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Supersymmetric particles in N =2 superspace: Phase-space variables and Hamiltonian dynamics
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We consider a reparametrization-invariant model recently proposed based on the X-
extended super-Poincare group with central charges, which leads to trajectories on the X-
extended Salam-Strathdee superspace. The case %=2 is discussed in detail. We show that
the N =2 model is invariant under four real supergauge transformations generated by first-
class odd constraints which imply the Dirac equation. We introduce one bosonic (which
fixes the reparametrization) and four real spinorial (which fix the supergauges) gauge condi-
tions and calculate the Dirac brackets for the remaining unconstrained variables

(x, p, 0,8 ). The equations of motion are written in Hamiltonian form, with
0 ~ TrI Q;, g&,. I and correspond to the Heisenberg equations of the (first) quantized theory.

I. INTRODUCTION

There have been several attempts (see, e.g., Refs.
1—7 and references therein) to describe relativistic
classical supersymmetric systems in the framework
of a Grassmann variant of classical mechanics. Re-
cently, the present authors proposed a new pseudo-
classical particle model. The model, which is based
on the action'

de,
L = m(c'o„ro—")'~ +i(0;A„I0J +0;A;1gj ),
ro" =drat'ld~, A;i = —AJ, , 0—:dgld~,
drat'=dx" i[dg—; (o") pg;

. 0; (cr—") pd0; ]

has the following features.
(a) It leads to trajectories on the ¹xtended

Salam-Strathdee (SS) superspace (x",0 ', 0 ')
(a=1,2; i =1,2, . . . , N). In the case N =2 it has
been shown" that the first-quantized theory is
described by the N =2 free massive matter multi-
plet, which describes one Dirac and two Klein-
Gordon fields; the same result has been obtained'
from the group approach to quantization' by using
the structure of the underlying U(1)-extended N =2
super-Poincare symmetry of the model. Thus, the
model is the first pseudoclassical model which after
quantization leads to a free SS superfield. '

(b) Under the transfoi niations of ¹xtended
Poincare supersymmetry realized on SS superspace
as

0~at gai+ ~i g iai gai+~&i'
(1.2)x'"=x"+i[0.(cr") F. —e (o'") 0 ]

where 0 '=(0 ')*, e '=(e ')', the Lagrangian of
(1.1) undergoes the change

5L =iA;J (e;0~ )+iA,J (e,.g~ ) . (1.3)

and the conserved charges Q;,Q, now satisfy the
algebra of the ¹xtended super-Poincare symmetry
with central charges, '

IQ Qp, l
= —25, (oui) p

I Qa;, Qpq I = 2i E pA;J,

IQ-, , Q&. ] =2ie tiA;J .

From dimensional analysis we get [A,J ]=M; in-
terestingly enough, one can show that the central
charges A,J describe the masses of fermionic
"Grassmann" partners of "bosonic" point particles.
In order to obtain the supersymmetric model we
should have the masses of the bosonic and fermionic
particles equal; for N =2 this means that we should
substitute me;I for A,J in the above formulas. We
therefore see that we are led to a picture already

The fact that 5L is not zero but a total derivative
implies that the 4N generators of the transforma-
tions (1.2) Q; and Q,. have to be supplemented by
the so-called "anomalous" terms in order to obtain a
set of conserved charges. [These terms are a conse-
quence of a proper application of the Noether
theorem to the case 5L is a total derivative as in
(1.3) instead of being zero. ] Explicitly, one obtains

Q; =Q;(~)+iA;J 0 I(~),

Q, =Q, (~)+.iA,J 0 . (r).
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familiar from the description of a Newtonian parti-
cle by the Galilean group, in which the mass param-
eter determines a central extension of the Galilei
gfOUP.

(c) Both the Klein-Gordon and Dirac equations
are described by first-class constraints. Because
first-class constraints generate local gauge transfor-
mations which leave the action invariant (see, e.g.,
Refs. 19 and 20) it turns out that half of the
Grassmann variables 8;,8; (i =1, . . . , N =2k) can
be eliminated by the gauge-fixing condition. Thus,
since our model was defined in N =2k extended SS
superspace, only N/2=k extended SS superspace
describes the unconstrained Grassmann coordinates.

The aim of this paper is to consider in detail the
case N =2 and, in particular, the problem of reduc-
ing the Grassmann sector by means of the gauge-
fixing constraints. In such a way one obtains an un-
constrained set of quantum-mechanical variables in
supersymmetric quantum mechanics.

The paper is organized as follows.
We introduce in Sec. II the Hamiltonian foIiiial-

ism for our model, and calculate the Dirac brackets
[A,BI' which take into account the feiiiiionic
second-class constraints. In this section we supple-
ment the brackets given in Ref. 11 with the Dirac
brackets of the covariant position variables x". At
this stage (one-star brackets) we obtain

[x",x "I*= 8'[(crp ) (o"".) ~ (o—"") (op ) ]81=——'' (1.6a)

(o ") = —[(o") ~(o") . —(o") ~(o") ]

(o"")r = , [(o")&r(o—")~ (o")»(o—")~] .

(1.6b)

(1.6c)

[An equivalent way of expressing (1.6a) is given in
(2.13).]

In Sec. III we define the local supergauges (C
and C ) and introduce the subsidiary conditions
which fix the associated nonphysical degrees of free-
dom. Using the iterative property of the Dirac
brackets (see, e.g., Ref. 19) we introduce the two-star
Dirac bracket IA, B I** which takes into considera-
tion all the constraints in the odd sector. It is useful
to introduce at the stage of two-star Dirac brackets
the complexified phase-space coordinates Zz
=(z&,8~), where z& x" ip„/p ——i.

X&—[the d—efini-
tion of X„' is given by (3.10)]. It appears that

I Z„,Z21 I
**=

I Z„,Z21 I
**=0 . (1.7)

In order to complete the elimination of the con-
straints we introduce in Sec. IV the three-star Dirac
bracket, taking into account the mass-shell condition
p —m =0 and the reparametrization-fixing condi-
tion x =7. In this way we finally obtain the set of
unconstrained variables (x;,p;, 8,8 ). Further in
Sec. IV we introduce the supersymmetric Hamiltoni-
an as the sum of squares of supercharges. It turns
out that after taking into account the adequate
gauge-fixing conditions we obtain both from the
equations derived from the Lagrangian (1.1) and
from the Hamilton formalism the equations of
IOtlOQ

x = p/po, p =const, p =(m + p )'~

8=0, 8=0.
It appears that with our choice of gauge the so-
called Zitterbewegung term is absent ' and thus only
the nonlinear structure of our supersymmetric phase
space indicates the coupling between the space-time
and Grassmann degrees of freedom.

Some final comments are made in Sec. V.

II. DESCRIPTION OF THE MODEL

v —1/2
p~ —— = —m (tv co ) copBx"

(2.1a)

I. —prr;—: . = i8 JAp i (op) p—8;, —
a8,

(2.1b)

'dL .— — . pW. .(= . —— i8 ~AJ,
—i8 (op)~, —

B8;

and satisfy the canonical Poisson-brackets relations

The first term in the Lagrangian (1.1) is the La-
grangian of the relativistic G4 model of Casalbuoni.
The novelty of the model (1.1), in comparison with
other proposals, ' is the presence of a bilinear fer-
mionic term in the action. This term is nontrivial
because N )2 and the A's are antisymmetric; indeed,
it is through its presence that enters the necessity of
using ¹xtended superspace since for N = 1, the
only bilinear term which can be added becomes a to-
tal derivative [8 8 +8~8~= —,(d/dr)(8 8 +8 8 )].

We shall take as canonical variables of the model
x",p„,8;,8;,n;,8, The momenta are defined by
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Ix",p„j =5„", I 8;,m.
ttj j =5p6;j,

I 8;,Fp j=. 5P);j
(2.2) IG ~ Gp~ j IG ~ Gpl j .

IG 1GP~j IG I Gjlj

0

(op)&. 0
(all others are zero). From the expressions (2.1) of
the canonical momenta it is simple to check the van-
ishing of the covariant Hamiltonian H,

H=x"pp+8;m;+8; r7, L—=—0 (2.3)

which indicates the presence of constraints in the
model. Indeed, it is simple to check that

2
P Pp =Pl

(bosonic constraint of first class) and that

Gai =~ai Aij Oaj + (op)apOi
P

G, =F, . iA;j—8 +i 8.~(op )tj ——0

(2.5a)

(2.5b)

(2N spinorial fermionic constraints). Equations
(2.5) show that ~";= —(F, ) in agreement with the
Hermiticity of the Hamiltonian (2.3). Assuming

2 ..AilAjl ™~ij

we obtain from (2.5) using (2.4) the relations

Akl~al (op )a ~pk (2.6a)

(N first-class spinorial constraints) which may also
be written in the form

and (2.9) is given by

(2.10)

I O~, E 2 j
*=— (op )P~e

p'
1 m

[ O~, m q j*=— (op )rPer
p

2

27~&2 ~~ 2~7Ta2

(2.12)

Imp(, W.
, j*=——(op)p~ ~1

IA, Bj*= IA,B j — IA, G i j IGp, ,Bj
2l p

(op) ~
IA, G, j I Gpi, B j .

2l p
(2.11)

The nonvanishing Dirac brackets are, explicitly, as
follows.

(a) Fermionic sector

I
Op 8(rje 'i (op)

2 p

1~~o1 p a~ 1~~

Akim i ~ttk(op) P (2.6b)
~ 2Pl

Impzrr, j = ——,(
2 p

For the case N =2, to which we shall restrict our-
selves henceforth, we choose the set of constraints in
the following forin.

(a) Second class:

G
~

=m
~ imO z+i—(ap) t)8~ ——0,P

G, —:m. , imO 2—+ 8, (op ~'——P

(b) First class:

(2.7a)

(2.7b)

B—=ppp —m =0,
C =me. ~+(ap) ~P& 0, ——
C =mE, +mtt2(op)~ =0,

(2.8a)

(2.8b)

(2.8c)

IABj =tABj —IA, G, jC '„ IG, ,Bj . (2.9)

In the present case, the matrix of the constraints is

where we have used that, for N=2, A,j=me, j, it is'
clear that the constraints (2.7a) [(2.8b)] and (2.7b)
[(2.8c)] are complex conjugated. To eliminate the
second-order constraints from the theory (and two
irrelevant variables, say, m.a&,E „by solving these
constraints) we introduce the corresponding Dirac
brackets' '

0

I 77pi p rraj j: m Epaeij & I tr '&& tra 'j: 'm E' aEji'
(b) Bosonic sector
Apart from Ix",p„j*=P„' we have

Ix",x"j' = —
I (o") (op )~(o")p.

(o") (cr—p )~. (tr")& j 8~~&& .

(2.13)
(c) Euen odd sector-

oa
Ix",8) j"= ——,Of(oP) .

Ix",8) j*= ——,(op) (o") Or(,

IxP, ~., j' = ——'(oP).,Or,
(2.14)

IxP,r., j'= 'OPoP)„, , ——
. (~Tp) .

Ix",E 2j*=——mOr)(oi')r

(op) .
Ix",p. 2j*=——m (op) '%, .
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Qz

Qz

iO—&(harp) +imO z
2F-—, ,

-P

~z i(op—) pOp
—imO~),P

=E z
'OzP.(o—P )~—' 8, ,

(2.15)

which, because they all have vanishing Poisson
brackets with the constraints G &, G &, satisfy the
same algebra relations (1.5) now expressed in the

OTTl1

[Q;,Qp. j*=—261(op) p,

Expressions such as (p", an odd variable j* [x",Oz j"
are zero. The one-star Dirac bracket satisfies the re-
lations jA, G~& j"=0=[A, G

&

j* for any canonical
variable A by construction.

The above Dirac brackets may be used to describe
the theory. In particular, the extended supersym-
metry transformations are generated by the con-
served supercharges

Q ) ~ ) i(o—p) pOj+imO p 2' ——),P

ables. In this new constrained system with gauge-
fixing conditions all constraints are now of second
class, and one can proceed to express its dynamics in
teriris of unconstrained canonical variables by intro-
ducing a new Dirac bracket. We shall now follow
this second method and proceed to calculate such
Dirac brackets for our model in the next section.

III. GAUGE FREEDOM, GAUGE-FIXING
CONSTRAINTS IN THE FERMIONIC SECTOR,
AND TWO-STAR DIRAC BRACKETS fA, B j

The first-class constraints are the generators of
the gauge freedom. In our model we shall first con-
sider the supergauge transformations generated by
the constraints (2.8b) and (2.8c). The reparametriza-
tion invariance generated by the mass-shell condi-
tion (2.8a) will be considered in Sec. IV.

We calculate first the supergauge transformations
for the set of canonical variables. The generator of
the supergauge transformations is given by

[Q ~; & Qpj j =2l m E~p E'(J

[Q „Qp.j*=2ime pej,

(2.16) C=g C +ri C. ,

with C and C given by (2.8b) and (2.8c). From
and produce the adequate transformations on
x" 8'8 '

58)(~)=g (8),C j'=my, 58z=0,

jx~, Q,. j*= i Of(cr" )—
5J5, (OJ, Q

[x",Q;j*= i(cr") pO—P,

=0,
(2.17)

58&(~)=—q [8&,C j*=O, 58, =(op) primp,

58)(r)=g (8),C j*=O, 58q ——gP(op)p

6; 5, [8;,Q j*=0,
68z ——0, (3.2)

in agreement with the transformation laws (1.2).
In the theory defined by the Dirac brackets (2.12)

the first-class constraints (2.8) have not yet been tak-
en into account. There are two ways of quantizing a
theory with first-order constraints.

(1) After quantization, i.e., the replacement
[A,Bj*~(1/ih')[, ]+ of Dirac brackets by anticom-
mutators in the fermionic sector and commutators
in the remaining ones, one can impose the first-order
constraints as subsidiary conditions on the wave
function or quantum state of the system. It was
shown by two different methods"' that by adding
these conditions as differential constraints on N =2
SS superfields one obtains the covariant Klein-
Csordon and Dirac equations.

(2) The existence of first-class constraints implies
the presence of a gauge freedom in the dynamical
system. ' To fix this gauge freedom one supple-
ments the constraints by a new set of relations (the
gauge-fixing relations) between the canonical vari-

5 (any m, P )=0=5 (a.ny ~,F ), .

5xy=g (xv C j* ri (xv C j g (rr~) r~

5x"=ri n~(o")p

where it may be checked that the action (1.1) is in-
variant under the supergauge transformations (3.1).

Using this supergauge freedom, half of the
Grassmann coordinates may be removed by means
of the subsidiary conditions, which we choose to be

8) ——0, 8) ——0. (3.3)

Adding (3.3) to (2.8a) and (2.8b) we get a set of
second-class constraints, and we may proceed to
evaluate the Dirac brackets. From
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Cp Cp

C 0 0 mIz

p

0

star Dirac brackets which constitute the elements of
the Dirac matrix C„,and from

$$

C. 0 0

Oi mIp 0 0

a
Oi

—1(op)P0 mIq
2/ p

mI2

—1 (op) P

2l

(3.4a)

—1 1

m

(a p)pr
2l p

mI2

0

0

0

mI2

0 mI2

0 0

0 0

mI, 0
l p

where we have indicated in the first row and the
first column the elements which determine the one- we obtain

(3.4b)

[A,Bj"*=[A,Bj*— (A, C j* P
(Cp, Bj*— jA, C. j* P jCp, Bj*

—[A, C j jOi,B j*—[A, C j* [Oi,B j*—[A, Oi j* jC,Bj' —[A, Oi j (C,B j* . (3.5)

At this stage we see that because Oi and Oi vanish and all the fermionic constraints (2.5a) and (2.5b) are now
second class and can be used for the elimination of m;, ~, , we are left only with Oq, Oq (the 8 and 8 of Sec. I)
as unconstrained Cxrassmann variables of the theory. The set of canonical variables (x",p&, Oz, Oq) satisfy the
following new brackets.

(a) Fermionic sector [F,Fj**

i (ap) (3.6a)

[Oq, OP**=0, [0~,8~ j**=0. (3.6b)

Because of the constraints which define the momenta, we now find

'irai m Oap~

2 2

~ ~=i (op) 8~, F ~=i ~ Op~(ap) P
(3.7)

so that we obtain either from (3.6a) and (3.7) or directly from (3.5)

2~7T~j =
~ 2, 7T. )

= — 0

77 2 j 277T

(3.6c)

In addition, the two-star brackets among the momenta are the same as the one-star Dirac brackets [see the last
four of (2.12)]. Later on we shall use m~z, K z as fundamental Grassmann variable'. .

(b) Bosonic sector [B,Bj'*

jx",p„j**=8„',

[xi',x "j**=, F~~[(ap) (a" ) p (a"")r (ap.)~]~~p—

» [(M) r(ap) p(a")~p —(a") r(ap) p(a")~p]~z~z
2lm p

&jttv
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(c) Mixed sector IB,Fj . From (3.5) we obtain

Ix",8z j"=— F-~, I x",n-, j*'= — (W) i'p~

yb
[x&,8,'j- =—'~„

(3.9)

Ipg Fj44 ()

where n. ;,F,. are expressed in tern~s of 8~—=8~z, 8 —=8 z by formula (3.7) and 8&
——8&

——() in consistency with
I8~, 8 or Fj*'=0={8~,8 or Fj**.

The choice of variables (x,p„,n. z, m. .z) does not exhibit fully the structure of the covariant Poisson brackets
IA,B j** and the geometry of nonlinear phase superspace. We introduce the set of complex phase-space vari-
ables

pP pP (oP)~Pz"=x"+i +i X'", z"=x" i — iX'",—2'"=m. z-
z ~ z ~

— ~~ z (3.10)

From (3.8) and (3.9) one gets
IPY

I
pip +Iv

jan%

p'
Iz~,z"j**=0, Iz ~,z"j'"=0, Iz~, n-.z

j'*=0, I z ~,vr. z
j**=0,

and (p"= [(z"—z")/2i —2'"]p )

(3.1 la)

Iz",z"j**= —g""(z —z )(z —z )+g""(z z)X' i —(z" z~)—(z" z—")—
—[(z~—z~)X'"+ (z"—z")X'~] —2S ~ —X"

2l
(3.11b)

Zg' ZfIz",5 zj**=—(cr~) (W) r — —X'g 5- z,
(3.11c)

The above set of relations (3.11) can be written down
in compact form as

IZ~»a j""=o l&~,Za j**=o,

IZ„,Za j =g~g(z, z),

(3.12a)

(3.12b)

where Z~ ——(z",~ z) describes the complex coordi-
nates of Hermitian complex six-dimensional super-
space with four bosonic and two fermionic complex
coordinates.

Finally we shall express all charges Q „Q..

terms of the independent fermionic variables 8z, 8z,'

we have [cf. (2.15)j

Q ( ——2n. ) 2im8 z——, Q, =25. , =2im8 z, .

(3.13a)

2

Q z
—— 1+ z i(crp) ~8pz,p'

2

Q z= 1+ i8pz(op)I . .p'

(3.13b)

Their Poisson brackets may be evaluated from
(3.13a) (3.13b), and (3.6a) or directly from the ex-
pression of the charges (2.15) and the complete set
(3.6a) and (3.6b) of two-star fermionic Dirac brack-
ets. The result is
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IQ~2, Qp2
j**= i—(crp)~p 1+

2

IQ, , Qp2 j**=ime p 1+

p m+
m p

(3.14)
I F F/ j

444I —
jF Fr

j
4 llf

(b) Bosonic sector IB,B' j**
(4 4)

from which we obtain the following brackets for
the unconstrained variables (x',p), 82, 82).

(a) Fermi onic sector

The expressions involving Q 2, Q 2 do not quite
coincide with (2.16) or (1.5+ This is due to the
fact that I Q 2, C j* and IQ 2, C j* are not zero,
but i e (p rn )—. When the mass-shell condition is
taken into account, the usual U(1) extended N =2
super-Poincare algebra is recovered.

s'1

m
+ (p'S"+p'S") .

m p
(c) Mixed sector IB,Fj**'

Ip 82}=0=Ip;,82j

(4.5)

y)=p"p„—m =0, y2 ——x r=—0.2 0

Since

(4.1)

0 —1
Css'= If's~V's'j =2p

IV. REPARAMETRIZATION INVARIANCE,
x 0=v GAUGE CONDITION,

AND HAMILTON DYNAMICS

In order to obtain the set of unconstrained canoni-
cal variables we introduce the last set of second-class
constraints

Ix', 82 j = , , (p'o' —p'o')"(~p», ez (4.6)

Ix', 82j = — (op)p (p o' —p'o )P 82r .
m

Finally, the physical Poisson brackets for the super-
charges ( Q;=2m;, Q,.=2F~, )give. n by (3.13)
with p =m adopt the customary form (1.5) with
A,J me;g . ——

In order to describe the motion of the physical de-
grees of freedom let us observe that the equations of
motion which follow from the action (1.1) have the

0

(4.2) pls —0 (4.7a)

we find that the "physical" Dirac bracket IA, B j***
has the form

[imejej;+i(ap) pe; ]=0,d'r
(4.7b)

1
IA,p'j** Ixo,B j**

p'

IA, xoj'*
Ip, B j

1

p' (4.3)

IA, Bj***=IA, Bj**— dt
[imeje~;+i8p(op)p ]=0 . (4.7c)

Using the definition (2.1a) for p„and the constraints
x =~,8& 0=8&, (4——7a) gives .with x'—= x, x'—= x,
p'=p, 8, —=e.,e, —=8'

p=m
x i [8 (o ) peP —8 (—cr) peP]

([1 i(8 5 /— 85 pe —)]' I x —t [—8 (cr) pe —8 (cr) pe ]j')'
(4.8a)

or

p =m
1 i[8 (o ) peP—8(cr ) peP]—

([1—(8 5 HP —8 5 8 )] —
I

—[8 ( ) HP —8 (o) 8 ]j )'
I

and thus (4.9a) is simply

(4.8b)

+ ~ 4 '~

p' P po (m2+~p )1/2
p' (4.9c)

+i[8 (o ) / 8(o ) pePJ . —

Using (4.7b) or (4.7c) we get

8=0, 8=0

(4.9a)

(4.9b)

In order to derive (4.9b) and (4.9c) in the frame-
work of the Hamiltonian dynamics we observe that
the Hamiltonian can be expressed as the sum of
squares of the supercharges
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(4.10)
set of Variables.

This is obtained by means of the correspondence

It is easy to check using the Poisson brackets that

(4.1 1)

and that the Hamilton equations

x'= Ix',H j"*,
8 = I8,H j***,

8 = I8,H j*",
(4.12)

(4.13)

and the Klein-Gordon as well as the Dirac equations
are obtained as subsidiary conditions on the quan-
tum set of states. As already pointed out, this
quantization of our particle model has already been
performed. "'

(2) Covariant quantization scheme with only the
mass shell condi ti on-.

This scheme follows from the replacement

jA,Bj**~ [A,B]~ . (4.14)

This is the "minimal" manifestly Lorentz-covariant
scheme, where only the Klein-Gordon equation is
realized as the restriction p =m for the four-
momenta describing the quantum state. The Dirac
equation is built-in into the constraints.

(3) Noncouariant quantization with unconstrained

have the forin (4.9b) and (4.9c).
As remarked in the Introduction, we observe that

the equations of motion (4.9b) and (4.9c) do not have
the Zitterbewegung term, which disappears on-shell
due to the choice of the gauge constraints (3.3). '

Let us now discuss the quantized form of the
Hamiltonian dynamics. As already mentioned, this
is obtained in general by replacing the Dirac brack-
ets, obtained by elimination of the second-class con-
straints of the theory, by commutators or anticom-
mutators. Depending on the number of first-order
constraints, or the number of gauge-fixing condi-
tions, we can introduce three quantization schemes

(l) Couariant quantization scheme with mass shell-
and fermionic first class constr-aints.

Such a scheme is obtained by the replacement

This form of quantization was used in order to ob-
tain the equations of motion (4.9) [see (4.11) and
(4.12)]. In such a framework without first-class
constraints the Hamiltonian is given by the time-
translation generator expressed in terms of uncon-
strained variables [po ——(p +m )'~ in our case].
Because the model is supersymmetric, one can use
also the formula (4.10), describing the generator of
time translations in terms of supercharges.

V. FINAL COMMENTS

In this paper we have described three quantization
schemes, corresponding to three choices of the Dirac
brackets. The supersymmetric phase space is non-
linear. The covariant structure of the nonlinear
phase space can be studied in two directions.

(a) By looking for the choice of phase-space coor-
dinates which simplify the Poisson bracket of funda-
mental coordinates. However, because the choice of
our fundamental Grassmann coordinates is 8,8,
there does not exist a constant covariant tensor
which could reduce the Dirac bracket I 8,8. j*' to a
number.

(b) Because 8. =(8 )*, by introducing suitable
complex four-vector coordinates it is possible to en-
dow the supersymmetric phase space with the struc-
ture of a super-Kahler manifold [see, e.g., relations
(3.12)]. The closure property of the two-form
co2 —g" dZ~dZ& implies the graded Jacobi identities
satisfied by Dirac bracket IA, B j** by construction
(see, e.g., Ref. 27). The Kahler and super-Kahler
structures of covariant supersymmetric phase space
induced by the two-star Dirac bracket will be con-
sidered in detail in a future paper.
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