be the vertices of a large spacetime
closed loop L(X). Let pi, p2, and p3 be the momentum-
energies of the three intermediate lines, as determined by
the masses m; of the three charged lines and the differ-

x,.
ences ~ of the X;. Suppose the wave functions QJ '(x) of
the two external particles incident upon vertex i are large
in a neighborhood of X;, but have a product that falls off
faster than any power of

~

x —X;
~

' as x moves away
from X;. And suppose that the scattering function for
each of the three subreactions, folded into the wave func-

X,.
tions QJ' of the two associated external particles, but
evaluated at the momenta pj. associated with the two ap-
propriate intermediate particles, is nonzero. This configu-
ration defines a transition operator

A(AX)=T, [g, '", . . . , f ""] (7.1)

that would be expected to have contributions correspond-
ing to the reaction represented in Fig. 1. Indeed, if there
were no infrared problem then A (~) would be dominated
at large A, by a term that falls off as A, , and that arises
from the pole singularities (pi mi +i 0—) ' correspond-
ing to the three charged lines in Fig. 1.

The diagrams D' contributing to this dominant term
would be ' those in the class KD consisting at those D'
that are separated into three disjoint diagrams by cutting
three charged lines, one corresponding to each line of D.
Modulo self-energy-diagram considerations the dominant

contribution to A (~) would be obtained by replac-
ing each of the three poles i (p. ' —m +i 0) ' by the cor-
responding mass-shell delta-functions 2m 5(pi' —mj ).
Indeed, by factoring off (cA, ) ~, and an appropriate uni-
tary factor that does not affect probabilities, one would
obtain a limiting value that is just the product of the
scattering functions for the three processes, with the PJ' s

folded in, evaluated of the points pj' ——pj. This is the
triangle-diagram generalization of (6.3).

where the operators Uri(L(x)} and U (L(x)} are the
operators obtained by restricting the k integrations that
occur in the definition (2.25) of U(L(x)) to k&0 and
k P Q, respectively. Then one may write

A (AX) =Ad, (AX)+A„(~), (7.4)

where Ad, (AX) and A„(~) arise from the first and
second terms in the final line of (7.3), respectively. In par-
ticular, one has

Ad, (~)= Un(L (~))A (~), (7.5)

where

3

A "(~)=f gd'x; +1( '"'(x;ij~)U"(L(x))F, ,(x) .

P(~)=TrA(AX)p;Q (~)pr,„, (7.7)

where p;„and p~„are the density operators for the initial
and final photons. Final infrared photons are not detect-
ed. Thus pr, „acts as a unit operator on the infrared (i.e.,
k&0) parts of the photon states. The noninfrared (i.e.,
k QQ) photons play no essential role in the discussion, and
can be assumed to be absent from both the initial and final
states. Thus if

(7.8)

is the operator that projects all noninfrared (k QQ) pho-
ton oscillator state vectors onto their ground or vacuum
states, but leaves unchanged all photon oscillator states
corresponding to photons with momenta k&0 then one
may write

and

0
Pfin=PO (7.9)

0
Pln =Po Pln, n (7.10)

where p,„& specifies the initial condition of the infrared
photons, but leaves unchanged all noninfrared parts.

Suppose Q is contained in Q. Then the contribution of

(7.6)

The probability corresponding to the transition operator
A (~) is
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Ad, (LY) to the probability P(~) is

Pd, (AX)=Tr[(0 IAd, (i'X)
I
0 )

xp,„„-(o"IA',. (~) Io")]

=Tr[(0
I
Un(L(AX)}A (~)

I
0 )]

xp,„n(0 IA (Ax)Un(L(i{,x)) IO )]
=Tr[(O"

I

A "(}iX)
I
O")

xp,„„-(o"
I

A "(A.x)
I

0")], (7.11)

where the traces are in the space associated with the in-
frared photons, and the unitarity of Un(L (~)}has been
used to obtain the last line.

Let 0=Q(b) be a set of the form

Q(b)—:tk: Ik
I

&2b, Ik
I

&bI . (7.12)

And suppose, as in Sec. II, that the wave functions Pi(pj )
are infinitely differentiable with disjoint compact supports
in pj/pj space. Then it is shown in Appendix 8 that for
some fixed A and for any e & 0, however small, there is a
b (e) such that for any b & b(e) and all A, & A the contribu-
tions to P(~) that involve A„(AX) are less than e times
P(AX):

a divergence of the sum over the infinite number of dif-
ferent diagram D' with quantum coupling Q is not exam-
ined. Subject to these limitations it is shown that the pho-
ton momentum-space eigenstates of the Fourier transform
F,~,(q) of F,„,(x) are well defined and have the usual
triangle-diagram singularity: the dominant contribution to
the discontinuity around the triangle-diagram singularity
surface is evaluated as a sum over contributions corre-
sponding to all ways in which the diagrams D' can be cut
into three disjoint parts by cutting three line segments, one
corresponding to each of the three internal lines of D, and
replacing the corresponding propagator i (p+ m ) /p—m +i e by 2m.5(p —m )(p+ m ). This restriction of
charged-lines to their mass shells produces no infrared
divergence.

Since the quantum photons give no infrared problems
and the classical photons with k HQ do not enter we ex-
pect to obtain the normal factorization properties. To ver-
ify this consider first the vacuum-to-vacuum matrix ele-
ment (0

I
F,~„(q) I

0). Since the singularity at the
triangle-diagram singularity surface is normal the corre-
sponding asymptotic behavior in coordinate space is also
normal. Indeed, the three-particle generalization of the
theorem of Appendix A ensures that if one defines

3 6

F(m)= f +d"x, +y "'(x,„,)(OIF.„(x)IO),

(7.15)
P(~)—Pd, (~)&eP(~) . (7.13)

then

This smallness of the contributions from A„(}~X)
arises from the fact that the faster-than-any-power falloffs

A,X,.of the wave functions f~ '(x) effectively confine x to a
finite neighborhood of AX. Yet for all

I
k

I« Ix —~
I

' the currents J(L(x),k) and J(L(~),k}
are nearly equal. Consequently, the operators U(L(x))
and U(L(~)) are nearly equal, and hence the factor
[Un '(L(AX) ) Un(L (x) ) —I] appearing in A„(~)
tends effectively to zero with the size of 0=Q(b).

The value of b is now taken small enough so that, to
some high preordained level of accuracy, the probability
P(~) is adequately represented by Pd, (AX). Then the
remainder can be ignored: it is a negligible fraction of the
whole.

Equations (7.11) and (7.6) show that the operator
Un (~) drops completely out of the calculation of

(~). Thus no error at all is induced in the calcula-
tion of Pd, (~) if one replaces the operator F, ,(x) in
the basic formula (2.36) by

3

lim +~~ 00 ~J=

277 1C)A,
; 3/2

(7.16)

p;=m;(Xi —Xi i}/IX —X -i I Mink (7.17a)

where F;(fbi;i,p;,p;+i) is the amplitude associated with
vertex i of D Specificall. y, F;(Qadi;i, p;,p;+i) is the scatter-
ing function for the subprocess associated with vertex i,
folded into the wave functions iiii of the particles corre-
sponding to the two external lines of D incident upon the
vertex i, and evaluated at the momenta p; and p;+i of the
charged particles associated with the two internal lines of
D incident upon i. The quantities p; and c are specified by

F,~, (x)—= U (L (x))F,~,(x) . (7.14)
ci =

I Xi Xi —i I Mink (7.17b)

This substitution eliminates all contributions to U(L(x))
that arise from the photons with k HQ. This elimination
of keQ contributions ensures the infrared finiteness of
Pd, (~), and hence of P(~) itself, provided the opera-
tor F,~,(x) introduces no infrared divergences.D

The infrared properties of F ~,(x) are studied in paper
II. An ultraviolet cutoff is imposed, and the possibility of

The property of Fn~, (x) just described refers to its
vacuum-to-vacuum matrix element. If the initial state
represented by p,.„& is the vacuum state then the operator
F,~,(x) in (7.6) that occurs in the formula (7.11) for
Pd, (~) acts on the vacuum state. Then the vacuum-to-
vacuum matrix element of F,~,( )wxill contribute to the
probability Pd, (~) a term
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kY

+d. (~)=f+(d "x d'y ) + (W~
'"'(x (J')W

'"'
(y (i))]&0

I F;.( )
I
o& &o

I
F..(y) I

o&

X(0
I

U (L(x))
I
0 &(0

I
U (L(y))

I
0

X $ (nn n I
U- (L(x)}f0- &(0-

f
U- (L(y)) fno n& .

I
pg n

(7.18)

The superscript Q on Un(L (x)) means restriction of the integrals occurring in U(L (x)} to contributions from the pho-
tons with k g 0 (i.e., to noninfrared photons) and the subscript II—0 means restriction to photons with k e (0—0) (i.e.,
to infrared photons that are not very soft). The sum over states

I nn n & is a sum over all states of the oscillators corre-
sponding to photons with k E(Q —II).

Expression (7.18) for Pd, (~) combines the infrared finite quantities (0
I
F,„,(x)

I
0& and (0

I F,~,(y) I
0& with the

unitary factors corresponding to classical photons with k 6Q.
To establish an asymptotic factorization property for Pd, (~) recall first that

(0
I

U (L (x))
I
0 & =exp[i% (L (x))]exp ——,

' (J'(L (x)) J(L (x)) & ],
where

d4k Jq(L (x),k)( g"')J„(L(x—),k)
@ (L (x)):—PV

2 X (k)
2(2'�) k

(7.19)

(7.20a)

d'k(J (L(x)).J(L(x))& = f Jq(L(x), k)( g" )J„(L(x),—k)2rr6+(k )X (k) .(2')' (7.20b)

Here X (k) is a factor that cuts out the contributions from
both ir;frared and ultraviolet photons.

The current appearing in (7.20) is

J„(L(x),k) = ie —dx&e'
L (x)

d k ik(x, —~,.
4f e ' ' "(2~)$+(k )X (k)(2n. )4

zi ikx i kx.gp lkx lkx&

; k

Zi —1p

z; 1k zk
ziv zi +1v

z; k z;+1.k

ikx; ip i +1,p,
3

= —e e
z; k z+1k And consider first the values of (7.22) at points x in

(7.22)

3
= g Jig(xg pzi pzg'+ )pe) (7.21)

where J;&(x;,z;,z;+i, k) is the partial current associated
with vertex i of D.

If each of the two currents in (7.20b) is decomposed into
its three partial currents one obtains nine terms in all.
Each of these nine terms is associated with one wiggly line
in the diagram of Fig. 3.

Two of the nine terms are associated with each of the
three wiggly lines that run between two different vertices,
and one of the nine terms is associated with each wiggly
line that begins and ends on the same vertex.

The contributions to (7.18) from the six terms in (7.20b)
that correspond to interactions between different vertices
fall off faster than A, . To see this, consider first a typi-
cal contribution of this kind to (7.20b):

W(A,",~)= Ix:
I
x —~

I E„„(A,')],
where O~q &~1~&A,. Since the X; are chosen so that the
differences X; —X~ i are all timelike, and satisfy

I X; —X~ i I
& 1, the vectors z;—:x; —x; i for points x in

FIG. 3. A triangle diagram with wiggly lines representing the
classical-photon contributions.
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must also be timelike. Qn the other hand, k is lightlike in
the support of 5+(k ). Hence the only singularities of the
integrand in (7.22) apart from those of the cutoff function
Xn(k), are those of 5+(k ). But then the properties oJ
Fourier transforms ' ensure that (J," i(x; i).J(x;))
falls off at least as fast as

I xj —xj, I F„,i in all directions
except those on the light cone. And in these latter direc-
tions it is bounded.

Due to the timelike character of the differences
z;=z; —x; i for x in A'(A, ",~) this

I
x; —x; i I

E„',) fall-
off of (7.22) in timelike directions, together the bound
CA. + " on the remaining factors, entails a faster than

falloff of the x H A( A.",~) contributions of
(J i(x; i).J;(x;)) to the Pd, (AX) defined in (7.18).
On the other hand, the faster than any power of

I
x —AX

I
E„'d falloff of the product of the wave functions

in (7.18) ensures the faster than any power of A,
' falloff

of the contributions to the integral over x in (7.18) from
points x not in &(A,",~), since the remaining factors in
the integrand are bounded. Thus the full contribution to
the probability Pd, (~) defined in (7.18) from the parts
of (7.20b) that correspond to interactions between different
vertices x; falls off faster than A.

The three surviving terms in (7.20b) arise from the self-
interaction counterparts of the integral in (7.22). These
self-interaction terms, which correspond to the wiggly
lines of Fig. 3 that begin arid end on the same point, have
x; in place of x; i in (7.22). Hence they have no x depen-
dence.

Consider next the integral in (7.20a). Arguments simi-
lar to those just given, and described in detail in Appendix
D, show that the contributions of (7.20a) to (7.18) arising
from the sum of products of factors J; and JJ over i&j
fall off faster than A, , provided the effect of the self-
energy counterterm is included. The sole surviving term
in the limit A,~ao comes, therefore, only from the self-
interaction terms involving the product of I;* with J;.
These terms have no x dependence. Thus the full contri-
bution from the factor (0

I
U (L (x))

I
0 ) to the dom-

l

inant large-A. behavior of Pd, (~) defined by (7.18) is
simply a product of three independent constants, one from
each vertex of D.

The final factor in the expression (7.18) for Pd, (LY) is
a sum over the states

I nri n). These states can be taken
to be the photon momentum eigenstates

I

k i, . . . , k„)n n ) . Since the photons that contribute to
U- (L(x)) have k restricted to a region Q —0 that is

Q —0
bounded both from above and from below these cases can
be treated by methods essentially the same as those just
given: one simply treats the classical photons coupled into
the three vertices of D like extra external particles. One

may, for convenience, recombine the parts k EQ and

k E.Q, —Q and consider the matrix element

(k, , . . . , k„ I
U (L (x))

I
0) =M (kx) . (7.23)

(x k)q= g k~x((r ~) .
a=1

(7.25)

—iA(x-k)
Thus the function M& (k,x)e ~ depends only on the

A.x,.( .
)differences x; —LY;(i =1,2, 3). The wave functions PJ

also depend only on these differences. Thus the three fac-
—iA, ( kx)

tors from Mr (k,x)e ~ simply modify the product of
wave functions appearing in (7.16). Hence that earlier re-
sult yields immediately also

This function decomposes into a sum of terms, one for
each way of coupling the set of photons (k), . . . , k„) into
the three vertices. Let y be an index that runs over the
various possibilities. Let o; be an index that runs over the
n photons, and let i (y, a) label the vertex into which pho-
ton a couples for possibility y. Then

(k, , . . . , k„ I
U (L(x))

I
0)

=g(k), . . . , k„
I

U"(L (x))
I 0)r

=+M&(k, x) . (7.24)

The x dependence of Mr (k,x) is exp[i(x k )z], where

lim
A~OO ~

3/2
27TEC; k

m;
3

D Q
op ( )

I
) = II i) (PJ'(i) p' p +)i (y,')'(7.26)

3 6

e ' ' e I+d x;+PAL '"'(x;(i)), (k), . . . , k„
I

U (L(x))
I
0)r

where

a(y, i ) =—{a;i(y,a) =i I,
and the argument j in the last line runs over the set

J(i):{j;i(j)=i I . —

(7.27a)

(7.27b)

I

on the left-hand side by setting X=O and replacing the
Feynman propagator i (p;+m;)/ (p; m; +i@—) associat-
ed with the cut segment by (p; +m; /2m; ), where

p, =m,.(x, —x, , )/ I x, —x;

The right-hand side of Eq. (7.26) is a sum of contribu-
tions, one for each way in which any diagram Dr contri-
buting to the left-hand side can be cut into three disjoint
parts by cutting three charged-line segments, one corre-
sponding to each internal line of D. The contribution on
the right-hand side is obtained from the corresponding one

However, the Feynman diagrams on the left-hand side
that contain self-energy corrections to the cut charged-line
segment should be ignored, because the renormalixation
counterterms exactly eliminate their effects on this mass-
shell line.

In constructing
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0~iy(0j (i)&pi &pi +1&ka(yi), )

the quantities U;&/u;. k and U;+»/U;+) k that arise from
the classical coupling have been replaced first by

(Xi —Xi ) )q/(X& —Xi 1).k

(X;+1—Xi )q/(X;+1 —X;).k,
by omitting terms tending to zero in the limit A,~ oo, and
then, with the aid of (7.28), by p;&/p;. k and p;+ 1„/p;+, k.

Due to the exclusion from U (L(x)) of contributions
from photons with k&0 the value of the energy k of
each final photon in 2;& is greater than some fixed
minimum value. Since the energy carried into and out of
the subreaction i by the particles represented by the lines
of D are constrained by the compact support of the wave
functions Pj(;)(pj ), and by the fixed values of the momenta
p; and p;+1, the amplitudes

Q~iy(ej (i)&pi &pi+1&ka(yi ) )

must vanish if the set a(y, i ) has more than some finite
number of elements. Thus the sum over final photon
states needed in the calculation of

limi, Pd (AX)

is limited to states containing some finite number of pho-
tons.

Equation (7.26) exhibits an asymptotic factorization
property of the amplitudes from which the probability
Pd (i(X) 1s constructed. This quantity Pd, (~) is the
contribution to Pd, (&(X) from the infrared-finite matrix
element (0

I
F,z,(x)

I
0). Consider next the contribution

from the matrix element (k
I F,~,(x)

I
0). The analysis of

paper II shows that the dominant singularity on the
triangle-diagram surface of the Fourier transform of this
function is normal. Thus the three-particle generalization
of the theorem of Appendix A gives

3

lim +A~(x) * m;

3/2
3I+d'X 0 ""(x (j))&k IF.p.«) I0) =F)(k)F2F3+F)F2(k)F3+F)F3F3(k), (7.29)

where

F =F (Pj( ) p p'+))

is the function occurring in (7.16), and

(7.30

Fi(k) =Fi( Pj (i)&pj (i)&k ) (7.31)

is the amplitude for the process in which a photon of
momentum-energy k is emitted by the part of the reaction

at vertex i that is represented by F,~,.
The traditional infrared analysis suggests that an in-

frared divergence might arise from the coupling of the
soft photon of momentum k onto the external on-mass-
shell charged line of the reaction at vertex i. However, the
coupling of an external photon of momentum k into F pp,
must be via a quantum-coupling Q„(k,z), which, for a
coupling into the mass-shell charged line, occurs in the
context

(p+m )Q„(k,z) p+ j)r+m

(p+k ) —m

= ( ie)(p+—m ) y„—z)&@ p+ jg+m +m zq jg'=(—ie) (p+m) y„—" +(p+m) y„—zk 2pk zk 2pk

= ( ie)—(p+m)( —p+m )

2p -k
zq jg'y„" +(p+m) 2p„—zp(2p k)

z.k
1 zi&k'

+(p+m) y—

=( —ie) (p+m)y "2p.k (7.32)

The last line follows from the facts that k vanishes, and
that p„=mu& is parallel to 1)„=z„/

I
z I, as prescribed by

(7.28).
This result shows that the quantum coupling into the

mass-shell line has one extra power of k in the numerator,
relative to the usual y& coupling. This extra power of k
eliminates the usual infrared divergence. In fact, it is pre-
cisely this extra power of k in the quantum coupling that
is the basis of the proof given in paper II that the M" (~)= (0

I
A "(j(X)P,Q "'(kX)

I
0) (7.33)

momentum-space matrix elements of F,~,(p) and their
discontinuities are infrared finite.

By virtue of the infrared fimteness of F z,(p) the pho-
tons represented by it will not lead to any infrared prob-
lems. The p;„ is assumed, for simplicity, to be the vacuum
projector. Thus the matrix element
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will be infrared finite.
Equations (7.4)—(7.11) show that Moo(AX) is a contri-

bution Pd, (~) to Pd,~(~). It has no infrared
anomalies, and hence falls off at the normal A. rate. On
the other hand, the equations

Pd (AX) =Ted (~)p;„A d (~)pr, „,
(~)= Un(~)A (AX),

(7.34)

(7.35)

and (7.33) show that the full contribution to
Pd, (AX) =Moo from final photons with k HQ arises ex-
clusively from the single final coherent state
Un(~)

~
On). Similarly, the full contribution Pd," (~)

to Pd, (~) arising from the infrared-finite matrix ele-
ment

(kn
~

A (AX)p;„A (AX)
~
kn),

where
~
k&) is

~

ki, . . . , kz) with all k;EQ, is carried
exclusively by the single final coherent state
Un(~)

~
kn). Thus if one wants to use final photon

states that give dominant contributions to the asymptotic
large-A, behavior of the probability then one cannot choose
as the basis of the final kEQ photon space the usual
momentum states

~

kn) =
~
(ki, . . . , k„)n). For the use

of these final states would introduce factors
(kii

~
Un(L (~))

~
kn) that all approach zero as X~ ao.

The more appropriate basis for the final k&Q photon
states is the set of coherent states Un(L (AX))

~
kn ): each

of these carries the full contribution to Pd, (AX) associat-
ed with the corresponding infrared-finite matrix element
(kn ~A (AX)p;„A (~)

~
kn). By using these coherent

states one obtains for the individual final-state matrix ele-
ments the A,

~ falloff property that corresponds to the
falloff property of the probabilities.

Use of these coherent states Un(L (~))
~
kn ) is dictat-

ed also by physical considerations. For the unitary opera-
tor Uri(L(AX)) incorporates into the final photon states
the quantum mechanical counterpart of the k EQ part of
the classical electromagnetic field radiated by the closed
loop L (~). These classical contributions physically
dominate the small k, large-A. behavior, and hence they
must be incorporated into the final states if the resulting
matrix elements are to have any physical significance in
the limit A,~~.

These coherent states Un(L(AX))
~
kn) may be com-

pared to those used to Storrow, Kibble, Zwanziger, and by
Kulish and Faddeev. In the closed-loop case, where no
charged particles occur initially or finally, these authors
use the normal states

~

k). But the use of these states
would, as just mentioned, give the individual matrix ele-
ments spurious damping factors that suppress the dom-
inant large-i, behavior in coordinate space and consequent-
ly disrupt the analytic structure in momentum space.

Similarly, in the analysis of the pole-diagram singularity
Storrow used coherent states that correspond to placing
both scattering centers of the pole-diagram process at a

I

U t(L (AX) ) U (L (x) ) =exp I (a* [J(L (x) )—J(L (AX)

x fixed, k ~0,
hence kx ~0,

as well as the regime

k small, x —+ oo,

hence kx~oo .

(7.36)

(7.37)

One cannot keep making k smaller and smaller as x be-
comes larger and larger, because then the conclusions
would hold only at the point k=0, where the Feynman
functions are ill-defined. The methods developed in this
paper cover simultaneously both of these two regimes.

To obtain nice factorization results for amplitudes
analogous to the factorization results for probabilities es-
tablished above let us consider the physically appropriate
matrix elements. It is only in the very soft domain k H Q
that the choice of final states Un(L (AX))

~

n ) is essential,
but any abrupt change of representation at some arbitrary
point would introduce spurious complications. Hence we
use the basis U(L (~))

~

(k i, . . . , k„)).
The effect of this new choice of basis states is to replace

the unitary operator U (L (x)) in (7.26) by

U (L (~))Un(L (AX)) U (L (x))

=U "(L(~))U (L(x)), (7.38)

where the operator Un(L(~)) from (7.5) and (7.11),
which drops out of probabilities but contributes to matrix
elements, has been reinstated.

Equation (B37) of Appendix B gives

)] ) ]expI —([J(L(x))—J(L (AX))]'a )

common point, namely, the origin of spacetime. This
choice effectively neglects effects of the factors e ' in
the expression (7.21) for the current. These exponential
factors shift the parts of the current that correspond to
separate scattering processes to ihe points x; where these
separate processes occur. Placing these separate contribu-
tions the origin is mathematically and physically inap-
propriate when the critical question is the form of a limit
in which the separate subprocesses are shifted in different
directions to infinity.

ikx,.Storrow's neglect of the factors e ' stems from an
analogous step made by Yennie, Frautschi, and Suura,
who argue that terms containing the difference factors
(1—e' ), acquire a convergence factor k in the infrared
regime, and hence can be placed with the infrared conver-
gent terms. This is an awkward step, since it disrupts
momentum-energy conservation, and hence is more than
just a shift of small terms into the residual collection. For
it makes the infrared function large where it formerly van-
1shed.

In any case this step is certainly not permissible when
one is interested in the singularity structure. For in this
case one must deal simultaneously with the regime

Xexp I
——,

' ( [J(L (x) )—J(L (iLX) )]'.[J(L (x) )—J(L (AX) )] )

XexpI —i@[J(L(x)),J(L (~))] (7.39)
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where

@(J,Ji )"=—,
' ((J+Ji )* (J—Ji ) ), , (7.40)

d4k Ap(k)( g"—")Bq(k)(g.B)Q f )I P yQ(k) (7.41)(2~)' (k'+i 0)' —
~

k
~

'
Equation (7.26) with U (L(x)) replaced by U (L (AX))U (L (x)) is called (7.26'). Arguments essentially the same as

those leading to (7.26) show that the contributions to (7.26') from terms having a product of partial currents J and Jj.
with i&j fall off faster than i(, ~, and do not contribute to the limit. What remains in the limit are three factors, one
arising from each partial current J;, i E I1,2, 3j. The asymptotic factor associated in (7.26) with vertex i is denoted by0'
~'y (4j( )P ~p '+i k (y. )). '

The effect of the factor exp[ i r—(X k)y] in (7.26') is to replace the arguments x; in the operators that contribute to
A;y (Pj(;),p;,p;+(,ka(y, )) by x; —AX;. Thus if subscript i means restriction to contributions from the partial current J;
then the classical-photon contribution to A;y arises from the operator

(U 't(L(~ —~;))U (L(x; —AX;))); =expt (a*.[J (x; —~;)—Ji(0)]) jexp{ —([J(x; —AX;) —J (0)]*.a ) j

X exp I
——,

'
( [Ji(x; —i(X; ) —J;(0)]*[J;(x;—AX; )—J, (Q)] )Q

j

&&expI ——([Ji(x;—~;)+J;(0)]*[J,(x; —AX;) —J;(0)])„j

=U (J;(0))U (J;(x;—~;)) . (7.42)

The operator in (7.42) acting in the space of photons
with momentum k&Q is unity. Thus the difference be-
tween the operator in (7.42) and the analogous operator
with 0=Q(b) =9 (i.e., b =0) is the unitary operator (7.42)
times

UQ(b)(Ji(0)) UQ(b)(Ji(x; —~;))—I . (7.43)

But the results of Appendix B entail that for any finite R
and all

x; HM;(R, ~)= Ix;:
~
x, —~,

~ E„,) & R j (7.44)

the operator in (7.43), restricted to allowed initial states, is
an operator whose norm tends to zero as b tends to zero.
But then

t

Q(b)'
~iy ( 4j (i)~pi ~pi +1 ~ka(y i ) ) =~iy( fj (i)~pi ~pi + 1~ ka(y i ) )b~O

(7.45)

exists, since the contributions from x; EA';(R, ~) can be
made arbitrarily small by taking R sufficiently large. (See
the end of Appendix E.)

The amplitude A;y(Pj(;), p;, p;+i', ka(y, )) is the ampli-
tude for the process with two charged external lines. It is
independent of the original process from which it came,
and hence can be called A (()fi,p;,p; + ),k) where
represents the set it)j(;) and k represents the set k (y, ).

As a simple example consider the case in which there
are two neutral initial particles with wave functions 1i))
and g2, and two charged final particles with physical mo-
menta —p; and p;+~. Suppose there are no external pho-
tons (i.e., no ka) and no quantum photons [i.e., F»,(x)
can be replaced by F (x)]. Then the amplitude is

4

~;(g),$2P;,p;+))= fd x;)ti)(x; —~;)$2(x;—~;)Ve ' ' 'e '+' ' 'exp ——, f J,.„(())( g& )J, (Q)

4
X2m5 (k )(e ' ' —1)(e ' ' —1)exp ——f J,. (0)( —g)'")J,.„(0)(2~)' '"

—i(x; —kX;) k i(x; —AX;) k

X
(k +iQ) —

~

k ~2

&& exp
d k Pip Pi+),p „pi~

(2m. )4 p; k p;+, k p, kg pv) Ps'+ ],v

Pi+1 k
J
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Q exp
ie d k Pip Pi+i,p &v Piv Pi+i, v

~ 2 4 —g2 {2ir)~ p;.k p;+i.k p;.k p;+i.k

(7.46)
(k +iO) ~k~

The factor exp( ip—;x;) comes from the propagator of particle i in F (x), and the associated factor exp(ip;Xik)c, omes
from the factor exp(im;c;A, )=exp[ip;(X; —Xi, )A, ] in (7.26 ) [see (7.17)]. The factor exp[ip;+i(x; —AX;)] has a similar
origin.

The first integrand in an exponential in the last line of (7.46) behaves like 5(k ) as
~

k ~0, and the integral is infrared
convergent for any finite x; —AX;.

The second integrand in an exponential has poles at p; k =0 and p;+~ k =0. In the original expression, for the full
triangle-diagram process before factorization, these poles were canceled by compensating zeros in the numerator. In the
proofs of Appendix B a particular i e resolution of the pole was introduced. One could equally well have chosen the other
i e resolution. But a more natural and convenient choice is the principal-value resolution. For this resolution never intro-
duces spurious imaginary contributions.

If the principal-value resolution of these two poles is used then one may exploit the symmetry under k ~—k to replace
the last three factors of the final integrand in (7.46) by

T

1 1

(k +i()) —
~

k
~

1

(k iO) —~k~
2i sin(x; —~;) k= —,[ 2mi—5 +(k. )+2rri5 (k ) ]2i sin(x; —~;) k .

(7.47)

In this form the spurious poles drop out, and the integrand goes like 5—(k )/k. Consequently the integral is infrared
finite. In fact, insertion of (7.47) into the final integral in (7.46) allows this integral to be expressed as

f dko f dg f d cos8 PIP Pl +

ling

( pv)
p;(8,9) p;+ i(8,9)

X — ' (k ) 'sink (x;(8,9)—~;(8,9)),
p;(8,9) p;+i(8,9)

where, for any four-vector x,

x(8,9)=x —x cos8 —x sin8sing —x'sin8cosg .

(7.48)

(7.49)

In this form the contour in k can be distorted away from the point k =0, which eliminates any possibility of infrared
divergence.

The simple case treated above is very special. For one thing, the part of diagram D that corresponds to the subprocess
in question consists of only one single vertex. A slightly more complicated example is obtained by taking the part of
some original diagram D that corresponds to the subprocess io question to be the diagram D~ of Fig. 4.

Consider again the case with no external photons (i.e., no k ), and the contribution with no quantum interactions.
Then F,~,(x) is reduced to F '(xi, x2,x;,x;+i). We shall drop the subscript i on X; and A;, and fold in the mass-shell
supported wave functions P; (p;) and g;+2(p;+2) of the charged particles, and thus obtain

~'(rti rt2 4 4+2)
4 4

d xid x2d x;d x;+i „gi(xi ~)$2(xz ~)g;(p;)g;+2(p;+2)4 4 4 4 d Pi d Pi+2
(2m )" (2~)

—ip;(r,.—XX) Ep;+2(x;+ &

—kX) D&,
XEE+

)&exp[I(p;,p;+i,x; ~)+I(p;+i,p;+2,xi+i —~)+I(p;,p;+i,x; —~~pi+i~pi+2»i+i ~)j ~ (7 50)

where

I(p,p', x)= f q +, I2m5(k )(1 cosx k)+—i2ir[5+(k ) —5 (k )jsinx. kI
(2m ) (p.k) (p'.k) (p k)(p''k)

and

(7.51)
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d4k ~
II I I II ~ I1/ I II

1(pp' p" p"', ') = P& „+, „, + „, +I' P»P P 2 (2~)4 (p k)(I- k) (P k)(p-. k) (P.k)(P-.k) (P .k)(P- k)

X I 2m 5(k 2)[1+cos(x —x')k —cosxk —cosx'k]

+i2m[6+(k ) —5 (k )](sinx k+sinx' k)+ik [—2+2cos(x —x') k]] .

(7.52)

The four-vector p;+ i is

mi+ i(xi+ i xi )i'
l
xi+ i xi I Mink ~

but any vector parallel to x;+ &

—x; will do just as well.
For all x and x' in the ball of Euclidean radius R the

terms in (7.52) that contain factors 5+(k ) and 6(k ) are
infrared finite, for reasons already given. The terms with
k are also infrared finite. In fact, the methods of Ap-
pendix 8 show that all contributions from k HQ(b) have
bounds of the form b8(R) where 8(R) is linear in R for
large R.

The supports of the infinitely differentiable wave func-
tions of the initial and final particles in p/p space are
again taken to be disjoint. Then the contributions to the
integral (7.50) from points x EA'(R, ~) fall off faster
than any power of R '. This is shown in Appendix E.
Thus the finiteness of (7.50) is assured.

The final factor in (7.50) gives the effects of the classi-
cal photons. It can be regarded as an operator that pro-
duces the modifications induced by classical photons in
the wave functions of the external charged particles. Of
course, the major effects of the classical photons come
from the operator U (I.(~)) that has been incorporated
into the state vectors of the final photons.

The first two terms in the final exponential in (7.50) are
the classical-photon self-interaction terms for the two
charged-line vertices of Di. They are represented by the
two wiggly lines of Fig. 5 that begin and end on the same
vertex. The final term in this exponential is represented
by the wiggly line that runs between the two charged-line
vertices of Fig. 5.

It is easy to pass from (7.50) to the case in which a gen-
eral diagram replaces D&. One first writes the Feynman
formula for D, that is analogous to (7.50), but with zero
as the final exponent. Then one adds to this final ex-
ponent the terms that represent the effects of the classical

photons. If the diagram that replaces D& has n charged-
line vertices then the sum over three terms in the final ex-
ponential in (7.50) is replaced by a sum over n(n+ I)/2
terms, one for each of the n self-interaction wiggly lines
and one for each of the n (n —1)/2 wiggly lines that con-
nects different vertices. If there are external photons then
one must also include the two operator exponentials of
(7.42) with J;(x;—M;) —J;(0) replaced now by a sum of
the partial currents for all n charged-particle vertices.
These operators can be represented by wiggly lines coming
into and going out of each of the charged-line vertices.

VIII. CONCLUDING REMARKS

Yennie, Frautchi, and Suura, at the end of a technical
appendix to their paper, list a number of difficulties
glossed over in their arguments, together with reasons why
their approximations seem to them intuitively plausible.
But they concluded that a rigorous proof of their result
might by prohibitively complicated.

The difficulties in the YFS arguments cause no serious
problem insofar as delicate issues can be avoided. But the
applicability of quantum and spinor electrodynamics to
physics requires that charged particles can continue to
behave like stable particles in the presence of interactions
with soft photons. Efforts to establish this property, and
to derive the closely related reduction formulas, floun-
dered, however, precisely on the delicate points not ade-
quately treated by YFS.

The present work provides a new and fundamentally
different approach to the infrared problem. It works basi-
cally with the coordinate-space representation of the
sources of the electromagnetic field, and with an operator
representation of the photons. Within this framework it
establishes an exact result analogous to the momentum-
space factorization property sought by YFs. The exact-

I
X]

~ ~ ~ ~ ~ ~

+)
Xp

————~

Xp

FIG. 4. Subprocess diagram D&.
FKx. 5. The diagram D& with added wiggly lines representing

the three classical-photon contributions to (7.50).
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ness of the result allows it to be applied in the delicate sit-
uations where one sitting right on a singularity, or needs
to know the precise form of the asymptotic behavior, in
order to establish stability and factorization properties.
Moreover, it allows gauge invariance to be fully exploited.
Once approximations are introduced, in the sense that cer-
tain terms are pushed into a generalized remainder term
that is not exhibited in explicit form, the full consequence
of gauge invariance are no longer manifest.

The problems of completing the proof of the infrared
finiteness of quantum and spinor electrodynamics, and es-
tablishing the stability and factorization properties of
charged particles, though important in principle, has
seemed unimportant in practice. For infrared problems
seem under control in practical calculations. And physi-
cists are generally confident that the physical effects of
very soft photons are negligible, in spite of the numerous
calculations that had seemed to indicate a breakdown of
the stability and factorization properties. But science is a
hard taskmaster: difficulties glossed over at one stage in-
variably crop up later. Thus the infrared problems largely
ignored in quantum electrodynamics have emerged as the
central problems in quantum chromodynamics. In partic-
ular, the problem of whether the stability of charged parti-
cles is upset by interactions with soft photons is the exact
analog of the problem of confinement: Is the stability of
colored particles upset by interactions with soft gluons?
Thus the problem dealt with in detail in Sec. VII about
the coordinate-space asymptotic behavior of an amplitude
with a closed charged-particle loop becomes, in QCD, pre-
cisely the question of whether colored particles become
asymptotically free in coordinate space.

The QCD problem of confinement is more delicate and
complex than its QED couterpart. Hence the methods
needed to resolve it will probably have to be at least as
good as those that work in QED. And they might be ex-
pected to be a generalization of the latter.

Beyond the problems of infrared divergence and con-
finement there lie other related questions to which the
methods of this paper may apply. These potential applica-
tions arise from the fact that the basic formula obtained
here organizes the infinite series solution in a way that iso-
lates a unitary factor that represents the classical-physics
background. This type of separation may provide the
technical basis needed for the full development of the idea
that quantum theory must, for both physical and
mathematical reasons, be arranged to be the calculation of
quantum fluctuations about a classical solution. More-
over, the gathering together of infinite numbers of terms
into unitary factors has the potential power of better con-
trolling divergences, since the norm of any sum of terms
that form a unitary operator is unity, in spite of any su-
perficial indication of diverge.

High Energy Physics of the U. S. Department of Energy
under Contract DE-AC03-76SF00098.

APPENDIX A

Theorem. Suppose g(p') is continuous, together with its
first and second derivatives, and vanishes for

~ p ~
& R for

some R. Let p—:mu be any fixed mass-shell four-vector.
Then

3/2

lim e' g(p')e '~ " 2m2n. 5+(p m)—2' 7

r~oo m

Xd p'(2ir) =g(p) . (Al)

Proof. Transform to the variables corresponding to a
frame in which U=(1,0,0,0). In terms of these variables
one has

U p'=p'=[m'+(P)']'"=m+f[(p)'],
where

(A2)

f[(p)']= +
2m

(A3)

(A7)

where r=p and r=
~ p ~. The integration over angles

eliminates the linear term and gives

g(f) (0)

1+ f
2&l

The introduction of the variable f in place of (p), fol-
lowed by an integration over angles, converts (A 1) to

(ir) f g(f)v fe ' 'df ~g(0),
7r 0

where g(0) =g(0), and g(f) and its first and second
derivatives are continuous at f & 0. Since

—if(v ie)~j—df0 [i (r i e)]'~—
and g(f) is continuous with compact support, the required
result (A4) is equivalent to

lima ~ hm f [g(f)—g(0)]e ' ' ' 'Vf df =0 . (A6)r~0 e~O+

Bounds on (g(f) —g(0) ) and its first two derivatives can
be obtained by writing

g(p) =g(r, &)
1' 2

=g(0)+Vg(0). r+ f dr'f dr", (r",0),
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Since the second derivative of g (p) is bounded,
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one has

g(f) . i/2 —g(0) & , cr—

1+
2&i

~
g(f) —g(0)

~

(fcm Im .

Equation (AS) also yields, for f&0,
(A10)

ig (f) i

=— — g(f) &cm /m

(Al 1)

(A12)

Letting Fbe such that

g(f)=0 for f&F,
and defining m =F+m, so that Br /Bf =2f+2m &2m
for f (F, one obtains, for f & 0,

and, for f &0,
T

i g "(f)
i

& —+ (cm '/m ) . (Af m

An integration by parts on the integral in (A6) gives

f [
—(f) (0)]i/f e if(r ie)df——

0 ,, f, e 'I' '"d I[g(f)—g(0)]vf Idf

1 (X)

. —f e '/'h, (f)df,
i (r i e)— (A14)

h.(f)=e '
d [[g(f)—g(0))~f I (A15)

However,

f e ' 'h, (f)df = f e '/'h, (f)df f e ' 'h, (—f+m. /r)df

= f e ' ' ,' [h,(f) h, (f—+n./r))—df+ —,
' f e '/'h, (f)df . (A16)

The last term in (A16) has, by virtue of (All) and (A12), the bound —,cm(rrlr) . Thus this contribution, inserted
into (A14), satisfies (A6).

The first term in (A16) can be written as a sum of two terms The fi.rst is

—,
' f e 'I'[h, (f) h, (f+m. /r))df—& ——f i

maxh', (f)
~
df, (A17)

00 e sf e e(f+n /~)——
—,f e ' '[h~(f) h(f+rrlr))df —= f e '/ — — — dfF 4 F ~f (f+~/r)'"

1

(f+~/r)'"
—lf ( 7 i~)—

F

where
~
maxh,'(f)

~

is the maximum of the absolute value of dh, (f')Idf' for f') f. The bounds (Al 1), (A12), and (A13)
ensure that the integral on the right-hand side of (A17) has a finite bound that is independent of e. Thus this contribu-
tion, inserted into (A14), also satisfies (A6).

The remaining part of (A16) is

The first term on the right-hand side of

~g(0)
~

vr d 1

4 r F dfVf

—if(w —te)[ 1 en/~]—
4 F (f+rrlr)'/'

(A18) is bounded in magnitude by

I
g(0)

I
~ F—i/2

4

(A18)

Thus this contribution, inserted into (A14) also satisfies (A6). The second term on the right-hand side of (A18) can be
written

g ~ ~

[ ~ —em /~~ +i (n /r)(~ i@)—(0)
1 —e ~e e

—if(r —ie) ~c g ) r en/7 ~

]dJ = [8 —1
4 F+n/v ~f

—&f(~—te)
F+m/r if (w i@) f- —

v o v
1/2 F+7K/1y()df

i (r ie)——
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This term vanishes when we take the limit e—+0 in (A6). Thus all the contributions satisfy (A6).

APPENDIX 8

The unitary operator U(L (x ) ) has the form

U(L (x) ) =exp( (a'.J ) )exp( —(J*.a ) )exp( ——,
' (J*.J ) )exp ——(J' J )pv2

=exp( (a.J ) )exp( (J.a ) )exp( —,
' (J.J ) )exp —(J.J )pv2

where J=J(L(x)), and the bracket products are defined in (2.18), (2.20), (2.21), and (5.8).
Let J(L(A,(X)}be abbreviated by Ji. Then

U(L (x) ) U '{L(AX) ) = U(L (x) ) U (L (M) )

(8 lb)

=exp((a' J))exp( —(J* a ))exp( ——,
' (J .J))exp ——(J' J)pv

The commutation relation

I

Xexp( —(a* Ji ))exp((Ji.a ))exp( ——,(Ji Ji ))exp —(Ji Ji &pv (82)

[(J*.a ),(a' J, )]= (J* J, )
gives

[exp( —(J'.a ) ), —(a* Ji ) ]= (J* Ji )exp( —(J".a ) ),
which gives

exp( —(J'.a )exp( —(a' Ji ) ) =exp( —(a'Ji ) )exp( —(J' a ) )exp( (J* Ji ),
which gives

U(L (x) ) U (L (~)}=—
exp[ (a* (J—Ji ) ) ]exp[ —( (J—J, )*.a ) ]exp[ ——,( (J—J, )* (J—J, ) ) ]

Xexp[ —,
' (J Ji) ——,

' (Ji J)—,'i(J* J)p—v+ ,'i(Ji J—i)pv]

(83)

(84)

(85)

(86)

= U'(L (x)—L (AX) }exp[i@(J,Ji )], (87)
where U (L) is the function defined in (Bl) without the final (i.e., Coulomb) exponential factor, and N(J, Ji ) is i time—s
the argument of the final exponential in (86). The phase @(J,Ji ) can be expressed in the form

@(JJi)= ——,
' &(J—Ji)'(J+Ji)/2)p ——((J—Ji)'(J+Ji)/2)

2

,' &(J+J, ) ,
' (J J,-»-„+ ,

' &(J+—J,)*-,' (J J, )&—-—
4f -(J„(k)—J,„(k))*(—gi'")(J (k)+J,„(k))/2 PV i +i2ir5+(k )

(2m. ) k

d k——,
' f (Jp(k)+Jip(k))* —,'( —g" )(J (k) —Ji„(k)) PV

~
—i2ir5+(k )

4f 4(J~(k) —Ji„(k))(—g"')(J„{k)+Ji„(k))/2 PV 2+iir(0(k ) —8( —k )}5(k )

(J„(k)—Ji„(k))( —g" )(J (k) +Ji„(k))/2

(k —i0) —
~

k
~

—,
' (Jp(k)+ Jig(k))( —g"")(J„(k)—Ji„(k))

(k'+ 0)'—
~

k
~

'



1408 HENRY P. STAPP

where the subscript r indicates the retarded propagator. Thus

U(L(x))U L(AX')=exp[(a (J—J())]exp[(J—Ji) a)]exp[ —,
' (J—Ji) (J—Ji))+—(J+Ji) (J—J))),],2

(89)

(x —x 1) )1 (81 la)

sgn(x; —x; 1 )=sgn(Xi —X; 1) .0 0 0 0 (8 1 lb)
The function J„(k) appearing in the integrand of (88) is

J„(k)=J„(L(x),k )

ikx, ikx; 1
(Xi Xi —1}v

(e ' —e ' ')
(x; —x; i)k

ikx, ik(x; 1
—x; ) (Xi Xi —1)v

e '(1 —e ' ' ')
(x; —x; 1).k

(812)

where J=J(L(x)) and J)=J(L(~)).
Our interest here is in the restriction

Uri(L(x))Uri '(L(~)) of U(L(x))U '(L(AX')) to the
soft-photon region Q. This restriction is made by restrict-
ing the domain of integration to points k in Q. The in-
tegrals occurring in (89) when restricted to any bounded
region 0 are all well defined.

The variable x will initially be confined to the region

W(R, ~)—= Ix ER "; lx; —~; l E«)(RI, (810)

where R &0 is fixed. The time components of the time-
like differences Xi —X, 1 are all taken to be greater than
unity. Then for some A ~ 1 one has, for all x in A'(R, AX)
and all A, &A —1,

t

The superficial pole at (x; —x;, ) k =0 is canceled by the
like factor in the numerator. Thus one can shift the con-
tour infinitesimally away from the zero of (x; —x; 1) k in
any convenient manner. Here the contour is fixed by re-
placing (x —x; 1).k by

(x; —x; 1) k+iOsgn(X; —X; 1 ) .0 0 (813)

Thus the k contour is shifted into the upper-half plane.
The denominator zero of J)z(k) is treated in the same
way, as are the zeros of J&(k)+Ji„(k). Thus the k con-
tour is distorted always into the upper-half plane.

The domain Q will be taken to be of the form

I l

k
l

&2b,
l

k
l

&bj, and the notation

6 —=x —~.l l i (814)

is introduced.
Consider first the contribution to @(J,J) ) coming from

the part of Ji„(k) corresponding to the line from 1 to 2 in
Fig. 1, and from the part of J)&(k) corresponding to the
line from 2 to 3. This contribution is minus one times

—ikkX2 ikkX( — ikkX3 ikkX2
+(2, 1)(3,2)(Ji ) n (2m. }

X
(X2 —X, ) ( —gi'")(X3 —X2)IJ

((X2 X1) k+10)((k'+«)' —
l

~
l
')((X3 X2} k+10)

(815)

By virtue of the time ordering X3 )X2 &X] ln Fig. I one may push the k contour a finite distance into the upper-
half plane without encountering any exponentials that increase as A, —+ oo. One may take it to be a semicircle of radius
2b. The integrand and integral are then uniformly bounded over the domain A, )0.

Consider next the contribution that arises from replacing J1„(k) in the above expression by J„(k):
e d k —ikix2 —ikkx) ikkxq+ikaq ikkx2 ~ika2

@I2,1)(3,2) Ji J =
ii (2m. )

(X2 —Xl )p( —g )(X3—X2+53k —52K )v
X

((X2—Xi ).k+i 0)((k +i 0)
l

k
l

)((X—3 —X2+ iI13A,
' —62', ') @+i0)

(816}

For A, & A one may again distort the k contour into a semicircle in the upper-half plane and obtain an integrand and in-
tegral that are uniformly bounded over A, & A.

Consider now the contribution to the integral in (816) that arises from the terms (b, 3A, ') and (b, 2A, ')„. Each of
these contributions has, by virtue of the bound

(817)

a bound of the form bB, where B is a number that independent of b and k, but can depend on R. For A, & A one may, for
points on the semicircle

l
k

l

=2b, write

((X3 X2+63A k2A, ') k) '=((X3—X2) k) '+ —f(kX)] 1

with bounded f(k, A, ). For the second term one may again use (817) to obtain a bound on the contribution to (816) of the
form bB. Thus one has
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e' d4k
n (2m)

X
(X2 —X1) ( —g" )(X3—X2)

((X2 —X1) k+iO)((k +iO) —
~

k
~

)((X3—X2) k+i0}
(818)

where the magnitude of the term O(b) is bounded for all b &0 and all X&A by an expression of the form bB 8u. t then
the bound

/e'" —1/ (
/

kb,
/

gives

/@' —C
/

&bB (820)

for all b &0 and all A, )A. Here 8 is some finite number that is independent of b and A, , but can depend on R. In what
follows B will be a generic number with these properties: it need not always be the same number.

Consider next the contribution to (I)(J,J1) in which the roles of the lines from 1 to 2 and 2 to 3 are interchanged:

(J )

2 —ik2.X) —ik2X2 ikAX2 ik2X)
4

(3,2)(2, 1) 1 n (2~)'

(X3 —X2) ( —g"")(X2—X))„
X P

((X,—X2) k+iO)((k +iO) —
~

k
~

)((X2—X1) k+iO)
(821a)

and

ik2X3 ik2X2 —ik3X2+ik42 ik1X)+ikh)
(3,2)(2, 1) 1 ~

2 n (21r)'

(X3—X2 )p( —g )(X2 —Xl +62k —411 )v
X (82 lb)

((X3 X2).k+i0}((k +iO) —
~

k
~

}(X2—X)+62k, ' —5 A, ') i+i 0)

Consider the difference @'—N of the integrals defined in (821b) and (821a). For A, & A one may complete the k contour
by adding in the lower-half plane a semicircle at

~

k
~

=2b The argu. ments that led to (820) show that the contribution
from this semicircle also has a bound of the form (820).

The completed contour can now be collapsed onto the poles, which are located at k =+
~

k
~

. This leaves a d k in-

tegration in which the three remaining denominators all contain factors of
~

k
~

. With the factor
~

k
~

' separated out the
denominator is left in a form that remains finite in the angular integration, due to the timelike character of the vectors
(X;—X; 1) and (X;—X; ) +b„A, ' —b, ; ) A, '). Thus the quantities b,2A,

' and b, 3A,
' in (812b) again give corrections

of order }(, , for A, & A, and by virtue of (817), give a contribution to the integral that enjoys a bound bB The differ. ence
of the remaining integral in (82lb) with the function (I) defined in (82la) again enjoys a bound bB, due to (819). Thus
the difference N —C) of the functions defined in (821) enjoys a bound of the form (820).

Consider next the contribution

e d k —'k2X, —k2X, k3.X, kZX,
(3,2)(3, 1) 1 n (2~)'

X
(X3 —X2) ( —g"")(X3—X1),P

((X3 X2) k+i 0)((k +i 0)
~

k
~

)((X3—X1 ) k +i 0)

It will be taken together with

e d k —ikAX3 —ikh3 ik2Xz ik)3.2 i—kAX3+ ik—h3 Ik) X) +ik)), )

(3,2)(3, 1) & (2~)'

(822a)

X
(X3 X2 +A3}( 62K, ') ( —g"")(X3 X1 +63K 61k ')

P

((X3 X2+ 43K 52K. ') k+10)((k +10) —
~

k
~

)((X3—X1 +63', ' —h)A. ') k+i 0)

(822b)

Consider now the difference N' —N of these two functions. Due to the inequalities X3 &Xz &XI one may, for A, )A and
for the terms containing factors exp(ik~3) or exp(ik~3+ikh3), distort the k contour into the upper-half plane and
obtain, as before, for these contributions to N —N a bound bB. For the remaining terms, which contain the factor
exp(ikkX)) or exp(ik~) +ikb, )), one can complete the k contour by a semicircle in the lower-half plane: the added
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contribution to O' —N has, as before, a bound b8. The completed contour can now be contracted to the poles. The poles
at k =+

I
k

I
again give terms with a bound bB

The contribution to the integral in (822a) from the pole at (X3—X, ) k =0 is

le e . d k iks(x3 x2) (X3 X2 )„(—g&")(X3—X])„@ 3,2)(3, ])(J]) = ( —]')
3

(e ' ' —1)
((X3—X2) k)((k ) —

I

k
I

}(X3 —X] )

where

(823a)

(X3—X]).k
k 0 0 ~

X3 —X)

The companion pole contribution is
2 3@fp)]e(g)e()dk( ikA(X3 —X&)+ik(6352)1)

2 n (2m)

(X3 —X2+ ~3&-]—&2&-])„(—g~")(X3—X, +S3X-]—S]X-])
(X3 —x2+~P ' —&2& ') k((k')' —

I

k
I

')(x3 —x, +b, 3X
' —b,x ')

(823a')

(823b)

(X3—X]+b, P. ' —b, ]A, ').k
k = (823b')

The terms (b,3A,
' —b. ]A, ') (hp. ' —h2A, ')&, and (gA, ' —b]A, ') give contributions to (823b) having a bound bB,

by virtue of (817) with X] replaced by X3. The factor ((k ) —
I

I]:
I

)
' evaluated as specified in (823b') is nonzero in

the domain of integration and can be expressed as its value at A, = co plus a correction term of the form f(k/A, )/g, where

f is bounded in the domain of integration for all A, )A. This term f/A. gives a contribution to the integral in (823) that
has a bound bB, by virtue of (817) with X] replaced by X3.

Insertion of the value of k specified in (823b') gives

k (X3—X2+b, 3A,
' —b,2A, ')=k V(A. ')=k V0+k WA,

where

(824a)

X3 X2 X3 X)
V0 k (X3 X2)

I k.(X3 —X] )=0 k ]] 0 + 0 0 (X3 X2 )
X3 —X2 X3 —Xi

(824b)

W — (k3 52)+(Z3 —b, ])

0 0

+(X3—X])
X3 —X2

'
X03 —X02+ ~03k-1 —~02k-1

X3 X]+A3A

b3 —5) X3 —X20 0 0 0

X3 X] (X3 X] + A3A. A]A, )
(824c)

Thus the difference of the pole terms shown in (823a) and (823b) can be expressed as

+'] "—@] "=0(b)+(X3—X2)p( —g&")(X3—X] )„(X3—X])

2 d kx ( —])f
(2~) (k )

I

k
I

k.(x] —x] ) =0

iA, k ~ v
( —1)

k.v

ikk Vo
e

k Vo
(825)

Let u =
I
V(A, ')

I
=u(k ') and u0 ——

I
V0

I
=u(0). Let cos9 and cos80 be defined by k V=ku cos8 and

k V0 ——kU0cost90, respectively. Then one may define

2' kf (u cosOqA ) =u f dp k.]x x ] 0
cos]] rixed

(826a)
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(826b)fk(
k(X —X )=a i

where (8,$) and (80,$0) are two sets of angular coordinates. The function fo(vocosO) is the limit of f(v(A, ')cosO, A, ')
as X-' O, and

f(v(A, ')cosO, A, ') =fo(vocosO)+A. 'f)(vocosO, X '), (826c)

where f((cosO, X ') is bounded for A, &A and 1&cosO& —1. Because of symmetry only the real parts of exp(ikk V) and

exp(iA. k Vo) contribute to the integral in (825). Thus, using (826), one may write ( i )—times this integral as

( —1)( —1) b ( e ikkv cos()

f dk f d cosO vf(v cosO, A, ') —vofo(vocosO)
(22r) ku cosO kuocosO

(827)

By virtue of the boundedness of f(x leak, k ') and f ( )x/Ak, .i(') both integrals in the last line of (827) enjoy bounds of
the form bB. Hence the difference iI)'~"—4)( "of the pole contributions defined in (823) enjoy a bound of this form.

Consider next the contributions

and

2e d k
(

—ikkx3 ikkx2—
)(

+ikkx3+ika3 ikkx)+ika))
(3,2)(3, 1) 1 ~

2 (21r)
e —e e —e

X
(X3 X1) ( —g" )(X3 X)+63k A)A, ')„P

((X3 X2).k+10)((k +10—) — k )((X3 X(+A3X ' —b (A, ') k+ io)

2 4
ii

(J J )
e d k

(
tkkx3 —ika3 —ikkx( —ika) ikkx3 ikkx2

(3, 1)(3,2)
(2m )

4 e —e e —e

X
(X3 X1 + k3A A(X '

) ( —g"")(X3 X2 )„P

((X3 X)+~3~ ~1~ 1) k+1o)«k'+1o)' —
l

k
l

')«X3 X2) k+10)

(828a)

(828b)

In C) one pushes the k contour into the upper-half plane for the terms with exp(ikkX3+ikb, 3), and completes the con-
tour in the lower-half plane for terms with exp(ii(kX(+ikb, (). In iI)" one pushes the k contour into the upper-half
plane for the terms with exp( ikkX( —ik,A)) and co—mpletes the contour in the lower-half plane for terms with
exp( —i A,kX3 ik63) —The i.mportance of this grouping 4&"—&0 is that the contributions from the poles at
(X3 —X1 +b 3A.

' —b, )A,
'

) k =0 cancel exactly, by virtue of the antisymmetry of this pole contribution to
For the remaining partial cancellations that give the bounds of the form bB one groups ix) of (828a) with

d k ikkx3 ik—b3 ——ikkx2 —ika2 ikkxs ikkx)
(3,2)(3, 1) i 1 (2')

X
(X3 —X2+ b3A, —b2 ) ( —g"")(X3—X)),p v

((X3 X2++3~ ~2~ ') k+10)((k'+ o)' —
~

k
~

')((X3 —X ) k+10)
(828c)

The proof of the bound
~

@'—@
~

(bB goes as before, except that one need not consider contributions from the poles at
(X3 X1 +63K 5)k ' ).k =0 and (X3—X1 ) k =0, due to the cancellation mentioned above, and the analogous can-
cellation between the poles of (I)I3 2)(3 1)(J,J1) and @('3'1)(3 2)(J(,J) at (X3 —X1) k =0.

Consider next the contributions to N(J, J)) coming from the (3,1) contribution to J(,(k) and the (3,1) contribution to
J1„(k):

d k ikks —i—kkX) ikkX3 ikkX( (X3 X1 )is( g )(X3 X1 )s
@(3 1)(3 1)(J1) & (2~)' ((X, X, ) k+iO)'((k'+1O)' —

~

k
~

') (829)

In the contributions with a factor exp(ikiM3) one can move the k contour into the upper-half plane without encounter-
ing any exponentials that become large as A,~ 00. Thus one finds a uniform bound as A,~ oo. The remaining terms are
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e d k —ikk(x3 —x] ) (X3 X] )p( g )(X3 X] )
@(3 ])(3,1)(J])

((X3—X]) k+iO) ((k +iO) —
~

k
~

)
(830)

The (X3 —X]).k contour in (830} can be completed by a path in the lower-half plane, and then contracted to the poles.
The poles at k =+

~

k
~

give contributions that enjoy a bound of the form C+Dln(b7()8(, bk 1—). The contribution
from the double pole arises from the derivative of the remaining factors, evaluated at the pole. This derivative acting on
the factor k Xn(k) gives no contribution, due to the zero in the numerator, but acting on the exponential it gives the
contribution

e2 g(X3 X] ) ( gP )(X3 X] ) ii3k 1
@I3,1)(3,1) 0 0 02 (k')' —

~

1" ~' k.(x, x, )=o
(831)

This contribution to (I& increases linearly with the distance (AX3 —AX] ). It gives a contribution to expi4 that is the
same as that of a mass term. The magnitude of the effective mass shift induced by this term equals the classical-photon
contribution to the usual lowest-order Dirac-particle self-energy diagram, apart from the factor of ——, stemming from
the occurrence of this factor in ——,

' J».
The Dirac-particle self-energy counterterm has not yet been taken into account. It cancels precisely the above self-

energy contribution to @:one may omit the self-energy contribution to the operators U(L(x)), and consider the mass m
to be the physical mass of the particle.

Consider next the contribution to iI&(3 ])(3 ]) coming from the (3, 1) part of J»(k) and the (3,1) part of J&(k):

e d k ikkx—) —ikkx] ikkx, +ika3 ikkx]+ikh]
(3, 1)(3, 1) 1~ r] (21r)

X
(X3 —X] ) ( —g"")(X3 X] +A3/A, —5, ] /i(, )P 1

((X X ).k+, 0)((ko+;0)
~

g
~

) (X3— 1+ 3/I, —b, ]/A, ) k+iO
(832)

In the two terms containing exp(ikkX3+ikb3) one may distort the k contour into the upper-half plane. They combine
with the like contributions to (829) to give a difference @ —&0 whose magnitude enjoys a bound bB In the .remaining
two terms one completes the k contour in lower-half plane. This contributes to N' —N a term with bound bB. Then
contracting the completed contour to the poles one obtains from the poles at k =+

~

k
~

contributions to 4' that com-
bine with those of N to give contributions to 4 —N with a bound bB. The other pole gives a contribution to N of the
form

e . d k ikh3 ikh] (X3 —X] )„(—g"")(X3 X] ++3i( 4]A ) 1
@I@])(31)(J],J)= ( —i )

& 3 (e —e )n (2~) (X,' —X,')[(k')' —
~

I
~

'] (b.3/1, —b, ]/A, ) k

(833)

(X3 X] )p( g )[A(X3 X] )+b 3
—b ]]„

( —]}
(X —X )[(k ) —~k~ ]

(834)

where k is evaluated by using
~

C&n(J,J])
~
&bB, (836)

(X3 —X]) k=— (835)

This contribution comes from J»(k)( —g" )J,(k). The
similar contribution from J&(k)( —g" )J] (k) is obtained
by replacing k by —k. These two integrals are equal, be-
cause of the symmetry of the integral under the replace-
ment of the variable k by —k. Thus their difference van-
ishes. Hence the only contributions linear in k come from
the terms J]&(k)(—g" )J] (k) and J&(k)( g" )J (k). —
The contributions from these two forms that increase with
k cancel, even without considering the self-mass counter-
terms. And the remaining terms have a bound of the
form bB Thus the sum .of the (3,1)(3,1) contributions en-
joys a bound of the form bB.

A11 remaining contributions succumb to the methods
shown above, and one obtains the bound

where B is some number that is independent of b and A, .
According to (87) one has U(L (x) )U '(L (~))= U'(L(x) —L(~}}exp(i&). Transposing the two opera-

tors on the left-hand side gives

'(L(~))U(L(x)) = U'(L(x) —L(~))exp( —i@) .

(837)

Ur] '(L(M))Un(L(x))=Uexp[ i@i](J,J]—)],
(838)

U=exp((a* J) )exp( —(J* (2 ))exp( ——,
' (J* J) )

(839)

and J represents the vector function with components
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3

J~(L (x) L—(~),k )=e g (Xi —X; i+6;A, ' —b, ; ii, ') k

(X;—X; i) k
(840)

In calculating U this function J is evaluated at k =0. Owing to the spacelike character of (X;—X;,) and

(X;—X; 1+6;A, ' —6; ~A. ') each of the denominators in (838), evaluated at k =0, is
~

k
~

times a function of angles
that is nonvanishing over the physical domain of integration. Thus for k& A and physical k satisfying k =0 one may
write

(Xi —X; i+bA, ' —b, ; )A, ')„
(X;—X; i+6;A, ' —b.; iA. ') k

(X;—X; i)q 1 fq(A, , 8,$)
(X;—X;,) k (X, —X, , +S,X-' —S,

N=(( J' J) )' (842)

is of order b.
One may introduce a set of orthonormal basis functions

f;(k) over the portion A of k space such that the first of
these functions is f ~ (k) =J(k) /N. Then the operator U of
(839) has the form

U(N)=exp((a*. f&))exp( —(f &
a)N)exp( ——,'N ),

(843)

where X is order b.
In the formula for transition probabilities the contribu-

tion from A„(M ) has, according to (7.2), (7.3), and (7.4),
a factor

F(N) = ( U(N)e
' ' In )F,~,~;„n —. (844)

To calculate the dependence of F upon b one may intro-
duce the coherent states '

where fz(A, , 8,$) is bounded for A, & A and (8,(t ) in the
physical range. This expression (841) may be inserted into
(840). The second term of (841) then gives a contribution
to J„(k) that is bounded for A. & A and (8,$) in the physi-
cal range. The first term in (841) gives a contribution to
(840) that combines with the second term of (840) to give
a contribution to J&(k) that also is bounded for A, & A and
(8,$) in the physical region.

Because J(k) is bounded

z?
The normalization factor 1V is of order b. But what is

Consider first the contribution to (844) coming from
the part F p Q of F p Q that corresponds to the original di-
agram D. This factor F pppQ gives no contribution to the
photon space operator. Thus the amplitude of state

~

z) is
given by the decomposition'

d z
pinQ z z pinQ . (849)

Now the expectation value of the number of photons in
the state

~

z) is
~

z
~

. ' And the expectation value of the
energy in this state is

E=z Ei, (850)

-b. (851)
By the principle of equipartition of energy the energy

residing in each low-energy mode of the photon field
should be approximately the same. Thus one should ex-
pect the E in (84a) to be roughly independent of the mode.
But then the expected dependence of z on b is given by

where E j is the expectation value of the energy in the state
(a f ~ )

~

0). Since the wave function f, (k) in this state
is -8(b —k)/b the energy E& is

& dk'
E) —f k (1/n)

k

)
(aa f, &z (fa~.a)sa a~2 —

~
) (845) iz i

-b 1/2. (852)

But if (z
~
F, ,~;„n is concentrated near values of z satis-

fying (852) then (847), (848), and (836) show that
U(N)

i
z) =

~
z+N )e (846)

~F(N)
~

—+0 (853)
Thus for small N and @one has

(U(N)e ' —1) ~z)= ~z+N) —~z) iC& ~z)—
——,'N(z —z') ~z) .

The vector iz+N) —iz) is small for small N and
N ~z)":

i (z+N ) —
/
z ) [

(M2(
i
z

[ + [
z+N

)

)'~'N'~' .

as b~ 0. In fact, one could tolerate a growth as large as
iz

~

-b '+ (e&0) and still obtain the result (853).
The results in paper II will show that the very shoft

photons emitted and absorbed by the operator part of
F», (x) produce only very mild effects that do not upset
this result (853).

The bounds obtained above refer to the contributions
from the points x in

(848) u(Z, m)=(x; ~x, —m, ~E„„&Z) . (854)
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To obtain a bound on the contributions to A„(~) from
points outside %(R,LAC) consider first the points x outside
the set A'(A, ",AX), where g=0.01. And consider initially
the part A„(AX) of A„(~) that comes from the
F (x) part of F,~,(x).

Equation (7.3) shows that the operator part of the in-
tegrand in A„(~) has norm&2. And the function
F (x) is bounded. (Ultraviolet cutoffs are assumed. ) The
product of the wave functions falls off faster than any
power of

~

x —A3C
~

. Thus for any e&0, however small,
and any C&0, however small, one can find a A(e, C):—A&

such that for all A, & A& the sum of contributions to
A,, (AX) from points x outside W(iP, ~) is an operator
wtth norm less than (e/4)CA,

For the remaining points x in &(R,AX) one uses the
main result of this appendix: for some fixed A and for
any A, however large, the norm

~
U„(,) -'(I.(m) ) U„(b)(L,(x))—1

~

tends to zero with b uniformly over the set

[(&,x);A, & A,x HA'(R, ~) I .

(858)

This constant A can be made larger than A~ and A2.
Then combining this bound on (858) with (856) one con-
cludes that for some sufficiently small b=b(e, c,R) &0
the contribution to A „(AX) for points
x HW(R, ~)(A, & A) satisfies

(855) i~rem(~4(~, ~) I
& (859)

Consider next the contributions to A,, (~) from
points x inside W(A, ",AX) and outside W(R, ~). The
operator part of the integrand still has norm&2. The
function ~F (x)

~

has, for all points xHW(A. ",~) for
A, & A2»1, a bound of the form

~

F (x)
~

&C'A, ~ [x H.%'(A,",AX)A, &A2] . (856)

Inserting the bound 2C'k ~ on the norm of the parts
of the integrand other than the wave functions one may
obtain a weaker bound by extending the region of integra-
tion of the magnitude of the product of the wave func-
tions to all points x outside W(R, ~). The faster than
any power falloff of the absolute value of the products of
the wave functions ensures the convergence of this new
bounding integral. This procedure gives a bound that de-
pends on k only via the factor k ~, and that falls off
faster than any power of M, due to the falloff of the abso-
lute value of the products of the wave functions. Thus for
some sufficiently larger R the contribution to 2„, (~)
from points x inside W(A.",i') and outside M(R, ~) has
a bound of the form (e/4)CA,

~

~ rem(~)~~uIgri g~) I

Then the sum of (859), (857), and (855) gives

~A,, (~)
~

&eCA, ~ (X&A) . (860)

The constant @&0 is taken to be the number occurring
in (7.13), and the constant C is constructed from the F (x)
parts of the three functions defined in (7.45). [See also
(7.26).]

The above discussion dealt with the part A,, (~) of(~). However, the good infrared properties of
F,~, ( )xensure that the arguments carry over to the full
operator A„(~). In particular, the crucial property
(856) holds also for F,z„( )x, and the soft photons emitted
and absorbed by I,„, do not upset the required operator
properties. A detailed justification of the extension to
F,~, ( )xdepends on the detailed results to be described in
paper II.

APPENDIX C

The self-energy and wave-function renormalization ef-
fects of classical photons on charged-particle propagators
are calculated in this appendix.

The starting point is the one-particle propagator with a
single classical-photon correction:

2 - 2 +n (2~)' k'+iO (z.k)' P—m P'+& mP mP—mP—@™—P ™—
(Cl)

The two terms arise from the cases in which the photon enters the charged line before or after the point at which it leaves
this line, respectively. The two terms are equal if the integration region 0 and the factor (z k) are invariant under the
transformation k ~ —k.

A double application of the Ward identity (2.8) gives

e dp;~, dk 1 1

(2~) n (2~) k +iO (z k)

+ —+ ( —k') — +1 1 1 1

p+ k' mp —m p——m p —m p —1g' —m

(C2)

If (z k) =z (z k) is resolved by the principal-value rule, or has the form (z k+iO)(z k iO), and is—therefore
symmetric under k~ —k, and if the region A is symmetric, then the two terms with double pole (p —m) are individu-
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ally zero by symmetry. In any case they cancel and leave

4 ~ —ipz 2 4 z ( —"')zdp «d« i g ~( 2+ i—kz+ +ikz)
(2m)4 p —m 2 n (2m) k +iO (z'k)(z'k)

=SF(z)i A(z), (C3)

where

@vanzp &
—g &z& ikx~ ikx )

2 n (2m. ) k +iO (z.k)
d'k i( —g~ ) dx e' dx'e

Q (2 )4 k2+ '() zi i zi

Inclusion of the contributions from all classical photons gives

sF' sF(z)e'"—",
which is closely connected to (2.14) and (2.17).

The function b, (z) is

(C5)

Q(Z) — f (e ikz+e +ik—z 2)n (2m. ) k +iO

zAm —+a+ib+ r(z)+is(z), (C6)

where, for z ~0 and z ~0, and with co=+(k k)'~,

b, m = f 2vr5(z. k ),—e' d'k
n (2m) k

e' d'k 1 1 1 1

n (2m) (k +i 0) co (z.—k+iO)2 (k iO) co —(z.k ——iO)

e f d k 2vr5(co+k ) —2m5(ai —k )

n (2m) 2'(z k)

1
—ikz

1
r(z) =

4 0 ~ 2 2 ~ ~ 0 ~ 2 2n (2m) (k +iO) co (z k—+iO) (k i 0) co —(z k ——iO)

(C7)

(C8)

(C9)

(C 10)

s(z)=
—e f d k 2n5(co+k )e' 2m5(co ko—)e-

n (2m) 2'(z k)
(C 1 1)

The quantity Am is a mass shift, and a is a wave-function
renormalization. The quantities b and s are zero if Q and
(z.k) are symmetric under k~ —k. The function r(z)
tends to zero as z tends to infinity.

The self-energy contribution (C7) is the classical-photon
part of the full self-energy. As such it is canceled by the
classical-photon part of the self-energy counterterm.

In the context of the calculation of (7.20) the above cal-
culations take into account all contributions in which
there is a double pole (z k) . Taking together all four
contributions of this kind yields the numerator factor
( —2+e' +e ' ), which vanishes for z k=0. The van-
ishing of the numerator at z.k =0 is important: it means
that the derivative associated with the double pole (z k)
acts only on the exponentials in the factor
( 2+ eik z+ —ik.z).

To take advantage of this numerator zero one should, in
the calculation of (7.20), initially combine all double-pole
contributions in the way done here, and then afterward as-
sociate the z-independent contribution a/2 with the vertex
on each end of the line under consideration.

At a later stage of the calculations [cf. (7.38)] the
coherent states generated by U(L(~)) are introduced,
and the operator U(L(x)) is replaced by
U '(L (~)U(L (x) ). The various contributions to
U(L(x)) from the terms J;*JJ with i&j are either mass-
renormalization terms, which are canceled by counter-
terms, or do not contribute in the large (x; —xJ ) limit, or
have the form e', with a independent of x. These latter
terms drop out of U '(L(~))U(L(x)). Thus only the
J;*J; terms survive. For each of these individual terms
J J; one can perform the transformation shown in (7.42),



1416 HENRY P. STAPP 28

in order to obtain the results given by (7.47) and (7.52).
Note that no double poles appear in these final formulas.

APPENDIX D

The purpose of this appendix is to show that the contri-
butions to the probability Pd,~(~) from the J; JJ (i&j)
contributions to the phase @ (L(x)) defined in (7.20a)
fall off faster than A,

The full current J&(L(x),k) defined in (7.21) is a sum
of three terms, one for each line of L(x). Thus J"J
decomposes into nine terms. The diagonal terms, which
correspond to the contribution from the same line in both
J and J*,were dealt with in Appendix C.

Let JJ be the contribution to J corresponding to the line
segment of L(x) that runs between vertex i and j:

a,. a.
JJ&(L(x),k)= ie — (e ' —e ') .

x —x .kl J
(D 1)

Consider first the points x in W(A.",~), for A, & A&&1,
and 0&g«1. Then x3 &xz)x1, and the k contour
may therefore be distorted into the lower-half plane for
the term J32J21 and into the upper-half plane for the
terms J21J32. Since there are no actual poles at the points
(x; —xj).k=0 this distortion is allowed, provided one
adds appropriate contributions 5+—(k ) corresponding to
the poles of k that have to be crossed. These 5 +—(k ) con-
tributions are similar to the ones already discussed in con-
nection with (7.20b), and give faster than A, falloff.

With the contours distorted in this way there is ex-
ponential falloff as A,~ ao for the J,*JJ (i&j) parts, except
for the contributions from the ends of the ko contours.
But the end-point contributions fall off linearly with A,

as one sees from the fact that

( iA)J —e'"
, dk=(1 —e '

) (D2)

tends to unity as X tends to infinity with e fixed.
Having established the linear falloff of this integral the

rest of the argument proceeds as in the text: The bound
CA. + " on the remaining factors in Pd, (AX) of (7.18)
arises from the O'A, ~ bound on

~
F,„,(x)

~

for x in
A'(A, 'i, ~), and from the bound C"X" on the volume of
A(A, ",~). Thus for q & —, the A,

' falloff overcomes the
k " increase, and one is left with a better than A, falloff.

For the term J32J» one may distort the k contour into
the region

Ik;Imk. (x3 —xi) &0,Imk (xz —xi) &0,Imk (x3 —x2) &()] .

(D3)

This distortion into the imaginary k space has a spacelike
direction, but yields the same A.

' falloff that was ob-
tained above for the pure timelike distortion. The rest of
the argument then follows as before.

For the term J»J32 one distorts into the image of (D3)
under inversion k~ —k. The other terms are dealt with
similarly. In this way every J,*JJ(i&j ) part of J'J gives a
contribution to (7.20a) that falls off at least linearly in

', and hence a contribution to Pd, (AX) that falls off
faster than A,

APPENDIX E

pi a + sup pfi ~

pi,j (a, i ) + supp+ij (a, i ) ~

(E2a)

(E2b)

pea —pI,J(a, i ) p& +1,g(a, & +1) (E2c)

Equation (E2c) expresses momentum-energy conservation
at vertex i The conditi. ons (E2) entail that F [g] van-
ishes if momentum-energy conservation P':P' j ( )—P;+1 j(;+1) fails by more than the tiny amounts corre-
sponding to the tiny supports of the functions X;, and g;.

Consider first the Feynman coordinate-space function
F(x) corresponding to the diagram Di of Fig. 4. Intro-
duce the following relabeling: let i =(1,2, 3,4) label cycli-
cally the internal lines of D1, and also the vertices of D1.
The function F(x) is then essentially a product of the four
Feynman propagators D;(x; —x; i), one for each of the
four internal lines of D1.

Each propagator D; (z; ) is expressed as in integral over a
momentum-energy four-vector p;. A partition of unity is
introduced into each P; space. For each pair (i,j ) the cor-
responding partition function X,J(p;) is an infinity dif-
ferentiable function of tiny compact support centered at
p; =p,j. Consequently, each partial propagator

—EP.Z-
l

D;, (z;)= J d p;, , X;,(p;) (El)
p; —~s +&0

will, by virtue of the result proved in Sec. IV 3a in the first
citation of Ref. 8, fall off faster than any inverse power of
the Euclidean norm of the four-vector z; for all directions
outside the set of "casual" directions C,J. This casual set
CJ is the set of (signed) directions of the set of covariant
four-vectors p; that lie in the intersection of the mass-shell
surface p; =m; with the support of X;J(p;). All direc-
tions in the casual set C,J will lie close to the direction of
PJ The ra. te of falloff of DJ(z;) is uniform over any
closed set of directions of the four-vector z; that does not
intersect C;J. Each casual set C;J can also be considered to
be a closed spacetime cone minus its apex at the origin.

The function F[f] is obtained by folding F(x) into the
four coordinate-space wave functions g;(x;) corresponding
to the four external lines of Di. Each itj;(x;) is the Fourier
transform of a function g;(p;) =g,' (p; )6+(p; —m; ) or
P,'(p;)5 (p; —m; ), where P,'(p;) is an infinitely differen-
tiable function of (say tiny) compact support around
p;=P;(P; =m; ). These four supports define four four-
dimensional closed casual bi-cones C; (i =1,2, 3,4), which
are taken to be disjoint, except at the origin. [The sup-
ports of the itj,' (p; ) can be made tiny by other partitions of
unity. ]

The separation of each propagator D; into its parts D,j
induces a separation of F(x) into a finite sum of terms
F (x ). Let {ij (a,i );i E ( 1,2, 3,4) ] specify the four func-
tions D,z(a, i) corresponding to a. Then a transformation
to momentum-space shows that the function F [g] van-
ishes unless there is, for that o., a set
{p;,p; ~;J~,'i =1,2, 3,4] such that, for all i H(1,2, 3,4),
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Let the nonvanishing functions F~[P] be those with a
in the set A. The integrals F [1t],a CA, can be reconvert-
ed back into coordinate space, and one can then examine
the contributions to the x;-space integrals from regions in
which one or more of the four points x; tends to infinity.

For any F [f],a HA, one has approximate energy-
momentum conservation at each vertex. This approxi-
mate energy-momentum conservation together with the
stability conditions on the masses of the stable particles,
and the three-particle character of the vertices of D&, en-
tail that for any a&A and any i H(1,2, 3,4) either

. ~ .2= .2 =suPPXi j(a,i) ~ Ipiipi mi (E3a)

or
2 2)supp';+ & j~ I+ & ~

(1 IA+ 1,'pt+ t ™;+,) =g (E3b)

provided the supports of the functions X;j(p; ) and
g;(p; ),i H (1,2, 3,4), have been taken sufficient small.
Consequently, for each i H(1,2, 3,4) and any a EA, at least
one of the two partial propagators D; j~;~(z) or
D;+& jI;+&~(z) will fall off faster than any power of

~

z
~

E«& uniformly over all directions.
This uniform fast fall-off of at least one of any two

neighboring pair of partial propagators, D; j~;~(z;) or
D;+& j~;+&~(z;+&),a&A, coupled with the uniform faster
than any power of

~
x;

~

' falloff of each coordinate space
function P;(x;) on compact sets lying outside any closed
bi-cone C centered at the origin that contains in its interi-
or the set of casual directions C; [cf. Ref. 7, Eq. (2.17)] en-
tails the rapid (i.e., faster than any power of R ') falloff
of the contribution to the x-spin integral for F [g] from
points x = (x ~,xz, x3,x4 ) lying outside the set

A"(R,~)= Ix;
~
x; —~

~
&R, all i H(1, 2, 3,4) I .

To prove this asserted falloff property one may separate
the x =(x~,x2,x3,x4)-space integration region into four
parts P;, where the condition ~X;

~
E«&& ~Xj ~

E«& (all j)
holds for all x in P;. Then the 16 variables (x ~, . . . , x4)
of x can be transformed to one radial variable R, which is

~
x;

~ E«~ in P;, and 15 "angle" variables u. The variable R
ranges from zero to infinity, whereas for any fixed R the
range of u is bounded.

The variables u can be specified by a set of four four-
vectors u;, i H(1, 2, 3,4). One of these four four-vectors u;
lies on the unit sphere, and the other three lie on or inside
this sphere.

This unit sphere is centered at the origin. Four bi-cones
C centered at the origin can then be drawn. There is one
bi-cone C for each external particlei. These bi-cones are
taken to be disjoint, except at the origin, and the vectors p;
in the support of P;(p; ) are contained in the interior of C .

Let the set C&' consist of C and the ball of radius 10
centered at the origin. If the point u; corresponding to
external particle i does not lie in C;" then the integral will
have a factor that falls off faster than any power of R
due to the fast falloff of the wave functions P;(Ru;) (cf.
Ref. 7). But if each point u; lies in the corresponding set
C;", and one of these points u; lies on the unit sphere, then
both

x, —x;,=R(u; —u; ))

and

x;+) —x; =R(u;+) —u;)

must increase linearly with R. Thus either S;J(x;—x; ~)
or S;+~ j(x;+&—x;0 will fall off faster than any power of
R '. The remaining factors in the integrand are bounded.
Hence the total contribution to F[P] from the coordinate-
space region lying outside a sphere of radius R must also
fall off faster than any power of R.

The integral of actual interest is given in (7.50). The in-

tegrand has in addition to the Feynman function F '(x)
and the four external-particle wave functions g;(x;), also
several exponential factors. Some of these exponentials
appear with imaginary exponents. These factors are
bounded and do not affect the result. However, there is
also an exponential with a real exponent. This real ex-
ponent consists of a sum of terms of the form

d k 2 1 1f,2~5(k'), (1—cosy k),
(2~)4 p k p' k

(E5)

y k=i, /k/P, (E7)

where P is a function of the-angle 8 between the three vec-
tors y and k. Then the integral (E5) can be written (with
know ~k )as

~kdkf 3
2n. f d(cos8)f(cos8)(1 —cosMP), (ES)

where f(cos8)
~

is bounded.

To prove an asymptotic logarithmic bound c ink. on the
magnitude of (Eg) for large A, it is sufficient to exhibit a
bound c'/A, (c' & c) on the magnitude of the A, derivative

~kdkf 3
2m. f d cos8f(cos8)kPsinkkP

2k
1 K

=m f d cos8f(cos8)P f dk sinkkP

dcos8f(cos8)(1 —cosAKP) . (E9)

The magnitude of (E9) has the bound 4m
~ f ~,„/A. , and

hence the convergence of (7.50) is assured.
The convergence of the x integration in (7.46) is assured

by essentially the same argument.
The fact that the partial propagators D;~(z; ) enjoy rapid

where y can be x; —AX or x; —x, and can become large.
It is sufficient to show that this integral (E5) can in-

crease no faster than cln ~y ~

as ~y ~

~ oo. For in this
case the exponential itself increases at most linearly in

~y ~. But any such linear increase is damped out by the
just established faster than any power of ~y

' decrease
of the remaining factors [note that

~

x —x;
~

&a implies
~x —AX

~

&a/2 or ~x; —AX
~

&a/2. Hence the faster
than any inverse power of R falloff of the contributions
for x or x' outside A'(R, AX) entails a faster than any in-
verse power falloff also in x —x;

~

].
To obtain this logarithmic bound write

y =Ay,

where y has Euclidean norm unity, and write, for k =0,
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falloff in ~z;
~ E„,~ for directions of z; lying outside the

casual set C,J was not used in the above discussion. How-
ever, this falloff property is needed to cover the general
case in which D& is replaced by some other diagram D &.

These rapid falloff conditions, together with the approxi-
mate momentum-energy conservation equations men-
tioned below (E2), ensure a rapid falloff in R of the contri-
butions to the analogs of (7.50) from points x outside
A(R, AX) unless the momentum-energies of the external
lines of D~ lie close to a singularity surface of D', . And
even in this case there is a rapid falloff of the contribu-

tions not lying near the regions in x space such that the
spacetime diagram DI (x) corresponds to a classically al-
lowed physical process with the specified external
momentum-energies.

This property is needed in the extension of the argu-
ments given in this paper to the general case. It entails,
generally, that the contributions to the transition ampli-
tudes from regions of x space that are far away from the
regions that correspond to the classically allowed process-
es fall off rapidly as the distances from the classically al-
lowed configurations increase.
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