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In a large-N analysis of the 0(Ã) A,N theory in four dimensions, we find that the O(N}-symmetric

lowest-lying state is a metastable state. The decay rate of this false vacuum into a broken-symmetry

state is, however, suppressed [-exp( —1V)]. Nevertheless, at fimte temperature, we find that above

a critical temperature T, the only existing phase is a broken-symmetry phase with N —1 Goldstone
bosons. This phase reflects the intrinsic instability of this theory, and the large-g, structure indi-

cates that the renormalized A.@"theory is inconsistent. The only acceptable version of this theory is

its regularized form which becomes a free-field theory as the regularization is removed.

I. INTRODUCTION

Quantum field theories with X dynamical variables,
X—+ Do, have recently attracted attention from several dif-
ferent perspectives. ' Traditionally, these theories have
served mostly as study grounds for extending one's intui-
tion in handling the basic problems of quantum field
theory. Approximations used at large X possess many of
the properties believed to be true in the exact solution.
Thus, it is hoped that the theory's features revealed in the
large-X limit as well as the lessons learned in these analy-
ses are worthwhile.

Indeed, the phase structure and the nature of the ground
state of large-X theories are of much interest. Recently,
't Hooft has obtained results for the planar model when
the perturbation expansion is performed in the phase
where all particles are massive and the renormalized-
coupling-constant magnitude is bounded from above. The
stability of this phase at zero temperature as well as at fin-
ite temperature will be investigated for an analogous O(N)
vector model in the present study. Quantum as well as
thermal fluctuations will be calculated in the large-N limit
and the full phase structure of the theory will be elucidat-
ed.

Spontaneous symmetry breaking in the 0(Ã)-symmetric
vector model at large X was studied by Coleman, Jackiw,
and Politzer. ' lt was found that the ground state could
have a broken or an unbroken O(N) symmetry. The
theory was shown, however, to possess a tachyon and
therefore be inconsistent. Further analyses ' revealed an
O(N)-symmetric phase free of tachyons and it was con-
cluded that spontaneous symmetry breaking is impossible
in the large-X limit. The effective potential remained un-
defined at large values of the classical field in these analy-
ses. A detailed study of the phase structure of the
O(N) vector model presented here shows some of these
previous results to be in error. In particular, none of the
possible ground states proposed by previous authors sur-
vive as stable ground-state configurations for the renor-
malized theory.

Another problem which concerns us is the existence of
the renormalized XN theory as a nontrivial field theory in
four dimensions. Momentum-space or lattice regulariza-

tion are usually regarded as intermediate steps on the way
to obtain a finite physical result either in perturbation
theory or in a nonperturbative analysis. It is then assumed
that the limit A ~Do or a~0 results in a well-defined
theory provided the correct vacuum has been chosen. In a
lattice field theory, the ultraviolet fixed point reached
must be the continuum theory originally meant to be
analyzed. The existence of a renormalized A,N theory in
four dimensions has been in doubt for some time. '

There are no indications that the theory possesses a non-
trivial ultraviolet fixed point' and recent rigorous re-
sults' ' indicate that the renormalized A.+ theory may
very well be a free field theory in d)4. However, we
should emphasize that the regularized XN theory may
well describe the correct physics for a broad spectrum of
processes below the cutoff scale.

In Sec. II we present a variational calculation combined
with a large-X approximation for the Hartree-Fock
ground-state energy and the gap equation of the O(N) vec-
tor model. The resulting phase structure of the theory is
described in Sec. III along with a comparison to previous
results. We discuss, in some detail, the end-point contri-
bution in the variational calculation and also the appear-
ance of tachyons and related instabilities for large values
of P, . In Sec. IV we estimate the decay rate for the false
vacuum (m&0 phase) at zero temperature. We find it to
be proportional to e . Thermal fluctuations at finite
temperature are calculated in Sec. V, where we find that at
T & T, (finite) the only existing phase of the theory is a
broken-symmetry phase. A summary and discussion of
our results is given in Sec. VI. In Appendix A we present
a calculation where the oscillator frequency' is used as a
variational parameter rather than the oscillator mass as in
Secs. II—V. The effective action that determines the
dynamics involved in the decay of the false vacuum is cal-
culated in Appendix B.

II. VARIATIONAL CALCULATION
AND 1/N EXPANSION

The O(Ã)-symmetric A,@ theory is defined from the
functional integral
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2

Z( J)= f D@(x)exp ' f d x ——,(B&4&)— This can be also derived from the Euclidean path integral
over P,

(4 ')'+ J 4
4

(2.1)

f Dgexp —f d xWE(P(x))

=exp I [ —K (m ) ——,m ( P ) ]VT I, (2.5)

where @(x) is an X-component real scalar field and po, A,O

are the unrenormalized mass and coupling constant. The
large-X behavior of the theory can be studied holding
A,~ fixed as X~ oo. Here we will combine a variational
calculation with the 1/% expansion in order to obtain an
upper limit for the ground-state energy of the theory.
Writing @ as @= P, + P, where P, is a background clas-
sical field and P is the N-component quantum dynamical
variable of the theory, we first calculate the kinetic energy
K built up from the quantum fluctuation in P. The
Hartree-Pock variational ground state is defined as the
state annihilated by the operators a (k) in the trial plane-
wave expansion of the quantum field P,

d3k
(x,t)= f [a (k)fk(x)+a (k)fk(x)],

2cok

where

fk(x) =(2m. )
~ exp( ikx)—

and

~„=(k'+m')'" .

We choose here the oscillator mass I as our variational
parameter. (Alternatively, one may vary cok instead of
m; this possibility will be discussed in Appendix A. ) The
kinetic energy per unit volume given by

K(m )=—0 f d x—Im (x, t)
V 2

+[7 4(xt)]'f Dl,

A —I ln
16m.

eA

and finally the kinetic energy is

K(m )= m ln
64m m

(2.7)
J

Adding now the potential energy ( V( P ) )0, we obtain the
Hartree-Fock energy in the large-X limit

W(g, , m )=K(m )+(V(P))o
=K(m')+ V(P, '+ ( P ) )

I /2A2

m, m41n
64m

2

+,' (y, '+(y'&)

+,'(y. '+ & y '&)'. (2.8)

The variational ground-state energy of the theory is now
found by minimizing 8'(P, , m ) with respect to P, and
m . The physics of the model is thus determined from the
extremum conditions in the [ P„m I space,

aW 1 a(y')

where WE(P) is the Euclidean Lagrangian of a free field

P of mass m.
The ultraviolet cutoff will be defined from

(-2) X dk
(2') k +m

d k kf 3 ~k+4 (2n. )'
(2.3)

=0, (2.9)

is defined with an ultraviolet cutoff A or one may prefer
to define the theory on a d-dimensional Euclidean lattice
with finite lattice spacing a. In what follows, whenever
the regulated bare theory will be considered, it will be as-
sumed that, the theory has a nontrivial physical content at
k «A [or k «(m/a) ] and not all of its physics is at
the ultraviolet end. Thus, under certain circumstances the
regulated theory may be regarded as an effective field
theory at energies which are low on the scale of A or a

The relation of K(m ) to the quantum fluctuation of
(x, t) can be expressed also by

BK, , B(P ')
m2

= q, [&.'+~.(q, '+ & y '&)]=0.
BP,

(2.10)

A&0

2 2 2 7

1+(A,pN/16m )ln(A /M )

P Po
A,o

(2.11)

(2.12)

One should note, however, that in order to find the lowest
energy eigenstate, the end-point values of W(g, , m )

must also be examined and compared to the extremal
values found by solving Eqs. (2.9) and (2.10). These ex-
trernurn conditions can be expressed in terms of the renor-
malized parameters defined from

~N 8 p dk 1

Bm (2n) k +m
(2.4) where I is a renormalization scale and p /A, &0. Equa-

tions (2.9) and (2.10) now have the form



WILLIAM A. BARDEEN AND MOSHE MOSHE 28

38'
Bm

~o t)(y') t m' Nm'1
2 pm ~0 16m. m

1

p 2+9

~o a((t ) m Nm eM
ln — P, +

Bm ~ 16m ' m
(2.13)

88
m

BP,

32vr 8 8
ln

Bm~
~ =0 (2.14)

Since B(P )/Bm =(—N/16m )ln(A /m ) is nonzero
in what is considered, as mentioned above, the physical re-
gion (m «A ) for the regulated theory, we see that the
gap equation in Eq. (2.13) and BW/BP, in Eq. (2.14) van-

ish simultaneously at $, =0, m =pc +A,o(P )&0 or

P,&0 Ltto +A.o(P, +(P ))=0], m =0. We will con-
sider these extremum points as well as the end points in
m [which do not satisfy Eqs. (2.14) and (2.15)j by insert-
ing these values [m =m (P, )] in W and find the low-
est energy from W(g, , m (P, )).

A convenient approach in discussing the energy eigen-
values determined by the extretnutn condition [gap equa-
tion, Eq. (2.13)] is to insert its solution into Eq. (2.8).
First, from Eqs. (2.6) and (2.8) we have

1/2A2
W(g, , m )= -m ln

64m m

8 8
3 m

~oN A' 1 N A'
ln + ln

~0

08'
m ln

()m
(2.18)

A($ (m )m ]

is positive on the left-hand-side branch (m & A ) if Ao ~ 0.
In the case XO~0, 8 8'/0 m is positive for m &m„,
namely, on the right-hand-side branch.

~0 2 P m ln
16m.

eA
m

(2.15)

and finally, if the gap equation is satisfied one inserts the
solution to Eq. (2.13) into Eq. (2.15) to obtain

m' 1 N L
e'"M'

W(P, (m )m )= —+— ln
4 ~ 16m m

2
m

m„=M exp(16+/kN) =A exp(16' /AoN) (2.17)

on which the m dependence of W((t, , m ) is at the ex-
tremum. Note, however, that

(2.16)

where P, = P, (m ) is determined from Eq. (2.13).
These steps are clearly traced in Fig. 1. The solid line is
m [1/A, +(N/16m )ln(eM /m )) which determines
(t, (m ) p /k [gap equation (2.13)j. The dashed line is
W(m ) of Eq. (2.16). Thus, for a given p, 2 we find
m (P, ) from the solid line and knowing m~($, 2), we
determine W( p, ) = W( p, , m ( p, ) ) from the dashed
line.

As seen in Fig. 1, the gap equation has two branches to
the right and left of

FIG. 1. Solid line is the gap equation [Eq. (2.13)]

m'(1/A, +(%/16m )ln(eM /m ))=)7, +p, '/A, .

Dashed line is the Hartree-Fock energy W at m values
[m =m2(g, ')] for which the gap equation is satisfied [Eq.
(2.16)],

8'(m )=(m /4)(l/I, +(X/16m )in(V eM2/m2)) .

m ~,: solve the gap equation at q7,
' =0 (in the case

+p /g), mg, m~ are the zeros of the solid and dashed lines

whose maxlIIluII1 1S at m» (mG =em» =v em@0 0

m„-'=M exp(16m /kX) =A~exp(16m /kolV)) .
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The significance of A,o & 0 and A.o &0 can be seen in Eq.
(2.11). If A, is held fixed as A ~ oo, then clearly A,o~O
(a necessary condition in a renormalized A,@ theory is
Ao & 0), whereas holding Ao & 0 implies A, ~O as A ~~.
Otherwise, for a fixed A, and Ao & 0 the ultraviolet regula-
tor must be kept fixed (finite A or lattice spacing a).
These different cases will be discussed in Sec. III. I

/
/

/
/

/

END POINT
(rrF= o)

GAP EQ SOLUTION
(m &o)

III. PHASES OF THE O(N) A,N VECTOR THEORY

A. Gap equation and end-point contribution —case Ao& 0 w (qP~ pP)

The theory with a positive bare coupling constant exhib-
its the expected behavior. We will discuss the two cases
(a) po /Ao +(N/16+)A =p /A, and (b) po /Ao
+(N/16+)A = —p /A, (recall that we denote p /A, al-

ways positive). As mentioned in Sec. II, since for ko&0
we have m„& A [Eq. (2.17)], the interesting physical re-
gion is the m &&m„branch in Fig. 1.

In case (a), as seen in Fig. 1, the classical field P,
reaches any value between P, =0 at m =mi and

P, =(P, ),„at m =m„. Clearly, the ground-state ener-

gy is W(O, mi ) and the system is in the O(N)-symmetric
phase with pions of mass m i . Note that m i is the solu-
tion of p /}t, =mi [I/A, +(N/16&)ln(eM /mi )], and
since M exp(16m. /AN)=A exp(16m /AoN) we can keep
mi «A only if p /A, is small enough. W{P,(m ),m }
[Eq. (2.16)] in Fig. 1 gives the value of the Hartree-Fock
energy W when the gap equation BW/Bm =0 in Eq.
(2.13) is satisfied. The end-point value of W(g, ,m ) at
m =0 can be read from Eq. (2.15) (t}W/Bm &0). We
have

ENO POINT
(m+ o)

GAP EQ. SOLUTION
(m &o)

(b)

FICx. 2. The Hartree-Fock ground-state energy 8' in the case
XO~O and finite A . The dashed line is the value of 8' as ob-
tained from its extremum points when the gap equation
BW/Bm'=0 is satisfied [Eq. (2.13)]. The dotted line is the end-

point values of W at m =O. The positive and negative
po'/A, o+(X/16m )A =+p /A, cases are shown in (a) and (b),
respectively. The ground state is in an O(N)-symmetric phase (a)
or in a broken-symmetry (b) in the case of +p /A, or —p /A, ,
respectively.

W($, ,0)=(ko/4)(P, +p /A) & W(g, ,mi )

and thus the end-point value does not give a lower energy
state. Case (a) is summarized in Fig. 2(a).

In case (b) [po /A, o+(N/16m. )A = —p /A, , A,o&0] we

see in Fig. 1 that P, has a minimum value P, =p /I, if
the gap equation is satisfied. This value is obtained at
m =0 and there W(p /A, ,O)=0. The end-point value

(m =0) of W(((), ,m ) gives W($, ,0) =(Ao/4)(P,
—p /1, ) [Eq. (2.15)]; it coincides with the gap-equation
solution at P, =p /A, and gives a broken O(N)-symmetry
ground state. It also gives the energy in the range

&p /A, not attainable from the gap-equation solution.
Case (b} is summarized in Fig. 2(b).

Thus, the O(N) vector theory with A,o&0 is consistent
with a lattice theory w'ith a finite lattice spacing"
a-A '. The physics at k &A and in particular the
phase structure is governed by the value of
po /A, o+(N/16m )A . We have an O(N)-symmetric or
asymmetric ground state if this quantity is positive or neg-
ative, respectively. [The zero-mass N —1 pions in the
broken-symmetry phase are the GoMstone bosons of the
O(N)~O(N —1) breaking. ] The theory can be viewed as

an effective field theory in the regime k «A where A
must be kept fixed. If A ~oo (a~O) the renormalized-
coupling constant A, ~O [Eq. (2.11)], and the theory is a
free field theory. '

B. Crap equation and end-point contribution —case A,o & 0

As mentioned in Sec. II, this case allows a finite renor-
malized A, as A ~ ao and we are interested in determining
whether a consistent A,N renormalized theory can be de-
fined in four dimensions. Though the gap equation
remains unchanged, both regimes m & m„and m & m„
in Fig. 1 are now of physical interest. Moreover, it has
been shown above [Eq. (2.18)] that the gap-equation solu-
tion for m ~ m„ is a local minimum of 8, whereas the
solution of the gap equation for m & m„ is a local max-
imum of 8'.

We would like now to relate our results for the case in
which the gap equation is satisfied to those of Refs. 5, 8,
and 9. Equation (2.15) can be rewritten in the form
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m 1 X e' M
W(g, ,m )= —+ 2

ln —
z4 ~ 16m m

Ao ~
2 p —m —+ ln

1

16m.
(3 1)

Note that the coefficients of m /2 and Ao/4 in Eq. (3.1) are the gap equation [Eq. (2.13)] and its square, respectively.
Now, suppose we hold P, ,m fixed and let A,o~0 (A,o—+0 in the renormalized theory with a fixed A, and A ~ac).
The last term in Eq. (3.1) now vanishes and we obtain the standard result for the effective potential, V,ff(g, , m —=g),
presented in Refs. 5, 8, and 9:

V,rf(p, ,m'—:X)=W(p, ', m2)
~

m171 ~~ p p,

2
m 4 '

1 + 3/2M2—+ ln
16m' m' (3.2)

V ff(ljkg, m ) reproduces, of course the same gap equation
as well as the same value of 8' on the gap-equation
branches. Indeed, Eq. (2.18) is replaced now by

r

1 1 X M2
+ ln

()2m 2

in Refs. 8 and 9 when m =e' m„2I exp(1677 /A, Ã)=mar to the m =0 new phase i7

We note, however, as mentioned above, that the instability
of this new phase at large P, values implies a basic insta-
bility in the renormalized O(N) A,N" vector theory.

Figure 4 summarizes the different cases. We plot
V,rf(g, , m ) [Eq. (3.2)] as a function of m for different

N m
ln

32& m
(3.3)

and thus V,ff has a local minimum as a function of m in
the range m ~ m„, namely, when satisfying the gap
equation (Fig. 1—solid line) on its right-hand-side branch.
The value of the g'round-state energy can be read again
from Fig. 1. In the case po /Ao + (X/16m )A
=p /1, , V,ff is given by the dashed lines in Figs 3(a) a.nd
3(b), and in the case po /A, o+(N/16m )A = —p /1, by
the dashed lines in Figs. 3(c) and 3(d). This agrees with
the results of Refs. 8 and 9. We also plot on Figs.
3(a)—3(d) the value of V,rr that can be read from the left-
hand-side branch (m &m„) of the gap equation where
V ff has a maximum. This is the solid line in Figs.
3(a)—3(d) which agrees with the results of Ref. 5.

The gap-equation solutions have been considered above.
These should be compared with the end-point m =0
value of W( P, , m ) from Eq. (2.15). We have
W($, ,0)=(ko/4)(P, +p /A, ) &0 which goes to minus

infinity as i)), ~ac. From our point of view, this upper
limit on the ground-state energy, which is unbounded
from below, renders the A,o & 0 case intrinsically un-
stable. ' ' Restricting ourselves to V,rf of Eq. (3.2)
(A.oi))~ ~0 region) gives an end-point contribution which is
flat in this regime shown by the dotted curve in Figs.
3(a)—3(d).

Thus, in addition to the previously obtained results ' '

in the 1/X expansion, our variational calculation shows
the existence of a new broken-symmetry phase. This
phase comes from the contribution of the end-point value
in the variational parameter range 0~m ~ ao. Even for
small values of P, the ground state is in this phase if po is
negative and

~ po ~

large enough. [Note: po /A, o
+ (%/16ir )A =p /A, in Figs. 3(a) and 3(b).] There exists
a first-order phase transition from the phase found

2 HIGHER

m )o2 )o2

2
lTl =0

(a)

2
LQWER -p~

X

2
fA )o
2

iil =0
C

2
m &o

/
/

/
/

/
/

/

r~

FICi. 3. Case A,o&0: As in Fig. 2, we plot the Hartree-Fock
ground-state energy as obtained from the gap-equation [Eq.
(2.13}j solution (dashed line —case m'& m, solid line—case
m &m„) and the end-point value (m =0—the dotted line).
Here we plot W in the limit A,o~O and finite P, ; this repro-
duces the results of Refs. 5, 8, and 9, and we denote 8' in this
limit as t/d~. In the broken-symmetry phase (m =0). V,ff is in-

dependent of P, but W~ —oo as P, '~oo [not shown in these
figures, see Eq. (2.15) with m =0].
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where 8 (p, m, A ) is the ~ loop integral'

Ve«

Ve

p,'-r"„' &o

Vef f

2 R

C

2
m

8(p, m, A )=
2

d4k 1
X

(2~)~ (k'+ m ') [(k +@)'+m ']
A

der ln
32m a(1 —a)p +m

(3.5)

N~em "&p i~& &O
c

a
rn

0

m'

Ve« Vo«

FIG. 4. V,rf(g, , m ) in different P, '+p'/A, regions. The
gap-equation solutions in Fig. 3 are the result of the minimum
and maximum contributions shown here (dashed and solid lines
of Fig. 3, respectively). The end-point contribution is the nz =0
point. The decay of the false vacuum in case (e) is discussed in
Sec. IV.

We wish to examine first the scattering amplitude in the
broken-symmetry phase where the P~ component of the
field @ has vacuum expectation value (P & and the fields

describe the N —1 Cxoldstone-boson degrees of free-
dom. The appearance of poles at positive Euclidean mo-
menta will be our main concern. To lowest order in 1/N,
the ma scattering amplitude is calculated by summing the
"bubble diagrams" giving (in the Euclidean region) the
amplitude

p +m
(p +m )[I/2A, o+B(p,m, A )]+(P &

(3.4)

ranges of P, +p, /iL. For the renormalized theory (A,o & 0)
the maximum and minimum in these plots represent the
O(N)-symmetric phases found in Refs. 5, and 8 and 9,
respectively. The end point m =0 gives the broken-
symmetry phase. The decay rate of the 0(N)-symmetric
metastable false vacuum into the broken-symmetry
(m =0) phase will be discussed in Sec. IV.

C. Tachyons —case A,» 0

The o. propagator is given by

I/2Ao+B. (p, m, A )
iD

(p +m 2)[ I /2Ao+ 8 (p, m, A )]+( P &

1 X, eA fPl
ln

' —+0 =0.
327T p p

(3.7)

Thus, we see that the symmetric as well as the broken-
symmetry phase in the kp & 0 case do not have tachyons in
the physical region p ~A . This is not the situation in
the kp & 0 case as we will see next.

D. Tachyons —case A,o ~ 0

Following the discussion in Sec. H, a transparent way
for studying the iEp~0 case is to use the renormalized
theory. Indeed, only for A.0&0 we may keep A, fixed and
finite as A —+ oo. The denominator in the ~m. scattering
amplitude in Eq. (3.4) can be now written [using Eq.
(2.11)]as

(3.6)

In the broken-symmetry phase ((P&&O,m =0) the
denominator in Eq. (3.6) (d (p )

—=p [I/2AD
+8(p,O, A )]+(P& ) is positive at p =0 and
d(p )~—Oo as p ~ap. Since 8(p, O, A )
=(N/32m. )ln(e A /p ), we find a tachyon pole (p &0),
at p =mT &A exp(16m. /NA, o). In the case A,o&0 this
pole is outside the physical region. This phase has the
ground-state energy determined from Fig. 2(b).

In the 0(N)-symmetric phase ((P & =O, m &0) the
denominator in the rrrr scattering amplitude in Eq. (3.4) is
d (p ) = I/2A, o+B(p,m, A ). At p =0 we have
d(0) = I/2i, o +(N/32m )ln(A /m ), which is positive on
the left-hand-side branch of the gap equation in Fig. 1.
Since B(p,m, A ) decreases as p ~co [Eq. (3.5)] a ta-
chyon will appear if d (p =0) &0. Indeed, this is the case
in the Q,o & 0) 0(N)-symmetric phase presented in Fig. 2(a)
which has been derived from the gap-equation solution on
the left-hand-side branch of Fig. 1. But again, the ta-
chyon pole p =mT will appear at mT & A since
p =mT is now the solution of

r

1

d(p2)= —,(p2+m ) + f dain
~p 16m P

A

a(1—a)p +m

= —,(p +m ) —+—2 da ln
16'

M
a(1 —a)+m

(3.8)
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In the broken-symmetry phase ((P)&0,m =0) a tachyon
pole will appear at a value ofp which is a solution of

1 2(P)
e M

(3.9)

This pole at positive Euclidean p further demonstrates
the intrinsic instability discussed in Sec. II of the ground
state of the renormalized 0(Ã) vector theory.

The system in the O(N)-symmetric phase
((P) =O, m &0) as shown in Sec. IIIB, is in a metastable
state. Searching the spectrum in this phase for tachyons
does not reveal its instability and indeed no tachyons are
found here. ' The decay of this false vacuum will be
studied in Sec. IV, where we will also discuss its apparent
stability at large X.

The absence of a tachyon pole in the n.m scattering am-
plitude in the 0(Ã)-symmetric phase is clearly viewed in
Eq. (3.4). One can define [using Eq. (3.4) with (P) =0]
an effective four-pion coupling constant

A.rA ')
1

1/A, o+8(p, m, A )

A.ri(p') =
1+(AN/16m ) ln(M /m )

(3.1 1)

Since A,rr(p }~0 as p ~ oo, no tachyon poles are found.
Note that the tachyon found in Ref. 5 (CJP) are due to

using the solution of the gap equation on the left-hand-
side branch of Fig. 1, which is not a local minimum (but
in fact, a local maximum in Fig. 4). Indeed, in this case,
A,,ri(Ji =0) & 0 and changes sign as p —+ ao.

1+(AN/16m ) f daln[M /[a(l —a)p +m2]]

(3.10)

which is negative for all values of p provided the gap
equation is satisfied on the right-hand-side branch in Fig.
1. Indeed, we have seen in Sec. II that the extremum of
the Hartree-Fock energy as a function of m gives a local
minimum (see also Fig. 4) on the right-hand-side branch
and thus m &M exp(16ir /AÃ), which assures that

IV. THE DECAY OF THE FALSE VACUUM

There are two types of instabilities detectable in the
phase structure of the O(N) vector theory in four dimen-
sions. The first one, an intrinsic instability extensively
discussed in Secs. II and III, originates from the fact that
the lowest-lying state has an energy unbounded from
below as the classical background field P, ~Do. If one
limits the magnitude of P, below some finite P,

'" the
ground state is then determined by the value of P, +p /A.
as seen in Figs. 4(a)—4(f). The system can then be in one
of two distinct phases: an O(N)-symmetric phase with
massive pions (discussed previously also in Refs. 8 and 9)
or in a spontaneously broken symmetry phase with N —1

massless Goldstone bosons found in Sec. II. The different
phases are also depicted in Fig. 3. The lowest energy state
in the O(N)-symmetric phase (P, = (P) =O, m &0) is not
the lowest-lying state of the system if p /A, is large [e.g.,
Figs. 3(b} and 4(e)], and thus this false vacuum will even-
tually decay into the lower-lying broken-symmetry phase
even if P, is kept small. This is the second type of insta-
bility which will be discussed now. %'e recall also that the
first instability revealed itself also by the presence of ta-
chyons in the m =0 broken-symmetry phase (in Sec.
III D). On the other hand, no tachyons were found in the
metastable O(N)-symmetric phase. This renders the stabil-
ity of this phase very interesting.

The ground state is in the O(N)-symmetric phase as
long as [Fig. 4(c)]

2
2+ P 1/2 2e rn„

(4.1)

We will discuss here the P, =0 region and thus as long as
p /A, is limited from above, as seen in Eq. (4.1), the system
is in the massive 0(Ã)-symmetric ground state. Since
p /A, =go /A, o +(N/16m. )A [Eq. (2.12)] and A,o&0, we
see that for a fixed ultraviolet regulator, p /t increases as
po decreases. Indeed, as expected, for po negative and
large, p /A, reaches (N/32m. )M exp(16m. /AN +1/2}
and the ground state is now degenerate with the broken-
symmetry state with m =0 [Fig. 4(d) and going from
Figs. 3(a) to 3(b)]. For larger values of p /A, , the system,
whose V ff is shown now in Fig. 4(e), should decay into its
true vacuum, which is in the m =0 phase. In order to
calculate the rate of decay we will have to know the effec-
tive action that governs the dynamics of the system. Fol-
lowing Ref. 5 we multiply the original Euclidean action
functiona1 integral

r

2

Z( J)= f DN(x)exp f 1 x ——,'(Bz4) — @ — (@ ) + J (4.2)

by an integral on the field A'(x),

f DX(x) exp f d x (X—Ao@ —po )
o

(4.3)

I

which is well defined for A,& &0 and a contour rotation is
needed for ko& 0.

In Appendix 8 we present the calculation of the effec-
tive action in terms of X by integrating out the degrees of
freedom @=P + P, . This gives
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Z( J ) = f DX(x) exp —I Ix I

+ f d z( , Q—,Clg, + J P, )

(4.4)

r(XI= f d'x —'
2 '

A,0 4A,0

+—Trln( — +7) .
2

(4.5)

In the region of small (Bg) /g we calculated the effective
action in terms of f where

$2(x) =
2 X(x) .

192m

We obtained

where

(4 6)

(4.7)
FIG. 5. The potential —V(P) in Eq. (4.8) [compare also to

Fig. 4(e)], which governs the decay of the m '
& 0 false vacuum.

The "bounce" 8 = d~WE is of order N and thus the decay
rate O(e ).

2 3/2
V(g)= —,'~ g ——f ln (4.8)

2The constants ~, IC, and M in Eq. (4.8) are given in Eq.
(817) in terms of p, I,, M, and N. The shape of the po-
tential V(g) is similar to the potential shown in Fig. 4
(when m is replaced by g ).

We would like now to estimate the transition rate from
the O(N)-symmetric metastable ground state with
m &0((f) o &0) to the symmetry-broken lower-lying state
(m =0, (g)o=0). Following Ref. 19 we have to estimate
the "bounce" which is the total Euclidean action
& = f dry@, since the width of the unstable sym-
metric state is proportional to exp( 8 /fi). The ca—lcula-
tion of 8 involves the solution of the imaginary-time equa-
tion of motion in the potential —V(P), with the initial
and final conditions shown in Fig. 5. The initial and final
points are just the solution of the gap equation

~ 2

(4.9)

The bounce f dr WE is clearly proportional to N since
X-O(1) on the gap equation and thus g -O(N). The
decay rate of the metastable O(N)-symmetric state is thus
proportional to exp( N) and asympt—otically small for
large N.

The absence of tachyons in the metastable O(N)-
symmetric state at large X noted in Sec. III0 is due to the
apparent stability of this state in the %~~ limit. It
seems proper to conclude that a perturbation expansion
around this false vacuum is not obviously inconsistent.
Although the system is only metastable it can survive time
scales arbitrarily large as N~ ao. At finite N, the finite
lifetime must be large compared to any time scale in the
problem (e.g., universe lifetime, etc.) in order that an ex-
pansion around this false vacuum has any practical physi-
cal application. The situation is however very different at

finite temperature as we find in Sec. V. At T& T, there is
no metastable O(N)-symmetric ground state for the renor-
malized A, C&" theory (A,o & 0) and no consistent perturbation
expansion can be defined as the ultraviolet regulator is re-
moved (A —+ ao).

V. THE O(Ã) VECTOR MODEL AT FINITE
TEMPERATURE AND THE FATE

OF THE FALSE VACUUM

, f d'ka, (k)
(2ir)

X
n =0, +1,+2,

f d k 1

(2ir) k +m
(5.1)

where ko ——co„=(2'/P)n. In Eq. (5.1)

n =0, +1,+2, . . .

4&n 2
—1

+k +m
p2

PEr, PEk/2'. 1+
Ek 2 n=o, i, 2 ii +(pEk/2ir)

where Ek = ( k +m )
' r . Using

(5.2)

The discussion in the previous section dealt with the
theory at zero temperature. The effect of a finite tempera-
ture on the phase structure and transition rate from the
false vacuum will be discussed here.

The finite-temperature effects in quantum field theories
have been discussed in Refs. 21 and 22. The large-N
analysis combined with a variational calculation (used in
Sec. II to compute the quantum fluctuations to first order
in 1/N), will be used now to calculate the thermal fluctua-
tions at finite temperature T =p

The p vacuum expectation value at finite p is given by
using the finite-temperature Feynman rules
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Qo XX
n =&.2

one finds

+—coth(irx) ~2x

3k 1 1 1+ PE„

F(x)

I. "

d4k 1 2~5(k'+m )=X
4 k2+m 2 + I3E

(5.3)

(s.4)

on 1nates rom ef th Bose Elnsteln dlstnThe second te~ g
. This expression clearly

separates t e qu
(2 8) tl,e Hartree-pock free ener-p llowing Eqs. (24) and0

t finite temperature can be w~written as

~ (~ ~ m~) =it p(m')+ & ~(+

90

FIG 6. The»peTh h pe of F(x) which appears
(5 6) (5.13).

( 2) m lil
m

where

as&( ')
2 2 Bm

and at large X

( y(@))&—v(p, +'(4' ~P

prom Eq (5.3)

(s.s) gyy F(y) r

~/7~ d
48 0 dy

(5.7)

T —() yariational kinetic en«gywher~ the f'rst t
f th pression in Eq ( . )8 Theresto t eexprterm in Eq (2' '

F(~) (shown in pig. 6) iscontains the TWO contributions.
given by

N 2eA
m ln

16m m F(x)
2 o (~2 )1/2 ezp[(g +x) ]—

(5.8)+T m+
24 T2

and one fmds

(s.6)

&/T 0 limit) F(0)=0 (m
p,om Eq. (5.4) on«i

z N 4 /
d F(y)

N
41 ( i/2A2/m2) — T yy

dy64m
)pal( $,m ) =

~2 + Pl
(5.9)

eA T2~+
24 T2

t con are to Egr&( p, ,m can e written &n the form P

2
P0+ &'+
g, +16~' 'ln

16m

(2 15) &fter some»gebh' h an be compared with Eq.
(3 1)]

1
lnWp(g, , m ) =

where

1/2~2
2m

2 0
F(y) + -(FoE)+ (FoE48

dyy
d y

y
' (5.10)

2 2p m 2
2 eM m

2416m. m
(5.1 1)

ase T 0 sinceThis is in fact the gap equation in the case

A0
ln &&(FGE) .2 22 ' 24 Bx q/Tq 16

t e oE
' '

in the hysical region (m ~ A an usront of the I'&E is always negative in t e p
8'/9m =0 is EGE ——0. Ana galo ous to Eq, we

(5.12)
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Pl
V,'«(y, ', m') = y, '+ "

2

r

m4 1 ~ e3~2M2—+ 1n
16~ m

T
12 m

4

Fydy (5.13)

that reproduces, of course, the same gap equation as Wp
in Eq. (5.10).

We will now discuss the renormalized theory (A, finite,
A ~ ao, and Au~0 ). Figure 7 repre.".ents the gap-
equation solution in case of T&0. Clearly, as seen from
Eq. (5.11), the only change is that P, +p /A. in Fig. 1 is
now replaced by P, +p /A, +(N/24)T F(m /T ). The
effect, however, is very interesting; as T grows, the gap-
equation solutions mL and m~ approach m and final-
ly, at large enough finite T=T„ there is no solution.
Viewed in Fig. 8, which is the T&0 version of Fig. 4, we
see the change in the effective potential due to the thermal
fluctuations.

Thus, at high temperature (T & T, ) the large-N renor-
malized A,4" theory can be only in one phase in which the
Q(N) symmetry is broken. We see here the less common
effect of a system that becomes asymmetric as the tem-
perature increases. ' A perturbation expansion in the23, 24

symmetric vacuum (m &0) is bound to break down as the
temperature increases. The implication of this result on
the work of Ref. 3 and in cosmological models may be of
much interest. Indeed if we start at a very high tempera-
ture in the early universe, the metastable Q(N)-symmetric
state will never be obtained as the universe cools down.
The only existing (broken symmetry) phase suffers howev-
er from the intrinsic instability of the renormalized
theory, namely, the ground-state energy is unbounded
from below as seen in Sec. III. We conclude that the re-
normalized O(N)A@ vector theory is futile for T~pe

I

studies and the only consistent form of the theory in this
limit is its regularized version with A,O~ 0 and a finite cut-
off, A'

The theory with a finite ultraviolet regulator and ko~ 0
has the usual behavior. Namely, as T increases, the
ground state becomes symmetric even if we start at T =0
in an asymmetric phase. This is clearly seen in Fig. 7. In
the A,o & 0 and finite-A case, only the left-hand-side
branch of the gap equation is of interest (since m~ & A as
discussed in Sec. III). The O(N)-symmetric phase at T =0
in Fig. 2(a) will remain symmetric at T&0 At.
P, =(P) =0 we see from Fig. 7 that the effective mass
mLr grows with T and the O(N)-symmetric lower-energy
state in Fig. 2(a) continues to be the ground state of the
system.

The broken-symmetry phase shown in Fig. 2(b) (gap-
equation solution) will have P, = (P)~0 as T increases
and finally as seen in Fig. 7 at —p /A,

+(N/24)T F(0)&0, namely, T&(24@ /AN)' the sys-
tem will be in an O(N)-symmetric phase (with m &0).

As discussed in Sec. III we have to restrict the range of
possible p /k values so that m &&m„and thus stay
within what we called the physical region of the regular-
ized theory, namely, the low-energy regime on the A
scale. Here we also must restrict the temperature range to
T &A in order to stay in the physical region. This also
allows a properly behaved solution to the gap equation for
all values of T, as seen in Fig. 7, contrary to the case
A,o&0 of the renormalized theory where there is no solu-
tion to the gap equation as T—+ oo.

y ~W(y', (m'), m')

Veff

FICr. 7. The effect of the finite temperature T on the gap-

equation solution of Fig. 1. For a given P, , the m solutions

change from mgp NlL, p to pl gz MAL, z. . Clearly for high enough
temperature there is no solution to the gap equation in the case
of (kp~0) the renormalized A,N (see also Fig. 8). In the case
A,p& 0 and finite A there will always be a solution in the physi-
cal region (p, T2 && A ).

r, )v, )v, )r, )0

FICr. 8. The disappearance of the false vacuum as the tern-
perature increases beyond T, . (See also Fig. 7.) Here we see the
behavior for the renormalized k+ (A,p &0) theory. Recall that in
the case A,p~O, and finite A, the normal expected behavior
occurs in the physical region as T increases (always below A )
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VI. SUMMARY AND DISCUSSION

Combining a variational calculation and a detailed
large-N analysis of the Q(N) A,N vector model, the follow-
ing results have been obtained.

(1) We have proved the existence of a broken-symmetry
phase with X —1 massless Goldstone bosons in the large-
X limit of the renormalized A,@ vector theory. This
phase has been found here when the end-point contribu-
tion of the variational parameters were studied. Previous
analyses ' concluded that there is no spontaneous symme-
try breaking at large X. The symmetric and broken-
symmetry phases correspond to the minimum at m &0
and the end point m =0 in Fig. 4, respectively.

(2) We have pointed out, however, the existence of an
inherent instability in the renormalized version of the
theory. The upper limit of the ground-state energy is un-
bounded from below at large values of the classical field
[see Section III A, e.g., Eq. (3.1)]. If the analysis is limited
to the small-g, region, one finds a broken- or an
unbroken-symmetry ground state (depending on the value
of p /A, , Figs. 3 and 4). The instability reflects itself,
however, through either limiting ' ' the possible P, values
below a certain P,

'" or through the existence of tachyons
in the theory. We believe that this inherent instability per-
sists in higher-order calculations and is not a peculiarity
of the 1/X expansion but rather a property of the exact
solution. Its origin can be traced back to the negative sign
of A,o in the renormalized theory.

(3) From (1) and (2) we have concluded that the renor-
malized version of the large-N A,4& O(N) vector model in
four dimensions is inconsistent. The broken and unbroken
phases mentioned above are metastable. We have not cal-
culated their decay rate at large P, values. If, however,
the lifetimes are large, the theory may sti11 have practical
use, though ultimately unstable.

(4) Taking into account the last remark in (3) we have
concentrated on the small-g, region of the renormalized
theory. The new broken-symmetry phase we have found
contains, for a certain region of the parameters, the true
vacuum of the theory. We have shown that the decay rate
of the Q(N)-symmetric (m &0) false vacuum is small
(proportional to e ) in the large-N limit.

(5) At finite temperature and above some finite value of
T, we have found that the symmetric phase disappears
and only the broken-symmetry phase of the theory can ex-
ist at high temperature. This phase-transition structure is
of a less common type (although, not unknown); the sys-
tem becomes asymmetric as the temperature increases.

(6) The theory with positive A p does not suffer from the
instabilities mentioned in (2) and it may very well be the
only meaningful theory. If A,o~0, then the theory is de-
fined as an effective field theory at momenta scale small
compared to a fixed cutoff (A or inverse lattice spacing
a '). At energies above this cutoff the physics must be
modified from A.@ . If we take A ~co (a~0) then the
renormalized coupling A, ~O and thus the Q(N) A, C& vector
theory becomes a free theory. ' '

(7) The results (4) and (5) imply that indeed the Q(N)-
symmetric (m ~ &0) false vacuum may be used as a
ground state for performing perturbation calculations

(e.g., Ref. 3) since its decay rate is -e +. However, the
disappearance of this false vacuum at high temperature
(Sec. V) implies that little use for practical physical appli-
cations can be made of the theory at T& T, . Thus, any
early universe model incorporating this theory will never
find the system in the O(N)-symmetric false vacuum
phase, as the universe cools down (seen in Fig. 8). The
system will remain in the m =0 phase, where 8 ~—oo
as P, ~Do, thus demonstrating the inconsistency in the
renormalized A,4 theory.

Note added. After completion of this work, we were in-
formed that Dr. A. D. Linde (Ref. 25) has reached con-
clusions similar to ours concerning vacuum stability at
strong fields and the fate of the metastable state at finite
temperature. However, his analysis neglects the third
branch of the effective potential, presented in this paper,
which reflects the true vacuum instability for arbitrary
field strength.
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APPENDIX A: OSCILLATOR FREQUENCY
AS A VARIATIONAL PARAMETER
AND END-POINT CONTRIBUTION

N I d k
(2')'

k'
+

2 26)I

Po dk 1

(2~)' 2aik

(Al)

where

(-,
&

N
g

d'k
(2m ) 2cok

The variation of cok gives

58' X k

32~

2
Po ~o dk 1

cok' (2~)' 2~k

(A2)

and thus 58 /5cok =0 implies

d k
cok2 ——k 2+pp +&pN f (2m. )

In Sec. II we used the mass m defined from the oscilla-
tor frequencies cok =(k +I )'~ as a variational parame-
ter. One may instead let the frequencies cok vary, and then
choose the best oscillator frequency that will determine
the lowest-lying state. Equation (2.8) can be written in-
stead as a functional of cok,

8'I cok I =K I cok I + ( v( N )p
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which gives the gap equation [compare with Eq. (2.9)]:

cok = k +pa j/Lo( f )

2 2

~, =k +m +Ap + —— —— m ln2 p m

16''
M e

m

The physics in these calculations is clearly seen in Eq.
(A3). In the case A,0~0 and po ~ 0, there will be no con-
densation of the zero mode in the k summation in (P )
and the mass m will be determined by the gap equation.
After renormalization, Eq. (A4) gives [using Eqs. (2.6),
(2.11), and (2.12)]

the ground state. In the region P, & —po /A, o the effec-
tive mass is negative and the system is unstable. ' We
have seen that the solution to the gap equation [e.g., Fig.
2(b)] does not define the effective potential below
p, = —po /ko. When the end points of W(p, ,m ) had
been checked in the A,p~ 0 case in Sec. III, we did not find
any lower-energy state below the one found from the gap
equation.

The situation is different in the A,p~O case. Here the
condensation of the m~ ——0 mode does not suffice to stabi-
lize the system and the gap equation above does not reveal
all the physics. In Eq. (A3) after the cok=0 mode con-
denses and therefore (P )&0, there is a preference for
higher modes to condense as well when A,p&0. The gap
equation now is however not much different from the

Q & 0 case and gives [Eq. (AS) including P, ]

(AS)
2

p 2+p X Pl eM
16m m

(A7)

cok =k +po +ho (p) +E f (2m)' 2~k
(A6)

With (P) = —po /Ao (or (P) = —p /1, if renormaliza-
tion is taken into account) a massless phase is created [Fig.
2(b)]. No further condensations of the higher modes will
occur in this case (A,o ~ 0) since (P ) = —po /A, o stabilizes
the system. If a classical background field P, is intro-
duced it will acquire the value P, =(P) = —po /&o in

When a background classical field P, is added, P, will
vary and acquire the value P, =(P) =0 in the ground
state. The coefficient of A,o in Eq. (AS) gives the gap
equation as seen in Eq. (2.13).

If p, o &0 (still A,o&0) a condensation of the zero mode
will give (P)&0 and thus Eq. (A3) becomes

It allows a m &0,$, =(P) =0 solution which gives an
0(Ã)-symmetric phase but the instability mentioned above
reveals itself in the end-point contribution of W(g, , m ).
Indeed the energy of the m =0,P, = ( P )&0 broken-
symmetry phase has been shown in Sec. III to be lower
than the energy of the lowest-lying state in the m &0
phase. In fact, as we have seen in Sec. III, the lowest-lying
state in the m =0 phase has an energy which is unbound-
ed from below at large P, .

The effective action I [Xj in Eqs. (4.S) and (4.6) which
governs the dynamics of the large-X theory will be calcu-
lated here. I [Xj is defined from the Euclidean functional
integral

Z(J)= f mDeexp —f d'z —,'(a C)'+"' C '+ —'(e')' —J C — '
(X—X,e' —p, ')'2

2
= f DXD&b exp —f d z —,'(8 N) + —,'g4 — g + — g —J.C&

After integrating out the 4 =P +P, degrees of freedom, we have

2
4 ] ~ —+ ] ~ 2 1 2 1 ppZ( J)= DXexp d z —,P, P, —, XP, +—g ——— X+ J P ——Trln( —0+X)

~

= f D&exp —I j&j+ f d'z( ,' Q, ClIP, + J P, )—

where we denote
q

—"Izl = f DP exp —f d z[ —,
'

P( —I:I+&)4]

and

(83)
=exp ——Tr ln( —CI+X)

2

In what follows we will consider the subspace of slowly
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varying functions X(z) for which (BX) /X (&1. I (X) can
then be written as a local expansion

rIX] = f d'z[F, (X)+F,(X)(a„X)'+ ], (85)

where Fo(X) and Fi (X) are local functions of X(z). Fo(X)
is found by calculating the Tr ln( — +X) in Eq. (84) with
a constant X. Up to an (infinite) constant

—Trln( —0+X)=—f d&z f1V 4 de X
(2m) pz

a'F, (X)

~ X

2Fi(X)= 1

192m
(812b)

Equation (812a) reproduces the result, of Eqs. (86) and Eq
(87) [given in Eq. (88)]. We finally have in Eq. (83)

Using Eq. (85) we can now identify Fo(X) and F, (X) with
the constant-X expansion of Eq. (811),

A
ln (812a)

32~2 X

and thus

&F0(X)

Bg

X'1 e'i'A'
32' 2" X

(86)

or alternatively use Eq. (2.6) and a constant X
r

2

I IX]= f d~z (~X)'
x

3/2p2
7 ln

64~ x

24(4m)

2 Ao (4~)~

(813)

x'
Fo(X)= — A X— ln

32& 2" X
(88)

Using Eqs. (2.11) and (2.12) I IXI can be written in terms
of the renormalized parameters,

as is found also in Eq. (86).
In order to calculate Fi(X) one notes that the connected

part ( P (x)P (y) ), can be written as

5I X = —,[(4'( )P'(y)) —(P'( ))(P'(y))] . (89)

IIXI= fdz

If we now define

24(4vr)' X

3/2~2
7 ln

4(4~) x
1

4A.

(814)

5'I IXI
5X(x )5X(y)

d k;k( y) dp 1

(2m)~ (2~) ((p —k)'+X)(p'+X)

d k;k( y) '~ l
32m. (2m. ) cz(1 —a)k +X

tt' (z) =
~

X(z)
192~

then

3/2~
I~I= f "-,' .~)' -, ~'- —,e" '

(815)

(816)

This can be expanded in the form

5I IX) X A
ln 5(x —y)

5X(x)5X(y) 32m~ X

X 5(x —y)+
192 2 X

+0( 5(x —y)) .

(810) where

(811)

192m
~ q p

C

144(4m. )

(4'�)'
exp

192vr X
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