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The classical supersyrnmetric Liouville theory is shown to be invariant under the supersymmetric
extension of the conformal group. Lax pair and Backlund transformations are derived and the gen-
eral classical solution is obtained. The isotropy group for every solution is constant on the solution
manifold and equal to an N=1 conformal supersymmetry. For the quantum theory, the effective
potential is computed exactly. The spectrum of the theory is continuous, bounded from below by
zero, but no translationally invariant ground state exists. Translation invariance may be broken
without the appearance of a Goldstone boson, and a consistent perturbation theory in the coupling
constant is obtained. The constant N =1 supersymmetry is also broken to a constant N =

2 super-

symmetry, and no Goldstone fermion arises. Space is spontaneously reduced to the half-line. The
N = 1 conformal supersymmetry remains exact to all orders of perturbation theory.

I. INTRODUCTION

The supersymmetric Liouville theory (henceforth abbre-
viated SLT) is the supersymmetric (X = 1) extension of the
ordinary, purely bosonic, Liouville theory. Both have
arisen in the reformulation of the dual string model. '

While the ordinary Liouville theory has been extensively
studied during the last year, relatively little progress
has been made on its supersymmetric extension. The pur-
pose of this paper is to investigate systematically the SLT
model, both at the classical and at the quantum levels.

First, we examine the classical theory. In Sec. II, we
construct the invariance group of the action. In addition
to the global N =1 supersymmetry, the theory is invariant
under conformal transformations. Furthermore, the glo-
bal supersymmetry can be generalized to a local (confor-
mal) supersymmetry. Composition of two local supersym-
metry transformations yields a conformal transformation.
Both the local supersymmetry and the conformal transfor-
mations may be united into the superconformal group. Its
algebra may also be realized on the fields using Poisson
brackets and we identify the central charges. In Sec. IXI, a
Lax pair is constructed and a Backlund transformation is
derived. We integrate this Bicklund transformation and
obtain the general solution to the SLT. We show that the
superconformal group acts transitively on the solution
manifold. Every solution has the same isotropy group
OSp(l, l), the simplest graded extension of SO(2, 1). An
improved energy-momentum tensor is derived in terms of
which the superconformal OSp(l, l) symmetry is realized
without central charges.

Next, the quantum theory is considered. In Sec. IV, we
compute the full effective potential using functional
methods, and we check the answer to second order in the
loop expansion. We argue that the SLT—exactly as the
ordinary Liouville theory —possesses a continuous spec-
trum, but no translationally invariant ground state. In
Sec. V, we show that a consistent perturbation theory in
the dimensionless coupling constant may be developed
around a classical solution of the SLT. Space translation

invariance is broken spontaneously in the same sense as in
the ordinary Liouville theory. No Goldstone bosons arise
and space is semicompactified. The constant N =1 Poin-
care supersymmetry is spontaneously broken down to
N = —,

'
supersymmetry without the appearance of Gold-

stone fermions. The fermionic generator of the N = —,
' su-

persymmetry is both a Majorana and a Weyl spinor.
However, the OSp(1, 1) invariance of the classical back-
ground is left unbroken and the N =1 conformal super-
symmetry remains exact. The proof is given first for the
one-loop approximation to the propagator and then gen-
eralized to all Green's functions and all orders of perturba-
tion theory. Finally, it is indicated that different types of
classical solutions give rise to different physical theories.
A consistent perturbation theory may be constructed for a
theory in which translation invariance is broken, and
space compactified to a finite interval. For the latter
theory, the symmetry group is still OSp(1, 1), however, the
global N=1 supersymmetry is completely broken down
without the appearance of Goldstone fermions and the
remaining (nonconstant) X= 1 supersymmetry is no
longer conformal.

II. CLASSICAL THEORY: THE SUPERCGNFGRMAL
GROUP

A. Global supersymmetry

~/2'+
2v2 (2.1)

We shall use the following representation of the two-
dimensional Clifford algebra:

The SLT is a two-dimensional field theory of one real
scalar N and one Majorana spinor 4, whose dynamics is
governed by the action

2

S= fa'x -'a Ca C+ —'eW — ep'
2 p 2 P2
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The field equations derived from (2.1) read

2

4&+ e~+ ep %4=0,
P2 4v2

(2.13a)

With this convention, a Majorana spinor is real. Please
note that upon setting 'II=0 in (2.1) we recover the action
of the ordinary Liouville theory. The action S is invariant
under the following supersymmetry transformations 5, as-
sociated with a constant spinor e (Ref. 5),

if% —e~/ 4=0 7

or in terms of the superfield

2 2m pH/2

(2.13b)

(2.14)

5,%=eel,

5 4= —i'd& — e~/ e

(2.3a)

(2.3b)
B. Conformal invariance

The theory may equivalently be expressed using the super-
field formalism. Let us introduce a real scalar superfield,

H =4+0% ——,OOF .

We shall also need the supercharges

x"~x" f", —
where fl' is a conformal Killing vector satisfying

a~f"+a f~—g~"a~ =0

(2.15)

We recall that S is invariant under ordinary conformal
transformations,

Qa =yap +iyaP 5„0 a . PP
ae~

and their associated superderivatives

(2 5) or

f+=f+(x+), f =f (x ) .

(2.16)

a = yap yap( p ~

0 8 . p p
ae~

(2.6)
Under this transformation, the fields change according
02,7

ID,Dp] =2i(y"yo) pB„,
[Q Qp]= —2&(y"y') gP~

(2.7a)

(2.7b)

Supercharges and superderivatives obey the anticommuta-
tion relations

5C =f~a„e+—ag~,1

w =f~a„q+ —,
' (ag&)e+ —,'(w"ag„)y'e,

5F=f%„F+,' r}J'"F . —

(2.17)

ID, Qp] =0 .

The superspace action

(2.7c)

yields, upon performing the 0 integrations,

S= Jd x Jd 0 —'DHDH ™—2ep /' (28}
4 2 5O= ——,

' (a~~}e+-,'(e"aP„)y'0, (2.18)

then the scalar superfield H has the transformation prop-
erties of the scalar field C:

(We use the definition of e such that e '= —e+ =1.) If
we make the convention that the 0 coordinates transforms
as a spinor of dimension ——,',

S= Jd2x —,B„@Bi'e+—eg% + —,
' F'

2 5H =f~a„H+—ay~ .1 (2.19)

—mF eP@/2 ePc /2ygg g 9}
P 2 2

Using the equation of motion for the auxiliary field

i/2m pc, „e (2.10)

or in components

the latter may be eliminated from (2.9), so that the action
(2.1) is recovered. With the help of the superfield
language, the supersymmetry transformations (2.3) are ex-
pressed in terms of the superfield H alone:

(2.11)

Invariance of the action under the transformations (2.18)
and (2.19) is easily verified.

C. Local supersymmetry

Next, we show that the global supersymmetry defined
in (2.11) and (2.12) may be generalized to a local invari-
ance transformation. To do so, we first construct the in-
variance group of the HDDH part of the action, and then
restrict that group to the elements which also leave the
full action invariant. To this end, we write the most gen-
eral superspace transformation in terms of the basis gen-
erators Q and D:

5,@=eel,
5,4= ( i QN F)e, — —
5+=ie9%' .

(2.12a)

(2.12b)

(2.12c)

X=eQ+5D .

Invariance of the operator DD is obtained when

[DD,X]-DD .

(2.20}

(2.21)
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A straightforward calculation shows that 5=0, and that e
must be a conformal Killing spinor satisfying

K"=—2iey"r] .

Writing out the components of E"
(2.32)

Dy (1+y )e=0.
This equation is easily solved and we obtain

(2.22)
K = —2W2l Fir/ i

K = 2—V 2i e2q2,

(2.33a)

(2.33b)
ei(x+)
e2(x )

(2.23)

DDQ =0 (2.24)

with general solution

Q(x;0) =Bi(x+;0i)+02(x;02) . (2.25)

Thus, the HDDH part of the action is invariant under the
transformations (2.11) and (2.12), but where e is allowed to
have the x dependence specified in (2.23). Furthermore, it
is clear that we may add to H any scalar superfield Q
satisfying the free equation

[5„5„]&=K"8„4+ B„K—" .l
(2.34)

This suggests that the algebra generated by the conformal
transformations and implemented with the local super-
symmetry transformations should close. The infinitesimal
action of a combined conformal and local supersymmetry
transformation on the coordinates is given by

and using (2.23), it is clear that K+ (K ) depends only on
x+ (x ), so that K satisfies (2.16) and is a conformal Kil-
ling vector. The conformal transformation is also realized
on the fields. So we have, e.g. ,

To find the invariance group of the full action, we use the
ansatz

5x"= f" i ey—"0,—
50=e——,'(ag")0+ —,'(e a~„)y'0.

(2.35)

(2.26)

with e and 0 satisfying (2.22) and (2.24), respectively.
Then we can easily check that the local supersymmetry
transformation [5I,.»s,„]=5s,e (2.36)

It is readily checked that the composition of two such
transformations is of the same form:

5H =eQH+ —Qe
2—

or in component language

5,@=eeP,

(2.27)
with h and 8 given by

hi'=f"B~i' g"BJ'I' 2—icy"ri, —

@=I"a„~ ga~ ,'(—ay~) q+——,
' (a~~)~—

+-,' (e.ag, )y'& ——,
' (~"a~.)y'e .

(2.37)

(2.38)

5,%= ( i e14 F—)e ——Qc, —2l
(2.28)

D. The superconformal group

We shall now show that the composition of two local
supersymmetry transformations yields a conformal
transformation. From (2.20) (with 5=0), it is clear that
the vector field X induces the following transformation on
the superspace coordinates:

5x"= idyl"0, 50=e . —
Composition of transformations e and g yields

[5„5&]x"=5,( i 7}y"0) 5„—( i ey"0—)—
i B„riy"0( —i ey 0 ) i riyl'a- —

+i B~yl'0( i riy 0)+i eg—ri .

(2.29)

(2.30)

Using (2.23), it is easily seen that this expression simplifies
to give

5,F=iF9%

leaves the action S invariant. We shall call this invariance
the local supersymmetry of the SLT. Note that the varia-
tion in the fermion field has picked up an inhomogeneous
term.

E. Superconformal current algebra and central charges

The superconformal algebra is generated by the com-
bined conformal and local supersymmetry algebra. For
each of these transformations, we shall now construct con-
served currents and their associated charges, and show
that, under usual Poisson bracketing, the algebra of the
charges closes up to a center.

Recall that the equal-time Poisson brackets for the ele-
mentary fields are given by

j &(x),@(y)J =5(x —y),

Iip (x),+p(y) J =i5 ir5(x —y) .

(2.40a)

(2.40b)

One may verify that h" (8) is a conformal Killing vector
(spinor). A lengthy calculation shows that the composi-
tion law. is also realized on the fields, so that the combined
algebra -closes. Henceforth we shall call the latter the su-
perconformal algebra.

The superconformal algebra defined in (2.35) and (2.36)
may be easily integrated and the group action obtained:

x"~y" y+ =y+(x+'0 ) y =y (x 0 )
(2.39)

0~E: ei =ei(x ), E2 =e2(x ) .

with

[5„5„]x"= IC"— (2.31) The conserved current associated with conformal transfor-
mations is constructed out of the conserved, symmetric,
and traceless energy-momentum tensor:
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JP =f„el'",

e""=8'4 8"c+—0 y ~B'%
2

(2.41a) [QI Qg I = Q—h+~(f g»
[Q. Q~ I = Q—k+&«ri»

IQ, QII = —Qa .

(2.50a)

(2.50b)

(2.50c)

ei %% +—( g""—a"a")+
2v2

(2.41b)

Note that the Belinfante improvement identically van-
ishes, because %' is a Majorana field. The only nonvanish-
ing components of this energy-momentum tensor are

e++ —(a+@) ——a+ a +—%y+a+e,2 2 l

P 2
(2.42a)

e =(a e)' ——a 'a+ —'Vy a e. (2.42b)

Jg =(9@+iF)y"4 (2.44)

is conserved. Using the Poisson brackets in (2.40), the
charge associated with Jg is found not to reproduce
transformation laws (2.28) on the fields. The inhomogene-
ous term in the transformation of 4 is missing. This dif-
ficulty is easily circumvented by adding to JIv a term that
is automatically conserved:

Because &'" is conserved, e++ (e ) only depends on
x+ (x ). The conformal charges

QI ——fdx Jc (2.43)

generate the conformal transformations of (2.17).
The current associated with the global supersymmetry

transformations

Here we have defined the conformal Killing vectors h and
k and the conformal Killing spinor as in (2.37) and
(2.38):

h"=f"au" g "M—'"

k~ = —2i ey "g,
@=f"a~ —,'(ag—")e+—,(& aJ" )y'&

The central elements 6 and X are readily calculated:

(2.51a)

(2.51b)

(2.51c)

6 (f,g) =—fdx[g'(x)a„'f (x)—f '(x)a„'g (x)],
(2.52a)

X(e,q)= —
2 fdx e a„g. (2.52b)

We have now determined the full invariance group of the
classical theory as well as its representation in terms of
fields and Poisson brackets.

III. CLASSICAL SOLUTIGNS

A. The Lax pair

A Lax pair for Eq. (2.14) may be found starting &om
the following ansatz for the covariant superderivatives:

&.V=O (3.2)

&~ =D~ — {D~H)A~+—o B~e~a a 4 a

Here the e number o and the numerical matrices Aa and
8 are determined by the requirement that the system

Jg=(94+iF)yI'4+ —y O'"a„4.4
(2.45)

be compatible if and only if H obeys the field equations
(2.14). It is found that o., A, and 8 must satisfy

ep„B"Jg——0,
y„Jg=0,
Js+ =Js+{x+

) Js—=Js—(x

(2.46a)

(2.46b)

(2.46c)

and its associated charges generate correctly the local su-
pertransformations:

Q~ = fdx eJs (2.47)

[Q„N]=eeP, {2.48a)

[Q„V]=(

i'd%

F)e —ae . — — —(2.48b)

The charge of a superconformal transformation speci-
fied by fl" and e is

Qi,.=Qy+ Q. . (2.49)

The algebra of superconformal charges closes under Pois-
son bracketing:

The improved supercurrent Jg has the following three
properties in addition to being conserved:

—A2 ——A1 ——A,
[A»i]= —Bi [A»z]=Be

t 1/2

IB),Bp] =2A, cr= ™
2 2

(3.3)

so that A, B~, and B2 span the graded algebra SU(1/I). It
is easy to find the lowest dimensional representation of
this algebra:

010 0 0 1

A= 100, 81 ——A, 00 —1

000 1 1 0 (3.4)
0 0 1

1
82 ——— 0 01

—1 1 0

The free parameter k may be thought of as the spectral
parameter in the Lax pair. The inverse scattering problem
can be set up with a formalism similar to that developed
for the ordinary Liouville equation, but we shall not
study it here.
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B. The Backlund transformation field h is of the form

A Backlund transformation can be derived from the
Lax pair in the following way. [Henceforth we use the
representation (3.4) with A, = 1.] First we write the system
(3.2) in components:

h(x;8)=h, (x;8q) —h2(x+;8, ) . (3.8)

Then, we may eliminate X between (3.7a) and (3.7c) and
between (3.7b) and (3.7d), so as to obtain two ordinary dif-
ferential equations for H alone:

D, V, = (D,H—) V cr—e P / V

D, V = (D, H—)V, +aeP / V

D, V, = —~eP~/4(V, + V, ),

(3.5)

D (e ph/2—D p(H —h) 4/—
) 2ep(H+h)/4e 1e

( Ph/2D —P(,H +h)/4) 2e P(,II—h)/4
2 e 2e —o. e

In terms of the field

Z =exp[ —, P(H —h—i—h 2)),

(3.9a)

(3.9b)

(3.10)

V2
h =—argtanh

V
'

(V 2 V 2)1/2 (3.6)

Then h and 7 satisfy the following equations:

D i h D i H = X—exp[ ~ P(H +h )],
D2h +D2H = — X exp[ , P{H —h )—],

4o.
1

(3.7a)

(3.7b)

and sImIlarly for &2V=O. If V1 and V2 are taken to be
bosonic superfields, then V3 must be fermionic. Now, in-
troduce the functions

Eq. (3.9) becomes, after some simplifications,

(
Ph2/2D —

Z) =2 2 Phz/2

Next, we define the Green's functions

Gi (x,y;82, 82)

g(x —y ) —i 5(x —y )8282,
2

6 (x+ y+'0 0')

(3.11a)

(3.11b)

{3.12a)

D,X= —o exp[ —,
' P(H+ h) ],

DqX =o exp[ ,' P(H —h ) ]—.

(3.7c)

(3.7d)
g(x + —y+ )+L6(x+ —y+ )0101

1
(3.12b)

This first-order system is precisely a Backlund transforma-
tion. " It is clear the II must satisfy the supersymmetric
Liouville equation, whereas h must be free {DDA=0).
The fermionic field 7 does not seem to obey any equation
all by itself, and may be viewed as a subsidiary field in the
Backlund transformation.

C. Integration of the Backlund

The Backlund transformation may be integrated expli-
citly using quadratures only. First. , we recall that the free

B+g(x —+—y
+—

) =5{x—+—y
+—

) . (3.14)

With the help of the definition of Z, we find the expres-
sion for the general solution to the SLT field equations

obeying

D] Gi (x,y;82, 8p) =5(x —y )(82 —82), (3.13a)

D G {x+y+ 8i 8'i)=5(x+ —y+)(8'i —8i) . (3.13b)

Here the function g satisfies

H=hi+h2 ——ln 2a JGie —' JG e ' +2o JG2e ' JG2e ' +2o JGie ' /Gee (3.15)

2 vg 1 ph2 1 ph 1

P 2 B~ 5
(3.16)

Prom (3.15), it is clear that any solution to the SLT may
be obtained by applying some superconformal transforma-
tion [of Eq. (2.39)] to a given, fixed, solution of the SLT.
Let W be the solution manifold and 9' the superconfor-
mal group, then for all fixed xo &M we have

xo {3.17)

In other words, the action of the superconformal group is

It is easily checked that when we restrict h1 and h2 to
have vanishing fermionic part, the scalar component N of
H precisely gives the general solution to the ordinary
Liouville theory:

transitive on the solution manifold. There is, however, a
subtlety, which we discuss in Appendix A.

D. The isotropy group"

Since the group action is transitive, the isotropy group
A „ata point x H M is obtained from the isotropy group
at a point xo by conjugation. If g(x)ES and xo,x&W
and

g(x)xo ——x, ~„=g(x)~„,g '(x) . (3.18)

In other words, the isotropy group is the same for all solu-
tions, up to a conjugation. We shall explicitly determine
the isotropy group for the general solution to the ordinary
Liouville theory,
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4, =—ln, F=F(x+), G=G(x )
1 4F'6'
P m (F—G)

(3.19)

Se=f~a„e,+—ag~=o,1
(3.20a)

Equations (3.20) are easily solved for f and e, and we find

f+=, ( ,'AF2+B—F+C), (3.2 la)

f =, ( —,AG'+BG+ C), (3.21b)

F 1+ ~ Xf ) (3.22a)

ind check that it is constant. The isotropy group is that
subgroup of 9 that leaves the solution invariant, or
5@=0and 5%=-0. For a purely bosonic solution, this re-
quirement becomes, with the help of (2.28),

is linear, and the algebra A closes without central
charges. Indeed, combination of (2.17) and (3.20) yields
the transformation laws of )}} and 4' which are clearly
linear:

5$=f"d„p+eeP,

&+=f"&„'P+—,
' (&g")q'+ —,

' (O' Bg )y'%'

+ [ i9P—F,—(e~ I )j—e .

(3.23)

Here F, =(~2/P)me ' . To see that the 4 algebra
p4 /2

closes without center, let us express the centers 6 and X in
(2.52) in terms of the background 4&, and the killing vec-
tors h& and kz alone. We find

a(f,g}=fdx B',„h~, (3.24a)

X(e,r))= f dx Bo„k". (3.24b)

Here 6&„is the value of the energy-momentum tensor of
(2.14), evaluated at the classical solution N„and h and k
are defined by

6 1

va' ' vG' (3.22b}
h"=f"du" 8 "oJ""—
k"= —2iey~g .

(3.25a)

(3.25b)
Only in the case where F=x+, 6=x or F=1/x+,
6= 1/x and

1 m x
N = ——lnC 2

is the classical solution invariant under a single constant
supersymmetry transformation. In all other cases the su-
persymmetry is realized in a fully nonlinear fashion. It is
clear that the composition of two transformations of (3.21)
and (3.22) closes according to the rules of (2.37) and (2.38).
This graded group is called OSp(l, l) and has three ele-
ments of even and two of odd grading.

E. Linear action of the isotropy group
on the fluctuation field

Let W, be a classical solution and A its isotropy group.
Then the action of A on the fluctuation field )}t)=N—C),

Thus, for f, g, e, and g restricted to the isotropy group,
(2.50) becomes

[ Qg, Qs J
= —fdx (B " B,"—)h„,

jQ„Qqj =—fdx(B " B,")—k„.
(3.26a}

(3.26b)

Here 8 is the energy-momentum tensor evaluated on the
complete field N. %'e may define an improved energy-
momentum tensor

(3.27)

in terms of which the algebra closes without central
charges. Choosing +, to be a time-independent solution,
the isotropy group will always contain time translations,
associated with a constant timelike Killing vector h,"=5&o.
Then we can define a Hamiltonian'

H= 8x Oy

m P4=fdx —(Bo((}) +—'(B(p) +—0'y'8'4+ - e '(e+ —pp —1)+ e ' e~~%q) (3.28)

which is positive definite and vanishes only when /=0.
Consequently, there is a unique (classical} ground state at
P =4=0 which has the full OSp(1, 1) superconformal
symmetry.

IV. QUANTUM THEORY.
THE EFFECTIVE POTENTIAL

Quantization of the SLT presents the same fundamental
obstacles as the quantization of the ordinary Liouville
theory. The calculation of the usual Green's functions
with the help of a naive perturbative expansion in P is im-

possible since terms linear in + cannot be removed by
shifting the field with a constant. Mass perturbation
theory exhibits increasingly singular contributions.

Still, the theory is rendered ultraviolet finite by mass re-
normalization alone, and it is easy to show that the bare
mass is given in terms of the cutoff A and some finite
mass by the relation'

AP2/16m

mo (A,p)=p

Hence, there is no reason to believe that the theory itself
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does not make sense; rather, the usual calculational
methods fail to be applicable. In fact, calculation of the
effective potential and in principle also of the effective ac-
tion can be performed in a perturbative expansion in P.
So the complication inherent to this system seems to lie in
the choice of' a ground state, as calculation of neither the
effective potential nor the effective action require the
choice of such a state a priori.

Goldstone' has evaluated the effective potential for the
ordinary Liouville theory with the help of certain proper-
ties of the normal ordering of exponentials. For our su-
persymmetric theory, normal ordering may be suspect, so
we shall rather use direct functional methods alone. %'e
shall evaluate the effective potential for the bosonic field
only. The generating functional

where the function p(Np) is defined by

—P@0/2
mp(A, pp) =mp(A, p(@p))e (4.8)

BWq (J) 8 W&(@ ~(J)
J=J(4) gJ J=J(@)+ 0 '

(4.9)

For N =@0, this relation reduces to

8 W&(@ ) (J)
BJ J J(@ ) 0 e (4.10)

Upon taking the derivative of (4.7}with respect to J, hold-
ing %0 fixed, yields

Z (J)=f&@&%exp —S + —f JC&
P

with

(4.2)
(4.11)

~jth the help of (4.5), we can rewrite (4.10) in the form

am„(J)
gJ J=J(@o)P, (4O)PO

mp (A,p)S = d2x —8 CP'4+ —%9% — e~~
P 2 p2

mp(A, p}
2 2

e

Wp(J)= lim lnZ„(J) .
v ~Vi

(4 4)

is clearly finite in the limit where A~ oo, and as a conse-
quence does not actually depend on A in that limit. (All
renormalized Green's functions are cutoff independent. )

Henceforth we restrict ourselves to constant, space-time
independent J, and define the function

am„(J)
BJ J=J(0)

Provided J(P) is a monotonic function, we find

J(@p)=J(0)p'(@p)pp

Using the expression for p(N) deduced from (4.8),

2 2 ~~0
p (+p)=pp e

where

1+irip'/16m.

we find that

Now, on the other hand, we have by definition that

(4.12)

(4.13)

(4.14)

(4.15)

Wp(J) =prie(Jp 2), (4.5)

where m is a dimensionless function that only depends on
the combination Jp . Recall that the vacuum expecta-
tion value C in the presence of the source J is given by

BW~(J)
J=J(4)aJ (4.6)

Making a shift of the field 4 by a constant %0 in the func-
tional integrals leads to the relation

W„,(J)= W„(@,)(J)+J+p, (4.7)

This limit exists for J~ 0 since the theory effectively has a
nonzero mass gap. Since W&( J) is of dimension 2 in mass,
and only depends on p, J, and P, a scaling argument tells
us that

J(@p)=J(0)e (4.16)

which is indeed monotonic and positive. From the rela-

tion

8 V,rr(@)

ac
=J(&')

we extract the effective potential using (4.16):

V,rr(e) =y(P)e ~ +y'(P) .

(4.17)

(4.18)

Here y and y' are functions of P only.
The effective potential may also be evaluated in the loop

expansion. The contribution of the purely bosonic Feyn-
man diagrams can be taken directly from a previous calcu-
lation:

~o fiR A 1
V,z,""'(N)= e~ 1+ " ln —@&+1

P2 8m 2 Svr

A
ln 2

—pC& +C +O(fi ), C=3.05208
0

and the fermionic contribution is easily evaluated:

(4.19)
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2
Vfermianic

(@} P4mp
eff

A
ln

2
—P4+ I +In2

mo2

I fiP
2 16m.

2g2 2—3 ln 2
—PN —21n2 ln

772 p
2
—p@ +(ln2) —8G +0 (iii ) . (4.20}

mp

Here G is Catalan s constant (G =0.915961 ). Upon carrying out the renormalization prescribed in (4.1) to this or-
der, we find

p, A'P2 I fiP
V,ff(4) = e~ I + ( I —pN+ In2)+-

P2 16m. 2 16m
[P 4 + 2ln2P@+C+(In2) —8G] +O(fi3) . (4.21)

V,ff(4)=y( p)e ~

2
(4.22)

y(P) = I + ( I —ln2)
16m.

I iii 2

+— [C+(ln2) —8G] .
2 16m

Here P is the function defined in (4.15), so that (4.18)
completely agrees with (4.22}. Furthermore, inspection of
higher-order contributions shows that y'(P)=0 in (4.18).
Thus our final expression for the effective potential is

2

vg(N}= e~ (4.23)

The effective potential has no minimum, except of
course at the singular configuration N= —oo. Thus, the
spectrum, in agreement with conformal invariance, is con-
tinuous, bounded from below by zero, and zero is not at-
tained by any translationally invariant eigenstate. In other
words, the theory possesses no translationally invariant
ground state, a situation familiar from the ordinary Liou-
ville theory. Two plausible alternatives then remain. The
theory is perfectly well defined, has a continuous spectrum
that extends down to zero energy, but no state of zero en-
ergy actually belongs to the spectrum. The second alter-
native is that a ground state exists that is not translation
invariant, and this possibility is investigated in the next
section.

To the same order of approximation in A', this expression
is equivalent to

1 m x4, (x)= ——In, ~P, =0 .
2

The Killing vectors of this solution are

fH=S", ffD=x", fg =2x"x —x P'

and the Killing spinors are

(5.1)

(5.2a)

gp, E'2 =—X
(5.2b)

Together, they span the timelike superconformal algebra
OSp(l. l).

From (2.1), we easily find the bare boson and fermion
inverse propagators in the N, background:

iN '(4, ;x,y)=( —„—m e ' )5 (x —y), (5.3a)

iS '(4e;x,y }= i9„— e ' 5 (x —y) . (5.3b)
2

The small oscillations around the background N„

For the SLT, we shall show that the same mechanism is
applicable and that space translation invariance can be
broken without Goldstone bosons. As in the case of the
purely bosonic theory, space semicompactifies. We shall
establish these results first to one-loop order, then to all
orders in perturbation theory.

We start with a time-independent, purely bosonic classi-
cal solution. For simplicity, we take the one that has also
been studied in the purely bosonic case (we shall indicate
the results for other time-independent solutions at the end
of the section):

V. SPONTANEOUS BREAKDOWN OF SPACE
TRANSLATIONS AND N = 1 POINCARE

SUPERSYMMETRY

In the previous section, we have shown that the SLT
cannot possess a translationally invariant ground state.
For the ordinary Liouville theory, it has been argued that
a consistent quantum field theory may nevertheless be
constructed order by order in perturbation theory, if it is
assumed that space translation invariance is broken by the
ground state. This mechanism was possible because the
Goldstone zero mode that always appears as a result of the
symmetry breaking does not possess a normalizable wave
function, so that no physical Goldstone boson was pro-
duced. As a consequence, the hypothesis of spontaneous
breakdown of translation invariance did not violate any
physical principles.

N=C&, +e
%=e

satisfy the equations

/f 2—0+
(x )

y' +ty'a, &„=0.——
X

The solutions regular at x =0 are given by

P„(x') =P„'(x'),

(S.4a)

(5.4b)

(s.sa)

(5.5b)

(S.6a)

(5.6b)
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where
1/2

P(x)= 2 sincox —cosh)x
77 COX

' 1/2

P„(x') =i — sincox ' .
7T

(5.6c)

(5.6d)

f dao g (r)P+(r') = ll. 5(r r')— (5.7b)

with I the identity matrix in spinor space. On the half-
line the Feynman boson and fermion propagators are
given by

(@ x x ) i f e
— I' —'Iy (r)y („) (5 8a)

N
All solutions p„,li„have co &0, so that 4, is stable.
Please note that the singularity at x'=0 in the back-
ground field, responsible for the elimination of the Gold-
stone boson, is also responsible for the absence of a Gold-
stone fermion. Both P„and f are complete only on the
half-line r =x '

& 0, and their normalizations are such that

f de P„(r)P„(r')=5(r r'), — (5.7a)

00

Sr(@,;x,x') = day e
0

These are easily computed and we find

(5.8b)

&(4„x,x') = — +, ln
1 1 T r2 r' —T —(r r') —i 0— —

2n4i'r 2rr' T2 (r+—r')2 iO— (5.9a)

l 1

2ir T (r r') i—O— —S(4,;x,x') =(y T y'(r r'))— —, ln 2 28rrrr' T2 (r+r')2 i0— —

i T (r r') —i—0 —i 1
+(y T y(r+r')—)iy, ln

2 &

—
z8mrr' T2 (r+r')2 iO —2ir Ti—(r+r')2 iO—— (5.9b)

Here we have used the notation x = (r, t), x ' =(r', t') and T= t t'—
Both propagators are infrared regular, suggesting that perturbation theory should be infrared finite. Furthermore,

these propagators together are invariant under the OSp(1, 1) superconformal group, the invariance group of @,.

A. One-loop perturbation theory

First, we compute the correction to the background field by minimizing the one-loop effective action. To this order,
we have

I (@,%)=S(@,%)+ —,
' ih'ln Det(i& ') ——,

' i%in Det(iS ') .

The shift 54 is then determined by the equation

(5.10)

51 (4,%)
+54

%'=0

= —CI@,—235@— e ' 1+ +p5@+ &(N„'x,x ) —— e ' trS(N, ;x,x )
m ~, 5m trip' lip' —pc, n

t?t 2 4 2m
(5.11)

Here 5m is the mass renormalization (mo ——m +5m ).
The singularity at coincident points in the boson and fer-
mion propagators must be regularized. This regulariza-
tion is not unique. The fact that we started with a super-
symmetric bare Lagrangian, however, requires that the
regularizatian prescription be invariant under supersym-
metry transformations. Still, this leaves a large class of
passible schemes, and we shall specialize to the following
one:

N(4, ;x,x)= — (2+lne ),1

4m
(5.13a)

propagator, the procedure is actually supersymmetric and
SO(2, 1) invariant. [This combines into OSp(1, 1) invari-
ance. ] This regularization is clearly preferred, since the
theory is OSp(1, 1) ihvariant and we shall henceforth adopt
it. Then the regularized propagators take the form

t'=t, r =r+A(r)e . (5.12)
Sp(4, ;x,x)= —1 e ' (2+lne ) .m ~, /2

4m. 2
(5.13b)

Here e is a dimensionless infinitesimal cutoff and A, is a
function of r with dimensions af length. The function A,

further determines the regularization, and taking A,(r) =2r
for the boson propagator and A, (r) =2re for the fermion

The appropriate mass renormalization is

fgR2
5m =m lne

16n-
(5.14)
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The solution to (5.11) is now easily obtained:
p=m 1—z z &P'

Sn. (5.16)

1 p2p2
@,+5@=— ln

R

Here p is a finite, renormalized mass:

(5.15) and p~ a renormalized coupling constant, given by'~

a=P
Next, we compute the one-loop inverse boson propaga-

tor:

t'

c, +~= —„—mo e ' ——,fiP m e ' &(@,;x,x)+ e ' trS(@„'x,x) 5 (x —y)
5'I'(4,%'),p~c, +sew i », ps, ~ i mp'A pc, (x)n

8 2

16
(5.17)

The square of the boson propagator is finite, but the double-fermion propagator still contains an ultraviolet divergence,
which must be extracted. From (5.9b), we fmd

—,
' trS(@„x,y)S(@„y,x)=

16 rr'
1

T (r+ r') —i0—T (r —r') ——iO 1 1
2 ~2 ~ 2 2 ~2T (r+r'} —iO — 4m. T (r r')—iO——

T

ln +lne 5 (x —y)+regular .
i A 2(r)

(5.18)4~ 4r'
The function A, (x) again depends on how the product of the distributions S has been regularized and we choose it to be
A, (r) =2er so that OSp(1, 1) invariance is maintained. This implies

—,
' tr(@,;x,y}S(@,;y,x)= —,

' [trS(@„x,y)S(@„y,x)]„,s
— (2+lne )5 (x —y) .

4~

The one-loop inverse boson propagator thus becomes'

—(-) +—
~ 5 (x —y)+ i ~

~ (@„'x,y)—,t S(@„'x,y)S(@„y,x)
reg

(5.19)

52I (4,%)
5%(y)5%(x )

whereas the fermion inverse propagator becomes

ie}„— —5 (x —y)+, S(@,;x,y)&(@,;x,y) .
pR P 4PP

(5.20)

(5.21)

Here again, we find that' P=P~. The one-loop inverse propagators are easily shown to be invariant under the OSp(1, 1)
conformal supersymmetry as announced. Clearly, translation and N = 1 Poincare invariance remain broken.

B. OSp(1, 1) invariance to all orders in perturbation theory

We now wish to prove ultraviolet finiteness and OSp(1, 1) invariance to all orders of perturbation theory. We shall
again restrict ourselves to the use of the OSp(1, 1)-invariant regularization scheme. Unfortunately, calculations in com-
ponent language to higher orders become extremely cumbersome, and the simplicity of the proof of ultraviolet finiteness
and invariance is obscured by technical difficulties of imposing the supersymmetry order by order. Thus we have chosen
to switch to superfield language and use superpropagators. We start with the superfield action given in (2.8). We expand
about the same classical solution

H=Hc+h, Hc =+c 2 BBFc ~

m V2 pc, i2
c e

(5.22a)

(5.22b)

and rearrange the quadratic terms

S(II)=S(H, )+fd x fd 8 — Dh Dh — e ' h—+Wl4 2v2 (5.23a)

mo PH /2 psy2 i V 2m PH, t2 im PH, n 2 i 2~2m PH,
2v'2 Pi

With the help of the results established in Eqs. (S.3)—(5.9), it is easily seen that the propagator of h is given by

(5.23b)



1356 E. D'HOKER 28

&s(C&, ;x,y) =&(@„x,y)+O„S(@,;x,y)8~+ —8„8„0~8~5(x —y) .y 4 x x y y (5.24)

Now, we see that the only divergent graph in the theory is the tadpole, exactly as in the purely bosonic case. ' We per-
form all tadpole contractions on the vertices:

e~" = e~" exp[ —'P fi& (4 x x)] (5.25)

and we denote by colons the convention that no two legs of the vertex should be contracted. Thus, the interaction La-
grangian becomes

i 2V 2mo pH yp

2 2 Pi
(5.26)

Next, to this order, we eliminate the term linear in h by re-
normalizing mo in the following way:

moexp[ —,
' p'iris''s(4c~»x)) =m . (5.27)

Finally, the renorrnalized interaction Lagrangian becomes

W (h)= — e ' (e~"~ —'P h ——Ph —1).—
2

C. Spontaneous breaking of translation invariance
and complete compactification of space

Instead of the classical, static solution (S.l), one could
have used any other static solution to define the
translation-noninvariant vacuum. One might worry that
the energy density is higher than for solution (5.1). We
shall, however, defend the point of view that there is a
preferred expression of the energy, defined through the
Hamiltonian (3.28). With this definition of energy, the
conformal algebra closes without center, and the energy of
the solution under consideration vanishes (by definition).
Fluctuations about each of these solutions always have
positive energy. Thus the solutions are stable on the basis
of this energy criterion. Its invariance group is still
OSp(1, 1) and still contains time translation, however, no
constant supersymmetry is present and the supersymmetry
is no longer closing on the conformal group. Still, invari-
ance of the quantum theory to all orders may be proven,
as we11 as its breaking of translation invariance. Of partic-
ular interest are the solutions with periodically spaced
singularities:

2

@s(x }=——ln sin Ve(x —xo) .1 m

P 2e
(5.29)

(5.28)

and further generates only finite graphs. ' Of course,
there are still further finite contributions to (P). Howev-
er, using time translation invariance as well as the fact
that the amplitude is now finite, (P) must be time in-
dependent. Dilation invariance then implies that (P) is
actually constant, and this constant can always be set to
zero by an appropriate choice of the renorrnalized mass p
in (5.16) to higher orders. Since the formalism and the
regularization procedure are explicitly OSp(1, 1) invariant,
and since no further divergences occur, all Green's func-
tions are finite and OSp(1, 1) invariant. Translation invari-
ance remains broken to all orders, and no Goldstone parti-
cles are produced.

The small-fluctuation functions are then complete only on
the interval of length ir/V e, so that space spontaneously
compactifies. Even though the interval is finite, the Gold-
stone zero mode is not normalizable, and no Goldstone bo-
son appears.

Note added. After this work was completed, two papers
by I. F. Arvis have appeared, presenting some of the prop-
erties of the superconformal invariance group and classical
solutions [Nucl. Phys. B212, 151 (1983) and Report No.
LPTENS 82/32 (unpublished)).

ACKNOWLEDGMENTS

I am grateful to Professor Roman Jackiw and Dr. Luc
Vinet for several stimulating discussions on the supercon-
forrnal algebra and for their interest in this work. I have
also benefited from discussions with Dr. Baha Balantekin,
Professor Daniel Freedman, Professor David Gross, and
Dr. Yvan Saint-Aubin. This work was supported in part
through funds provided by the U. S. Department of Ener-
gy under Contract No. DE-AC02-76ER03069.

APPENDIX A

There is, however, a subtlety, which we examine here
only for the case of the ordinary Liouville theory. The re-
sult is easily generalized to the case of the SLT. Let F and
G parametrize the general solution:

1
1

4F'G'
m (F—G)

(A 1)

This parametrization is unique up to a common projective
transformation on F and G:

aF+b aG+b
cF+d ' cG+d (A2)

A given real solution N is not necessarily parametrized by
real F and G. In general, the complex numbers F and G
must lie on a common circle, defined by

aX+b
cX+d (A3)

for some set of complex a, b, c, and d, characteristic of the
solution N. For c =0, the circle degenerates to a straight
line. Real conformal transformations preserve formula
(A3} and thus also preserve the curve on which F and G
lie. As a consequence real conformal transforrnations do
not act transitively. However, the set of all complex con-
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formal transformations that obey a relation (A3) for some
constants a, b, c, and d does act transitively and also
closes on itself. The isotropy group is the group of projec-

tive transformations that leaves (A3) invariant. For c =0,
it acts on a noncompact manifold, whereas for c&0, the
manifold is compact.
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