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Shortcut for constructing any Lagrangian from its equations of motion

Roberto Hojman
Departamento de Fisica, UniUersidad de Santiago de Chile, Casilla 5659, Correo 2, Santiago, Chile

Sergio Hojman and Julio Sheinbaum
Centro de Estudios Nucleares, UniUersidad Nacional Autonoma de Mexico,

Circuito Exterior, C. U., 04510 Mexico, D.F., Mexico
(Received 23 November 1982)

We show how to construct the Lagrangians for any regular mechanical system. The Lagrangians
are a linear combination of the left-hand sides of their own equations of motion (up to a total deriva-

tive). The examples suggest that the same holds even for singular systems in field theory.

x'=f'(x, t), a, b =1,. . . , 2n

is given by

acm acct
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where C~= C~(x",t) are -any set of 2n functionally in-
dependent constants of motion of Eq. (1) and I are arbi-
trary functions which satisfy
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ac~ ac (3)

In mechanical systems, Eq. (1) arises from a system of n

second-order differential equations,

q' F'(q J,q J, t) =0—, ij = 1, . . . ,n,
and the definitions

(4)

In this paper we present an alternative approach for
constructing a Lagrangian from its equations of motion
(which sometimes is called the inverse problem of the cal-
culus of variations).

The solution of the one-dim'ensional case was found in
1894 by Darboux. ' In 1941, Douglas solved the case of
two equations for two variables. Recently, much progress
has been achieved for the n-dimensional case both for sys-
tems of first-order and second-order differential equa-
tions. ' Here, we exhibit an explicit solution for the regu-
lar n-dimensional second-order case which shows that any
Lagrangian may be written (up to a total derivative) as a
linear combination of the left-hand side of its own equa-
tions of motion.

The inverse problem of the calculus of variations is re-
duced to the computation of the coefficients in this linear
combination for which the solution may be written in
terms of the associated constants of motion (when the La-
grangian exists). In spite of the fact that the proof we
present here is rigorously valid only for regular mechani-
cal systems, it will be clear from the examples that its
realm encompasses any system of equations.

In Ref. 3, it was proved that the most general Lagrang-
ian for the system of 2n first-order differential equations

fi xi+a fi+a Fi(xJ xJ+n t)

(5)

In what follows we will briefly state the necessary and
sufficient conditions allowing us to proceed from any
first-order Lagrangian theory to a related second-order
Lagrangian formulation (which includes the well-known
relationship between Hamiltonian and Lagrangian formal-
isms). Essentially, half of the first-order equations can al-
ways be turned into the definitions of the n variables x'+"
as the time derivatives of x'. The other half of the equa-
tions are dynamical equations. The condition
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m =1,. . . , 2n r, s =n +1,. . . , 2n (6)

ensures that no third-order derivatives appear in the equa-
tions of motion derived from Lagrangian (2) when x' have
been substituted for x'+" in 1.. [No fourth-order deriva-
tives appear anyway because the Lagrangian (2) is linear in
x .]

It is known that if C =C(q~, qj, t) is a constant of
motion associated with system (4), then

L =D)D2+D3D4+ . +D2„ ID2„

for suitably chosen functionally independent constants of
motion Dt'. Lagrangian (8) can then be written as

I.=1.(q', q', q', t)=p;[q' I"(q~,qj, t)], — (9)

where

aD, aD, aD,„
9 (q q t)=D1 . +D3 . + '' +&zn —1

aq' aq' aq'

(10)

dc ac , ac . , ac ac
dt

=
a, '+ aq'+ at

=
aq

'
Furthermore, it may be proved that any Lagrangian of

type (2) may be written as
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d d BI'J
P) +PJ

arj—pj . =0,
Bq

(12)

and its equations of motion are equivalent to Eq. (4) pro-
vided

Eq. (4) for n =1.
It is worth noting that condition (12) and Eq. (4) can

also be obtained from the Lagrangian (9) by considering p;
as "Lagrange multipliers" and therefore varying p; and q J

independently in (9).
In what follows we give examples of Lagrangians writ-

ten as linear combinations of their equations of motion for
different systems.

(a) Free particle:

8 d BI' ~P
det . —

V +V~ . ; + '. ~0,
()qJ dt gq

' Qq'
(13) L) = — XX

] ~

A) ———,xx,

~ ~ 2x =0, L„s„,) ———,x

where L2 ———xtx, o

A, = —,x t.
. . +q' . +—.d; 8 ~; 8 8

Qq' Bt
(14)

(b) Harmonic oscillator:

x+x =0, L„,„., = —,'(x' —x'),
As a matter of fact, conditions (11) imply that

A(q', q', t) exists such that L3 ————,x(x+x), A3 ———,'xx

dAL'=L+
dt

is a function of q', q', and t only, i.e.,

(15)
The equations of motion are obtained using Eq. (20) or

by adding dA/dt to each Lagrangian to recover L„,„,~.

In field theory, examples also exist.
(c) Scalar field:

d 8 d
dt Bq dt Bq

which is such that

8

Bq
(17)

because

d i3L'

dt (jq'

aL'

Bq

awp]=-
Bq'

A lot of work can be saved by using the appropriate
Euler-Lagrange derivative for aeeeleration-dependent La-
grangians 6;,

(a„a&+m')q =0,
L„,„,( = ——,

' (B„pB"y—m q& ),
L = , p(B„&—"+m )qr, A&= —,

'
gB&p . —

(d) Electron field:

(i 9 m)$—=0,
L =L„,„,i =f(ill m)g, A—i'—=0 .

(e) Electromagnetic field:

(A"'"—A ")„=0,

BI'
Bq

Equations of motion are then obtained by writing

6;L =0.

(19)

(20)

L = —,A~(A"'"—A "'")„, A"= ——,A (A "'&—A" ) .
7

(f) Gravitational field:

R~"——,
' g~"Z =0,

BC2
L =Ci C2 ——Ci (q I')—

Bq
(21)

are appropriate Lagrangians for Eq. (4) for any Ci, C2
functionally independent constants of motion related to

It may be readily proved that when conditions (11) are
met for some Dt', p; defined by Eq. (10) satisfies Eqs. (12)
and (13). In other words, the necessary and sufficient con-
ditions to solve the inverse problem is the existence of a
set of 2n functionally independent constants Di' such that
Eq. (11) is satisfied. When the constants of motion associ-
ated with Eq. (4) are not known, the inverse problem
reduces to finding p; satisfying Eqs. (11)—(13).

For the one-dimensional problem, Eq. (11) is an identity
and there are infinitely many solutions to the inverse prob-
lem. ' In fact,

L=L„. i & gg„„(»——"—,'g—&"Z), A~—=—O—.

As we stated above, even though our proof is, strictly
speaking, valid only for regular mechanical systems, the
examples eventually reveal the universality of the fact that
the Lagrangians of any system are linear combinations of
their own equations of motion. This universality is much
wider than the usual T —V construction which is valid
only when forces are derivable from a potential.

A comment should be added on the relationship of this
approach as compared to the ones presented in Refs. 4 and
5. We will briefly describe the relationship of our ap-
proach to the one presented in Ref. 5 because a compar-
ison between the work contained in Ref. 5 and the one
done in Ref. 4 is already done in Ref. 5.

The variables a;J and Ptj defined by Sarlet are related to
p; through the following relationships:
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CXgj o

Bq'
d BF" ~PJ
&P Pk . ; + (22)

Eq. (11). The other properties of a,J and Pj are easily
proved using definitions (22) and (23) and Eq. (11). It is
not difficult to prove that if a;j satisfies Eq. (24), then

B d BFkPij=; ~ Pj+PkBq' ~~ Bq'

B d BF"
~P Pk+ (23)

e

P; =a,jg
satisfies Eq. (12) if rij satisfies the variation equation

BFj d k BFj,
d)2~ B.k dg

I
B k I (28)

The equations

d 1 dF" BF"
ij ik . . + . +kj

d BE BE
JJ ik

g j Q
kj

(24)

(2&)

obtained by Sarlet are obtained by taking partial deriva-
tives of Eq. (12) with respect to qj (qj) and symmetrizing
(antisymmetrizing) with respect to i and j, respectively,
and using Eq. (11). The condition

1 iJF" dF~i'= . ak' aik (26)
&J 2 B

~ f 1 &

B
~j

which is related to the symmetries of the equation of
motion (4).

If g does not depend on q", then P; also satisfies Eq.
(11).

Equations (24)—(26) are essentially the integrability con-
ditions for Eqs. (11) and (12) satisfied by P;.

Finally, we present a more elaborate example, the
central-force problem

q'+ ~=0, V= V(q),
BV
Bg g

q =(q'q')' ', i =1,2, 3 .

The most general Lagrangian for Eq. (29) is given by6

is obtained by partially differentiating (12) with respect to
q and antisymmetrizing with respect to i and j and using

I- = T —V+I.—:—,q'j'' —V+I,
where L satisfies

(30)

d L g(J)+ Jig q

~ 2

q q qj+q q;qj (q q)(q;q—,+q, q;)
J2 J=qXq, J=(J J), J= J/J, (31)

and g is an arbitrary function of its arguments.
Henneaux and Shepley constructed explicitly L for

g =constant only, i.e.,
a"=—5"—

&j vJ
q'q;q, +q'qiq, (q. q)(qiq&+—q&q )

J2

J1.=g
g

For the central-forces case it is easy to prove that

g = n Q q, n =constant vector,

(32)

(33)

where

g =J ( V'h && n), ( Vh ), =
BJ".

(36)

(37)

satisfies Eq. (28).
Therefore, for g&constant, we get (for L), using Eqs.

(27), (31), and (33),

P J~klii q 'J'l.q q' ( q
h(J) k i Jn

B(J . n )

Bg

Equations (35) and (36) hold when projected on the
4

basis q, q, J = q && q, which is complete as long as

qP~'q( J&0). When q~ ~q( J =0) the arguments of the
functions g and h are no longer defined. Equation (36)
coincides with the result found in Ref. 6 IEq. (31)]. How-

ever, no explicit expression for the Lagrangian when

g&constant is given there.

The Lagrangian for g&constant when qPq ( J ~0) is

Bp;

Bqj

BPj

which is such that

(35)

L =T V+h(J), (J.n) q'+-- a -,- BVq'
Bq'

(38)

and %'e have not found the Lagrangian as a function of
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q', q', and t only (in spite of having shown its existence)
because the solution of Eq. (35) cannot be written explicit-
ly, in general. Nevertheless, we have found Lagrangian
(38) written as a function of accelerations which shows
one of the advantages of being able to prove that all La-
grangians have the form (9) (up to a total time derivative).

The most important result of this note is the realization

of the fact that any Lagrangian can be expressed as a
linear combination of its own Euler-Lagrange derivatives.
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