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Symmetry breaking and phase transitions in general statistics
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A Higgs-type symmetry-breaking mechanism with general statistics is described in scalar P
theories. It is shown that the minimum of the potential depends upon statistics and the parameter
space is subdivided into separate regions, each with a particular statistics as a phase variable. In the
model we describe, a phase diagram is constructed in parameter space, suggesting a new type of
phase transition between domains of different statistics.

I. INTRODUCTION

In recent papers we have introduced the concept of gen-
eral statistics, ' which is a generalization of parastatistics,
and constructed a quantum field theory based on general
statistics. In Ref. 3, we also suggested the possibility that
statistics may be considered as a dynamical or phase vari-
able with the resulting phase transitions between domains
of different statistics. In this article we present a model
scalar P theory in which the above ideas are realized.

General statistics is defined by either single or double
commutation relations in which Heisenberg's equation of
motion and the spin-statistics relationship is satisfied.

I

This is a further generalization of Green's parastatistics in
that it allows the identification of Green s component in-
dices as the internal-symmetry indices. An important
property of general statistics, as opposed to normal statis-
tics or parastatistics, is that it is not invariant under
internal-symmetry transformations (double commutation
relations are covariant). Because of this property the am-
plitude relations implied by internal symmetries are violat-
ed and replaced by other relationships which we call sym-
metry transmutation.

Based on this generalization of statistics, we proposed a
formulation of a quantum field system in which the gen-
erating functional is given by

Z[[J j j [~]]=f ~(0 04)exp t f [~(4»0)+~;p;+g;J;+j p ]d'x

In Eq. (1.1), the variable [o.] represents the statistics satis-
fied by the fields IP,P; j, external sources IJ;,ja j, and
their differentiations. Note that the functional integral is
defined and corresponds to an allowed physical system
with arbitrary statistics [cr] provided locality is satisfied.
In Ref. 3, we proposed that [o] is chosen by physical con-
ditions such as energy minimalization exactly in the same
manner that a phase such as liquid or gas is preferred.
The transition between domains of different statistics [o]
(phase transition) occurs with variation in parameters of
the theory, such as coupling constants, masses, or tem-
perature. We emphasize that, because [o] is determined

by relative commutation relations, different [cr] phases
correspond to different symmetries in the many-body
wave function. The identity of each particle, fermion or
boson, is the same in all phases due to the spin-statistics
relation.

In the following we show that a Higgs type of
symmetry-breaking mechanism in a scalar P theory ex-
hibits the phase structure between statistics described
above. Note that theories with different relative statistics
[cr] are not unitarily equivalent. In fact, the examples
below show that they may describe different physical
states of the same underlying system, i.e., the same inter-
nal symmetry. We propose that this is analogous to the
Cooper pair and conduction electron phases of supercon-

ducting material or the solid-liquid-gas phase structure of
matter.

In Sec. II, we introduce the definition of [o] and discuss
Higg-type symmetry breaking of an SO(3)-invariant P
model. The phase diagram is constructed for this model.
Section III contains the mass spectrum of Higgs particles
resulting from the symmetry breaking in each phase. A
discussion follows in Sec. IV.

p p
—+l,

pap= pp

(2.1a)

(2.1b)

pea=& . (2.1c)

The fields P (x), a=1,2, . . . , X, satisfying statistics [cr]

II. THE SO(3) $ MODEL

As mentioned earlier, general statistics is defined by
double or single commutation relations (referred to as I d
and I „respectively, in Ref. 3). For simplicity in this pa-
per we consider only single commutation relations (I, )

among real scalar fields tb, a=1,2, . . . , X, as the allowed
values of [o.]. In this case [o] is defined by a set of num-
bers [p pj such that
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obey the commutation relations

[{()~(x)P~(x')—p~Pp(x')P~(x)], , =i5(x —x ')5 ~,
(2.2a)

(II) V;„=
(4a b—)

at $1 p2
—————,p3

—0 (4a )b ),(4a —b)
' (2.9b)

[P (x)Pp(x') p—Pp(x')P (x)], ;=0 .

Consider the SO(3)-invariant Lagrangian (repeated in-
dices summed)

(III) V;„=
(4a b)—

(4a )b), (2.9c)
(4a b)—

W= ——,'(t)„P )(B„P ) —V(P),

where

(2.3)
(IV) V;„= 1

(a —b /3)

V(p)=a(1i) p )'+ (e—ppp )(e pi /pent ) c(—p p ) .

(2.4)

From the fact that

(2.5)

we write the second term (b term) in Eq. (2.4),

4(4&ggr

(2.6b)

from Eq. (2.2b). Note that for normal statistics or classi-
cal fields (p ~——1, for all a,P) this term vanishes, while for
general statistics it is nonvanishing and gives different
values depending on [o].

Denote nonequivalent statistics, o.r, ~n, 0 rn, o rv
(a=1,2, 3):

at p, 2=$2'=$3' —— (3a») . (2.9d)
2( 3a b)—

The minimum value of the potential, V;„,as a function
of b/a is shown in Fig. I for each statistics. In this dis-
cussion we assume both c and a positive in order to have a
Higgs phase with a stable {)) theory. As is shown in Fig.
1, for b/a &0, normal statistics [oi] gives the lowest po-
tential minimum V;„and for 0&b/a &3, [oiv] gives the
lowest minimum potential. In the range 3 & b /a & 4,
[criv] is not a consistent theory and is excluded as possible
statistics. Among well-defined statistics [oii] and [oiii]
are favored in this range as they both give the smallest
minimum. They have degenerate V;„and therefore can-
not be separated in this model. For b/a )4 only [oi],
normal statistics, is consistent and therefore is the only al-
lowed phase.

In Fig. 2, this situation is exhibited in the form of a
phase diagram. In parameter space (a, b) the domain of
each statistics is shown. Each domain is designated by
statistics number II, III, IV and Iz, Iz, where 2 and B
denote disconnected domains of normal statistics.

Note that the degeneracy of [crit] and [oi»] may be bro-
ken by the introduction of other interactions, such as {t or
Yukawa PgP interactions. For example, allowed SO(3) in-
teractions

(I) [o,]=Ip ~=1, for au a,PI,
(II) [o»]=

Ip12 ———1) p13 ——p23 —1 I,
( III) [o1»]= Ip12 ——1, p13 ——p23 = —1 I,
(IV) [oiv]= [p p

—1, a&PI . ——

(2.7a)

(2.7c)

(2.7d)

and

f& Jkd 4'Jdk.

vmin(c='=")

(2.10a)

The b term in the Lagrangian which results for each
statistics is given by

(I) 0,
—b{t1'02'

b(02 4'3 +03 4'I

b(41 4'2 +01 4'3 +42 43

(2.8a)

(2.8b)

(2.8c)

(2.8d)

I I

VI

2
at 4'1 +4'2 +4'34a 2a

(2.9a)

Regarding the potential, Eqs. (2.4) and (2.8), as a function
of mutually commuting objects, $1, $2, and p3, for any
statistics, we minimize with respect to 1I); . The minimum
of the potential in each case is given by FICx. 1. Dependence of V;„o» parameter g=b/a for dif-

ferent statistics: The dot-dashed line denotes oi (/&0, $) 4).
The dashed line denotes o», cr»1 (3 &/&4). The solid line
denotes priv (0& g & 3).
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(3.4)
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The resulting potential is

2

V(q;)= + u ~(r)& +g2 +r)3 )

+4u (2~ —b)(8i82+5283+838i) (3.5)

Diagonalization of this mass matrix leads to the spectrum

rn& ——m2 ——4bu =
(3a b)—

m 3
——8(30 —b )u =4c

(3.6a)

(3.6b)

P, =v cos O+2vcosOg&,

$2 ——v sin O+2v sinOgz,

f3 =u +2v g3,

(3.7a)

(3.7b)

(3.7c)

which are positive definite in the range 3a & b.
For statistics [o.»t] in the range 3 &b/a &4, redefine

fields from Eq. (2.9c),

FIG. 2. Phase diagram showing parameter-space domains of
different statistics.

where

u = /c(4a —b) .

The resulting potential is

(3.8)

g~~kAWJNk (2.10b)

V(g;)=4v [a(g& cos O+g2 sin O+g3 )

+2a q &g2cosO sinO

may be introduced. This will modify phase boundaries as
well as break degeneracy.

III. MASS SPECTRUM

In this section we analyze the mass spectrum of quan-
tum fluctuations about the minimum in each statistics
phase for the SO(3) model discussed in the previous sec-
tion. We introduce two different methods in order to ex-
tract mutually commuting fluctuations which are suitable
for describing vacuum expectation values.

A. Method of composite modes

Consider statistics [crqv] and redefine the fields from
Eq. (2.9d),

m ~ 4bc /(4a b——), —

m2 ——4C,2=

m3 ——O.

(3.10a)

(3.10b)

(3.10c)

In the case of statistics [o»], from Eq. (2.9b), define
fluctuations by

=u +2V71(

=u +2U7Ip,

(3.11a)

(3.11b)

(3.11c)

+ (2Q b )(7J ]Q3coSO+ rI2 g3sinO) ] . (3.9)

Diagonalization of the mass matrix leads to the spectrum

=u +g, a=1,2, 3 (3.1)
with u given in Eq. (3.8). The resulting potential is given
by

u2= (3a)b)0) .
2 3a b—

The Lagrangian is then rewritten using

(&„p )'=, (&„g )'
P ~

4y 2 P

~(B„g ) —— (B„q )g +4u' " 4u4

and defining

(3.3)

+4u (2a —b)g, q~

with the resulting masses upon diagonalization

(3.12)

m
&

4bc /(4a b), —— —

fPZ2 =4C2

(3.13a)

(3.13b)

V(g;)=4u a(g) +g2 )+
(4a b)—
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m3 ——2bc/(4a b—) . (3.13c) which can be adsorbed in longitudinal modes in gauge
theories.

Note that one mass (m3 ) is different in cases [cr»] and

[o»i] although they have degenerate minimum energy.
For the normal statistics [crt], define the fluctuations

Pi uc——os rtp sin 8+2u sin8cosgr) &,

Pz ——v sin /sin 8+2vsin8singqz,

P3 —u cos 8+2u cos8r13

with

(3.14a)

(3.14b)

(3.14c)

B. Method of pscudoparticle modes

In this subsection, mutually commuting fluctuations are
defined by introducing a mutually commuting or anticom-
muting set of c numbers.

Given Ip pI, defined in Eq. (2.1), define an associated
set of c numbers [K I by the equations

v =c/2a .

The potential is given by
2

V(i);)= +4au (il, sin8cosp
4a

(3.15) K Kp ppK—pK =0,
K 4p Va—gpKn=0

for fields Pp and

(3.18a)

{3.18b)

(3.18c)

+ rl zsin8 sing+ il 3cos8)

(3.16)

Consider first statistics [oiv] in the domain 0 & b/a & 3
and define (a=1,2, 3)

with the resulting mass spectrum

m& ——4c2= (3.17a)

0a =VKn+ rja

' 1/2

(3.19)

(3.20)

2 2
mz ——m3 ——0. (3.17b)

Obviously, the massless modes are Goldstone bosons,
Substitution of Eq. (3.19) into the potential Eqs. (2.4) and
(2.8) results in the mass matrix

2a 2a —b 2a —b
((M )) 2

2
= 2V '(K, il „K,il„K3r13) 2a b2a 2—a b-

2a —b 2a —b 2a

(3.21)

Note that this is the same matrix as Eq. (3.5) which indicates the same mass spectrum. Diagonalizing Eq. (3.21) yields a
commuting basis 4i, Ni, and @i related to (K;rI;) by

and

1 1 1
K)ii) ——~ Ni+ ~ N~ ~ N3,

6 2 3

1 1 1
Kpilp ——~ 4i —~ @p—~ @3,

(3.22a)

(3.22b)

(3.22c)

The mass spectrum for the set of mutually commuting fields P„Pz, P3 is given by Eq. (3.6).
For statistics [cr»i], in the domain 3 & b/a &4, define

Qi =v cos8Ki +rli

Pz ——u sin8Kz+ gz,
and

(3.23a)

(3.23b)

p3 ——VK3 + i13, (3.23c)

where u is given in Eq. (3.8). Substitution of Eqs. (3.23) into the potential Eqs. (2.4) and (2.8) yields the mass matrix

2a cos 8 2a cos8sin8 (2a b)cos8—
((M')) 2

2
—2v {Kigi KQ rjz K3 f13) 2a cos8 sin8 2a sin 8 (2a b)sin8 Kqilq-

(2a b)cos8 (2a b—)sin8 2a— (3.24)
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which is the same mass matrix as Eq. (3.9) and is diagonalized in terms of the commuting basis @„Nz, and 4&3 defined
by

cosOK,g, = (4,+Nz)+ sin8@3,
2

sin8
Xzgq —— (@~+@q)—cos8@3,

2
—1

E3g3 —— (4&) —@q) .v'2

Again by rewriting X;g; in terms of commuting fields, the mass spectrum derived in Eq. (3.10) is obtained.
For statistics [o t&], in the range 3 & b /a & 4, define

(3.25a)

(3.25b)

(3.25c)

(3.26a)

(3.26b)

A=n3

4a
((M')) —V (K]Q] KQ71$ IC3r)3) 4a 2b—

0

where U is given in Eq. (3.8). Substitution into the potential, Eqs. (2.4) and (2.8), yields the mass matrix

4a —2b 0 &&'9&

(3.26c)

(3.27)

This is diagonalized in terms of commuting fields N], Nz,
and 43 by taking

and

1K, g, = (c,+c,),
2

1- ( —+)+@p),~2

(3.28a)

(3.28b)

E3g3 ——43 . (3.28c)

The mass matrix resulting for N&, Nz, and 43 is given in
Eq. (3.13).

The case of normal statistics [o&] reduces in this for-
malism to the usual Higgs mechanism (E; = 1, for all i)

In this section the masses of quantum fluctuations
around potential minima was discussed using composite
modes P; and pseudoparticle modes P;. The latter
method requires an anticommuting number system [Eq.
(3.18)] for consistency. While use of this number system
is natural in a functional integration formulation, as in the
case of anticommuting c-number fields for fermions, it
cannot be used in the usual Hilbert-space formulation of a
quantum system. This does not permit the ordinary inter-
pretation of the constant term, E; U, as a vacuum expecta-
tion value. However, due to the fact that in both methods
the theory is rewritten in terms of commuting fields and
gives the same mass spectrum in the Higgs mode, one is
led to conclude that the two methods are equivalent. For
these reasons we called the second method the pseudopar-
ticle mode, i.e., the g; fluctuations are not occurring in the
final formulation of the second method.

F-~v 0 Pj's (4.2)

is local for any statistics chosen. For any other group an
appropriate composite rule must be imposed on P;J where
the interaction term is

IV. DISCUSSION

In this paper we have showed that different statistics re-
sult in different potential minima and different mass spec-
tra for an SO(3) scalar P model in different domains of
parameter space. %'e suggest this is an indication of the
existence of phase transitions between domains of dif-
ferent statistics as parameters are changed. Clearly, a de-
tailed description of such a transition requires an exten-
sion of the usual formalism of quantum systems. We have
hinted at this possibility by the introduction of a new
number system, (K;J, which most likely would alter the
structure of the usual Hilbert-space formulation of physi-
cal states.

The above can be easily generalized to SO(N) or SU(N)
internal symmetries. In Ref. 3, we showed that for com-
plex fields p ~ may be an arbitrary phase. The SU(N)- or
SO(N)-invariant interaction term, analogous to the b term
in Eq. (2.4), is given by

QPJAukjda= gpja4JP, PJPa . (4. 1)
jk jk

The inclusion of fermion fields in a general statistics
has been discussed in Ref. 3 and is essentially the same as
the boson case. Complications arise, however, in the con-
struction of local interaction terms. In the case of SO(3),
the Yukawa interaction
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(4.3)

An SO(3)-invariant model, using interaction term Eq. (4.2)
with various statistics, is currently being studied by the
authors for application to the generation problem.
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