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Quantum mechanics of predictive Poincare-invariant systems.
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We discuss the problem of quantizing mixed spin (0 and —) two-particle systems in the

framework of predictive relativistic mechanics. %e propose a general scheme for quantiza-
tion, but a detailed analysis is given only for the linearized scalar or vector interactions (with
short or long ranges). Approximate wave equations are derived for the electromagnetic in-

teraction in the cases where the particles are slowly moving or have very different masses.

I. INTRODUCTION

In a preceding paper' we discussed the problem of
quantizing two-particle systems in the framework of
predictive relativistic mechanics. We assumed there
that both particles had spin 0. In this paper, we
consider the case where one particle (say particle 1)
has spin —, and the other one (particle 2) has spin 0.
We propose a general scheme for quantization, but
as in Ref. 1 a rather detailed analysis is given only
for the linearized scalar or vector interactions (with
short or long ranges). This scheme is rather compli-
cated in the short-range case because it forces the in-
troduction of, so to speak, point-dependent Dirac
matrices. This complication is not present in the
long-range case. The situation here is therefore dif-
ferent from that of Ref. 1 where all these interac-
tions could be treated on the same basis.

From the point of view of possible physical appli-
cations we have concentrated our attention on the
case of the electromagnetic interaction. Initially, the
foiinalism that we present is only suitable for deal-
ing with scattering problems, but an induction pro-
cedure peiiriits widening the scope of the theory. In
general this procedure leads to the consideration of
rather complicated nonlocal operators; to simplify
the problem we have considered three approxima-
tion methods to obtain an induced wave equation at
the center of mass. These equations summarize par-
tially the physical content of the theory.

We have considered first the "slow-motion ap-
proximation method" which consists of using for-
mal expansions in terms of inverse powers of the
speed of light in vacuum (c). Neglecting terms of
order higher than 1/c in the final result the wave
equation which we obtain coincides, except for the
Darwin-type term (term which contains a Dirac 5),
with the equation which could be naively derived
from Breit's equation for two spin- —, particles by

assuming that only particle 1 has spin —,, i.e., by
dropping the tei-iiis which contain Pauli matrices
which refer to particle 2.

The second approximation method which we have
considered is the "heavy-spin approximation
method" which consists of using foririal expansions
in powers of 1/m i. Neglecting in the final result all
terms of order higher than 1/m i the wave equation
which we obtain still contains nonlocal operators.
These operators are not present though in the limit
of m i going to infinity in which case the wave equa-
tion reduces to two uncoupled Klein-Gordon equa-
tions modified by a Coulomb field. This last result
could have been anticipated from the fact that a
spin- —, particle is endowed with a magnetic moment
inversely proportional to its mass and therefore is
zero if its mass goes to infinity.

And finally we have considered the "light-spin
approximation method" which consists of using for-
mal expansions in powers of 1/m2 and neglecting
all terms of order higher than 1/m2. This approxi-
mation method is simpler than the preceding ones.
The wave equation which we obtain does not con-
tain nonlocal operators and when m2 tends to infini-
ty it reduces to the Dirac equation for a spin- —, par-
ticle in a Coulomb field.

Most often the Dirac equation is inadequate to
deal with mixed spin-( —,,0) systems because it does
not take into account the recoil of the heavier parti-
cle ' when mi «mz, or because it is not the ap-
propriate equation when the masses m i and m2 are
comparable or when m i ))m z. The above-
mentioned results provide a complete framework to
deal with all these cases. '

II. PREDICTIVE POINCARE-INVARIANT
SYSTEMS

Let M4 be Minkowski space-time and let TM4 be
the manifold of pairs (x,n. ~), where x HM4 and
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TT~ is a timelike (TT~TTp ~0) future-oriented (~ &0)
tangent vector to M4 at the point x . In predictive
relativistic mechanics the phase space of a system of
two pointlike structureless particles is (TM4) whose
points will be designated by (x, ,mg). The genera-
tors of the space-time translations and of the
Lorentz group acting on (TM4) are

(2.1)

[P., J„.]=~. P„—q&„P. , (2.2)

pv' pal 9yp vn+ 9vcr Jpp 9vp Jpo Ipu J vp .[J J ]=
The equations of motion of a predictive

Poincare-invariant system (PIS) are

dxg dTTg
(2.3)

where the functions 8, satisfy the following equa-
tions':

a8: , a8:' ax'P ' a~'P

W(Pg)8, =0,
W( Jg„)8, =5g8,„5„8,g, —

where W is the Lie derivative operator, and

(2.4)

(2.5)

(2.6)

J~p=(5FVp„5„g—g~) xg +~)
Bxg

OTTER

where g~& is the metric tensor of M4. The Lie
brackets of these vector fields satisfy the commuta-
tion relations of the Lie algebra I' of the Poincare
group:

It follows from this result that any PIS can be
equivalently defined by two vector fields of ( TM4):

T

Hg —5~b TTb +8b
Bxb 87Th

(2 9)

satisfying the Lie bracket conditions

[H„H, ]=0,
[H,Pg]=0, [H, Jgp]=0,

and the mass constraints

(2.10)

(2.11)

W(H, )(TT, TT, ) =0 . (2.12)

G=A, +I' . (2.13)

We call G the Lie algebra of the complete symmetry
group. This algebra is a central concept in the
theory of PIS both at the classical level and at the
quantum level.

A PIS is said to be separable if'

lim 8, (x~&,x z ——x, +An, ~bp, ) =0 (2.14)

for any unit spacelike vector n And. we say that
the separability index is s if s is the supremum of the
real members p for which

»m &P8, (xf,x2 ——x, +An, &)=0 .
A ~ 00

(2.15)

Unless otherwise stated from now on we shall as-
sume that the PIS being considered has a separabili-
ty index s &2.

Let f(x,~b~) be a scalar or tensor function. And
let us define the shift operators

From Eqs. (2.2), (2.10), and (2.11) we see that the
vector fields P, J &&, and H, can be considered as a
basis of a Lie algebra G of dimension 12 which is
the direct sum of the Lie algebra I' and an Abelian
algebra A2 of dimension 2:

From these last equations it follows, in particular,
that" R, (A )f(x, ,xg, TTJ) =f(x, +&~, ,x, ,~g)

(2.16)2 & 2~a = ~a ~aa ~a (2 7)

are first integrals of Eqs. (2.3) which we consider as
constraints that allow to specify the masses m, of
the particles.

As is well known' Eqs. (2.4) make the system of
ordinary differential equations (2.3) equivalent to
the following completely integrable system of partial
differential equations:

lim f=0,
2X + Oop (f)

if we have'

lim R ) (A, )R2(A )f =0 .
A.~—a) (+ a) )

(2.17)

(2.18)

We shall say that f tends to zero at the infinite past
(future) and we shall write

Bx

aT
=7Ta

Bx
,, =0,aT'

=8, (xt, m,T),

a~. =0ar'
(2.8)

III. CANONICAL REALIZATION OF g
Let us consider a separable PIS. The Hamilton

fornl in the past is by definition' ' the symplectic
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foini Q of (TM4):

dQ=O, Q'~0, (3.1)

which is invariant by the complete symmetry group

W(A)Q=O, A EG (3.2)

and which satisfies the following asymptotic condi-
tions:

[Hi,H2] =0,
[Pi H. ]=0 [J~„Ha]=o
[P~»p] =0

[J„„,Jp~] =rj„p(J„~ s„~—)+q„~(J„p s„p—)

(3.1 1)

lim (Q~g —Qgg ) =0 (A,B,. . . = 1,2, . . . , 12),
X ~co2

lim (Qqp —Qgp') =0 .
X aloof

2
(3.5)

From now on we shall consider conservative PIS's
only.

To each A EG it corresponds to a function A
which is defined, up to an additive constant, by the
forirlula

i(A) Q= —dA,

where i (A) is the interior product operator. We
have proved elsewhere' that under very general as-
sumptions we have

(3.3)

where Q~z are the components of Q and Qzz the(0)

components of

Q"'=dx. Rd~. ,

with respect to the cobasis (dx, ,ding).
A PIS is said to be conservative if moreover

Let us write Eqs. (2.2), (2.10), and (2.11) in the
compact form

[Ar AJ]=CzzAz IJ K =1 2 . 12 .

(3.12)

It is easy to see from Eqs. (3.11) that the linear map-
ping C:Az E G ~Ai is an isomorphism of G onto
the finite-dimensional Poisson algebra generated by

I'

[As AJ]=Ca&Ax (3.13)

if and only if a~ =si& ——0. When this choice of the
arbitrary constants is made C is by definition the
canonical realization of G. P is then interpreted as
the total energy-momentum and Ji& as the general-
ized angular momentum of the PIS.

It is important to notice that the Lie algebra gen-
erated by P~, Ji&, and H„and the Lie algebra gen-
erated by P, Jq„, and I', (H, ), where F, are arbi-
trary functions of their argument, are both the same
abstract Lie algebra. In the next section we shall
consider the case where Hi is substituted by

1

H, = (3.7) 7r j 77 ip77 i =17 ipQ i — v 2H i
P P (3.14)

Let P'p' and J~~„' be the particular solutions of Eq.
(3.6) corresponding to the generators P and Ji&
which satisfy the asymptotic conditions

upi being the unit future-pointing vector collinear to
From Eqs. (2.7) it follows that Si is the first in-

tegral of the equations of motion (2.3) which is asso-
ciated with the constraint

lim (P'P' e,n') =0-,
Z —+ce2 (3.8) Si ———mi . (3.15)

lim (Jg„' x, A,m. „'+x,„m—.g)=0 .
Z —+ce2

The general solution is then

P~ =P' '+a, Ji.p ——Jr+sip, (3.9)

where a and si„are arbitrary constants.
Let [Ai, A2] be the Poisson bracket, in the sense

of two functions Ai and A2. From Eqs. (3.7)—(3.9)
and from

We shall say that a canonical coordinate system,
i.e., a system of coordinates (q, ,pp) of (T~&)2 for
which Q takes the form

Q=dq, Rdp', (3.16)

W(P )(q, —x, )=0,

is an adapted canonical coordinated system if'6 the
functions (q, ,pp) of (x, ,~b ) are smooth enough and
satisfy the equations

&([Ai, A2])Q= —d[A, ,A ],
it follows that

(3.10)
(3.17)

and the asymptotic conditions

~( J i.p)q. =Cq.p, &„q.~—
b b b b~(P 9 p=o ~( Jip)Iip=nipS'p Vppu~—
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lim (q, —x, )=0,
X ~aoZ

cop aQd f
lim (p~ i—rp) =0 .

+2 p and f

(3.18)
As a departure point we shall take as fundamental

vector space the space H' of all spinors P which have
a Fourier transfokkkk 4(k i,k2 ):—(0'"(ki,k2)):

For each canonical coordinate system satisfying
Eqs. (3.17), and therefore in particular for each
adapted coordinate system, I' and Ji& take the very
simple fol Ill

g"(x, )

b f e)(kb)exp —x, k' P"(,),
(2ir A) z'x&'

0 g a 0
&a =&aPa) Ji)(k =VaZPp —qaIJPi . (3.19)

Instead the functions H, or Si which are very sim-
ple functions of m., will become in general compli-
cated expressions in tei-ras of an adapted canonical
coordinate system.

IV. QUANTIZATION OF MIXED
SPIN-( 2,0) TWO-PARTICLE PIS

Ii =2m. fi being the Planck constant and

iI(kb)=dki &

This formula can also be written as

(4.2)

A,B =1,2, 3,4 . (4.1)
I

In Ref. 1 we considered the problem of quantizing
two-particle PIS's assuming that both particles had
spin 0. We consider here the case where one parti-
cle, say particle 1, has spin —, and particle 2 has spin
0. We take for granted that this implies that the
state vectors can be described by two-point four-
component spinors:

g '(x i,x2)

P (xi,x2)
f(x i,x2 )=,3, , ——(it) "(xi,x2 }),

L&],&2)

f (xi,x2)

with

1 A

(2iriri)4 ~4x&4 riEg 4 (4.3)

E& ——(5~ ) exp (4.4)

FEg (x„kb ) =F„(x„kb)Eg(x„kd ) . (4.5)

We shall call F(x,k) the indicial matrix of F. This
operator being linear we have

Let F be a linear operator acting on HP. And let
F~(x„kb ) be the components of the 4X4 matrix de-
fined by

(4.6)

(4.7)

Fbk= f, ,b)(k, )F„(xb,k, )Ee(x„k, )bp "(kil
(2iriri} R xz

M
~

and therefore the knowledge of the indicial matrix is equivalent to the knowledge of F itself. We shall write

F=8(F}, F=H. '(F) .

Two linear operators F and G being given, let us set by definition

(F Go) ~[8(FG )]"
A straightforward calculation then yields

(4.8)

(FoG) fb)(k ) jl =e)(kb )Fe(x„ke )Gbb(x, pk„k&) exp (ke —k'e)ke-
(2m i') ii' R' (4.9)

or

(Fo G)g FDo Gg, —— (4.10)

the composition law in the right-hand tekkkk being
the quantum composition of two functions which
we defined in Ref. 1. The composition law given by

fornkulas (4.9) or (4.10), which we call the quantum
composition law of two matrices, is linear and asso-
ciative, and as for functions, it has some other sim-
ple properties easy to derive.

The quantum bracket of two 4X4 matrices will
be by definition the expression
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[F,G) =FoG —GoF . (4.11) A =F'~'(x, k) I+eA, (x,k)m io+e, (4.19)

'This bracket defines on the set of 4X4 matrices
whose elements are functions of (x, ,kt ) a structure
of Lie algebra. Moreover, it is clear that

8([F,G])=[F,G), (4.12)

where [F,G] is the commutator of the operators F
and G.

Let us now proceed to quantize PIS's for which
particle 1 has spin —, and particle 2 has spin 0. We
consider as fundamental for this case the Lie algebra
generated by Po and Ji& as defined by Eqs. (3.9),
where again we consider a and si„as arbitrary
constants, by Si as defined in (3.14) and by H2 as
defined by Eq. (3.7). Any of these functions will be
generally designated by Aq and we shall refer to the
Lie algebra they generate as G. By definition we
shall say that p is a quantizer, or that q& defines a
quantization, if y is a linear mapping of G onto a
finite-dimensional vector space generated by 12
linear operators Az acting on 8':

q:As As =q (Ar ) (4.13)

such that

x, =f, (x,k), m.
p =gp(x, k) . (4.20)

We say then that m i in Eq. (4.19) is the correspond-
ing function (4.20) and that

F' '(x, k)=F' '[x(x,k), m(x, k)] . (4.21)

The functions ~ i and F ~~~ are therefore associated
with 4. We shall see in a moment that not all coor-
dinates 4 will be admissible.

(ii) The matrices A, are 4X4 matrices with the
following properties:

(1) They satisfy the equations

X X~+X% = 2g ~I.—
(2) Under a Poincare transforiuation

(4.22)

I being the unit 4X4 matrix, and m io,F'~' being
functions, A, 4X4 point-dependent matrices, and e
constant 4 X4 matrices defined below.

(i) Let [q, (x,n. ),pp(x, m. )] be an adapted canonical
coordinate system of the Hamilton forni Q. We
shall refer to it as P. Let [f, (q,p),gp(q, p)] be the
inverted functions. And let us define the functions
of (x,k):

[As AJ]=CuAx (4.14)

Cqz being the structure constants of the Lie algebra
as defined by (3.12). Since any y can always be
written in a unique way as

x' =Lp(x~ A~), k' =L—pk~

they behave as follows:

[L (x A),Lk] =L—g I"A, ~(x,k)I

(4.23)

(4.24)

=8 'op, (4.15)
where I (L) are the matrices satisfying the equations

p:As Az =p(As) (4.16)

it follows from Eq. (4.12) that we can equivalently
say that y is a quantizer if p is such that

Az} =iACggA~ . (4.17)

It is obvious that the definition of a quantizer that
we have just given is too general to be of any physi-
cal interest because it does not bear any information
about the dynamics of any particular PIS. There-
fore we are going to select a large class of quantizers
by giving restrictive constructive prescriptions to de-
fine p.

A general expression which includes every func-
tion A is the following:

A =F'i'(x, ~)+eu i~i +e, (4.18)

p being a linear mapping of G onto a finite-
dimensional vector space generated by 12 4X4 ma-
trices Aq(x, k):

Lgy~=I 'y I (4.25)

and defining the spinor representation of the Poin-
care group.

(3) They satisfy the asymptotic conditions'7

lim (X —y )=0
2~ p and f

(4.26)

= U 'y U(x, k) (4.27)

with U behaving under a Poincare transformation as
follows:

U[L (x A),Lk] =I—U(x, k)T'

and satisfying the asymptotic condition

(4.28)

(y being the usual Dirac matrices).
From the fundamental theorem on Dirac matrices

it follows that equivalently we can say that A, have
to be matrices associated to a matrix U(x, k) by the
forxriula

where F'~' is P'~', Jg', or Hz, e is either 1 or 0, and
e is ao or s~&. We shall assume that A has the fol-
lowing general expression:

lim (U I)=0 . —
X ~oop and f

(iii) e are the matrices

(4.28')
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a =0, l
[y~ y„] .

4
(4.29)

A
Si%'= —mi%', 2H2%'=my 0, (4.32)

where Si and Hz are the operators with indicial ma-
trices:

Si —A, iF i~, H2 ———
2

m. zr72 I (4.33)

in accordance with the preceding rules based on and
following Eq. (4.19). The evolution equations must
be supplemented with some regularity conditions.
We shall require here the two conditions

sup f@ (x»x2, t) & ao,
Z ~co

~ gP (x xi&, t)d xid x2& 00,&)X&2

(4.34)

&, being any two bounded domains of R 3, @ the re-
striction of %' to equal times

Whichever choice of N and U we make, satisfying
the prescribed properties, it follows from Eqs. (3.19)
that Eq. (4.19) gives in particular

I' =e,k'I,
(4.30)

Ji~ (x——,i k p x,—qk i„)I+ [yi, y~ ],4

which are the well-known expressions for the indi-
cial matrices of the generators of the spinor repre-
sentation of the Poincare group. Equations (4.30)
are thus consistent with our initial assumption by
which we assumed that the state vector had to be a
two-point four-component spinor. The necessity of
having this consistency is part of the logic lying
behind the proposition of the properties (i), (ii), and
(iii) above. Moreover these conditions imply that
Eq. (4.17) will all be satisfied except

IS„H, I =0. (4.31)

This leads us to the following, and final, defini-
tion of a physically admissible quantizer. We shall

say that the linear mapping qr is a quantizer (for
short) if the linear mapping p defined by Eqs.
(4.19)—(4.26) and (4.29) is such that Eq. (4.31) is sa-
tisfied. "

We have seen in Sec. II that the concept of a PIS
contained two basic ingredients. The Lie algebra G
(2.13) and the mass constraints (2.7). For a mixed
spin ( —,,0) we have considered as fundamental the
canonical realization of G generated by Si, H2, I',
and J~& and as fundamental constraints (2.7), with
a =2 and (3.15). The idea of representing G by
commutators as in (4.14) has led us to the concept of
a quantization. We use now the mass constraints to
prescribe the evolution equations for the quantized
system:

'Il'=F% (4.37)

satisfies again conditions (4.34). It is obvious then
that the operators

A t=FArF (4.38)

will satisfy Eq. (4.14) and that E'=FE will be the
vector space of admissible solutions of equations:

S i4'= —m)%', H2%'=m2 4'. (4.39)

We shall say that each operator F provides a quanti-
zation equivalent to the preceding one. Notice that
the operators A t associated to a given operator F
may not correspond to a quantization defined by a
quantizer (@',U'). Notice also that the guantiza-
tions defined by two distinct quantizers (@,U) and
(@ ', U '} may, a priori, be inequivalent, i.e., an
operator F with the required properties may not ex-
ist. We shall reexamine this point in the more re-
stricted framework of the next section.

To be complete, the general scheme of quantiza-
tion that we have presented here should include the
definition of a Poincare-invariant product (

~
) on

E. Let us assume for a moment that this scalar
product has been defined. It is clear then that the
scalar product on E',

(4.40)

would be Poincare invariant because of Eqs. (4.36).
Moreover this choice automatically ma, kes
operator F unitary. At the present time we do not
have any general proposition to make to define ( i

).
Nevertheless, as we shall see in Sec. VII, this is not
an obstacle for some applications of the theory
based on approximations. The particular problems
we shall study there will help in guessing the scalar
product that one should consider.

In the free-particle case, i.e., when 8, =0,
g =II' ', and the simplest choice for (x ~, rr f) and
A, ~ satisfying the required properties is

x, =x, , rTb~ kg, X~=y~ . —— (4.41}

For this quantization the evolution equations (4.32)
are

( —iRQi+mi)4=0, (R U2 —m2 )4=0 (4.42)

g(x, , xp, t)=4(xi, x2,x. , =x2 ——t) (4.35)

and P the Hermitian conjugate of P[x, =(x,')].
Let E be the vector space generated by the solu-

tions of Eqs. (4.32) which satisfy conditions (4.34)
and let us consider a regular linear operator F acting
on 8', which commutes with P and J~„.

[I' F]=0 [~~ F]=0 (4.36)

and which is such that for %HE
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with

(4.43)

tions (q,'",pi', "~) smooth enough, which satisfies the
equations

W(P )4("=0, W(J&)C("=0 (5.7)

To each pair of solutions (%'(1),(II(2)) we can asso-
ciate the conserved bicurrent

and the asymptotic conditions, equivalent to Eqs.
(3.18),

1 2 2~2 g 1 ~
qI(1)r p (2)

Bx 2

q) (1)
dA, R((A, )R2(A, ) —8,(" =0, (5.8)

CX)

p+(1) r +(2) +=+ r'
X2 f d). R, (A)R2(k) a

7T+

—p,"' =0 . (5.9)

V. LINEARIZED PIS's

Let us consider functions 0,'"' and fornial power
series of a coupling constant g of the following
form:

ga g(()u+ 2g(2)u+a=g a g a (5.1)

These series 8 define a foririal PIS if their coeffi-
cients are solutions of Eqs. (2 4)—(2.6) considered or-
der by order. From now on we shall consider linear-
ized PIS's, i.e., we shall neglect all powers of g
greater than or equal to g:

ga g(1)a (5 2)

To this approximation the Hamilton forirI can be
written as

from which one can construct, as usual, a Poincare-
invariant sesquilinear forixi, and a scalar product in
the reduced space of positive-positive-energy solu-
tions.

From Eqs. (4.20) it follows that the general ex-
pression for the functions (x „n ~i, ) which might
lead to a quantization of the PIS is

-a a -(1)a -a a —(1)aX a =Xa +gX a, 7ra =ka +g2r a

with

X (1)a -(1)a( k) —(1)a -(l)a(Xa = —qa X, , 2ra = —Pa X,

(5.10)

(5.1 1)

(q'",p &"~) being the functions (q,"',pi', "~) where
is su siitute y . We s a a ways use t e

tilde to indicate this substitution.
The indicial matrix K2 given by Eq. (4.33) calcu-

lated using expressions (5.10) is

K2 ——( ——,k2k2u+gC 2") I
with

C ',"=—k,~(". (5.12)

Writing the matrices A, introduced in the preced-
ing section as

n =n"'+gn"' (5.3) g a ra+gg (1)u (5.13)

and any adapted canonical coordinate system of n
as

a a (1)ap, =m., +gp, (X,2r),

q. =x. +gq."' (x,m. )
(5.4)

@(1)
dA, R 1(A, )R2(k) g(1)u

(5.5)

the general expressions for (p"', qi', "~) being (Ref.
1)

it follows from Eqs. (4.27)—(4.28') that the general
expression for X") will be

g (1)u [ a U (1)] (5.14)

U(1) 0lim (5.15)
X ~p and f

The indicial matrix Si, given by Eq. (4.33), calcu-
lated using expressions (5.10) and (5.13) is

Si ——r k 1 +gS 1
(1)

U'" being a matrix which satisfies Eqs. (4.28) and
the asymptotic condition

0 @(1)
q,""=—f dkR, (A)Rg(A)—00

(1)a—Pa with

S(,"=X("k, +r ~(,". (5.16)
(5.6)

where N'" is any function which makes the func-
The couple (@"',U"') will define a first-order

quantization of the PIS if Eq. (4.31) is satisfied.



28 QUANTUM MECHANICS OF PREDICTIVE. . . II. 1315

Taking into account the fact that because of Eqs.
(3.17) and (4.24) both TT" and A,

("~ depend on xp
through x =x

1
—xq only, Eq. (4.31) can be written

as"

D2A, "' ki — I:l(p'i"r +X'" ki )=0,
CX

(5.17)

how the scope of the theory can be enlarged to dis-
cuss more general problems.

Let us examine now the problem of the
equivalence of different quantizers that we men-
tioned in the preceding section. Let us consider two
different quantizers (@"',U"') and (N"",U"").
The substitution of @"' by 4& ""in Eqs. (5.5) and
(5.6) generates the canonical transformation

where

D2 =1T2, l-j='T
axt2' ax ax~

(5.18)

ta a aT ta a
9a =Vtt g a ~ Pa =Pa+g

t ra Xtt

where

(5.27)

Let us assume that (@"',U'") is a quantizer.
The evolution equations (4.32) will then be

( 1'At()—1+gS I")4= —m 1
(It,

(1)i 02+2gk2")V=m2 (It .
(5.19)

These two equations, if we consider them as exact
equations, will not be compatible in general because
Eq. (5.17) guarantees the commutation of the opera-
tors in the left-hand teritts only when all powers of g
are neglected. Therefore they have to be considered
as equations for the coefficients of a forrttal expan-
sion of g itself:

0T'"= f d) R)() )Rq(k)(@""—@"') . (5.28)

Therefore the functions (5.11) will be changed into

—ta a aT —ttt —aXa =Xa+g, tra=TTa —gak: ax„'

and the corresponding change of H2 [Eq. (5.12)] is

(5.29)

H 2
——H2+gDpT '".I . (5.30)

The substitution of U"' by U"" in Eq. (5.14)
gives

iIt alt(0) +g iIt(1) (5.20) g ta ga+g [ra g (1)]

and in this sense they are equivalent to the following
set of equations:

with

g (1) U t(1) U (1) (5.31)
( —AT@,+, )e(o)=0,
(X'o,—m, ')e("=0,

(5.21) and this, together with Eqs. (5.29), induces the fol-
lowing modification of Si [Eq. (5.16)]:

( —iWB, +m, )e("=—s (,"e"),
(1)i Cl2 —m2 )1' = —24& (It

(5.22)

(5.23)

T (1)
s(=si+g [r»'"]k1 r— (5.32)

If we assume in particular that f( ' is a plane wave 0

O' '=A (ki, k2) exp —x, k' (5.24)

( imB, +m, )e("= s(,"e(0—),

(A 02—m2 )0'"=—242"%' '. (5.26)

The system of Eqs. (5.25) and (5.26) is well adapt-
ed to discuss first-order scattering problems, and for
the moment this is the system of equations we are
going to study. Later on, in Sec. VII, we shall see

then Eqs. (5.21) give

(r ki +mi)A =0, ki ——mi', kp ——mq'

(k, —= —k, k, ) (5.25)

and Eqs. (5.22) and (5.23) become

And finally because of Eqs. (4.30), it is clear that
Pa and J)„& will remain unchanged:

P' =P, J)(p ——J),„. (5.33)

Since we are assuming that both (4 "',U"') and
(Ct "",U"") are quantizers, Eq. (5.17) will be satis-

fied for both (m. Ia', A, ")~) and (F ')a", A, ""~). There-
fore we shall have

(1)
D2[r»'"]ki & —— r +[r»"']ki

(5.34)

According to our definition of equivalent quanti-
zations that we gave in the preceding section,
(N '",U"') and (Ct ""U"") will be first-order
equivalent quantizers if there exists a matrix F"'
such that
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H2 —(I+gF" )o( —2 k~qk2&+gH2 )o(I gF—"')
=H2 —g I

——,k 2k 2E,F"'I

aP ("+Em,F")

CIT' =0
X

D2T'"= —ii)ED2F"' —A'
I IAAF'",

(1)

y a y
g a

(S.41)

(5.42)

S 1={I+gF )o (y~k 1~+gS 1
')o (I gF—

=S, gIy—k, ,F'"I

P a =(I+gF"')oPao(I —gF"')
=P ifigW—(P )F'", (5.35)

Equations (5.41) together with the asymptotic condi-
tions

=0lim
~p and f

which follow from the fact that both (q, ,p~) and
(q,',pp~) satisfy the asymptotic conditions (3.18), im-
ply that

@E iIE+gF (1)iIE(0) (5.36)

is again admissible, i.e., satisfies conditions (4.34).
From Eqs. (5.30), (5.32), (S.33), and (5.35) we see
that as necessary conditions for the two quantizers
to be equivalent there must exist a matrix F '" satis-
fying the following equations:

JE„~ (I +g——F '")oJi,po (I gF "')—
=J»+iong I

—W{J»)F"'
+ .[F"'-[y y ]]I

and such that for each admissible solution 4 of Eqs.
(5.21), (5.22), and (5.23)

OT")=0
and therefore

F =—T — lim T ' I(1) & (&) ~ (&)

P

(5.44)

(5.45)

F(1) E~ g F(1)
2 (5.47)

is a solution of Eqs. (5.42), (5.38), and (5.39) satisfy-
ing the asymptotic condition (5.40).

Let us assume now that T"' is zero. Then Eqs.
(5.34) and (5.37) become

D2 [y,N' "]kia — Q[y, N" ']k )a ——0, (5.46)
2

2

D2T "= EfiD2F "—— l:I2F"' )

T (1)
[ a N(1)]k a

(5.37)
G(1) Egya F(1)+[F(1) N(1) a]k ()

BX 1

(5.48)
The operator ii)i(E)) acting on this last equation gives

=ifiy F'"+[F'",y ]ki
Xi

~(P )F (1) ()

~( J»)F(1)=-.'[F(E),[y.,y.«

(5.38)

(5.39)

We are going to prove that Eqs. (5.37) and (5.38)
always have a solution satisfying the asymptotic
condition

D F("=' OF(E)+ 'y~ -[N("y ]k1 2 1 y la

Di —= k~i
ax~

which can be equivalently written as

D, (F'"—N'")
E'IE

Q F + yP N(1)ya
BXE'

(5.49)

lim F"'=() .
X ~co2

(5.40) +y y~ N"' k
p la (5.50)

These equations being linear in (T'",N" ) we can
decompose the proof in two parts by assuming first
that N "is zero and then that T'" is zero. If N"' is
zero then Eqs. (5.34) and (5.37) become

Taking into account now the asymptotic condition
(SAO) and the "integrability equation (SA6)" from
what we proved elsewhere' it follows that the sys-
tem of Eqs. (5.47) and (5.49) has the same solutions
as that of the integral equation

P"=—,
' f zA, z, (x)z, (A) inc'a. I'"+y [fv'",y )k,. (5.51)
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Assuming that both N"' and F'" are analytic func-
tions of ()i allows us to solve this equation order by
order in fi. The solution thus obtained is actually a
solution also of Eqs. (5.48). To prove it let us con-
sider the operators D acting on the left-hand term
of Eqs. (5.48}. From Eqs. (5.47) and (5.49), or (5.50),
we get, using Eq. (5.46),

Poincare-invariant tensor '

~(P )g"p=o,
-(~)~( J~p)m p=rI iq „p rf—„q i.p

-(1) -(1)+ IpiLf'ay, Ippf'ai
Defining

(5.58)

D G(1) &~ g G(l)
0 (5.52)

-(1) -(&) p~a =tap—k i (5.59)

It follows then from this system of differential equa-
tions and from the asymptotic condition (5.40) that

G' '= f d3. Ri(3)Rq(R. )e (3 G"' (553)

Therefore Eqs. (5.48) will be satisfied order by order
in fi. A similar calculation would prove that Eqs.
(5.38) and (5.39) are also satisfied. The existence of
a solution of Eqs. (5.37)—(5.39) is a necessary condi-
tion for two quantizers (O'", U'") and (@"",U"")
to be equivalent. The existence of this solution and
its uniqueness has been proved under some mild ad-
ditional conditions. But these two quantizers will be
only actually equivalent if the spinors (5.36) satisfy
the supplementary conditions (4.34). The discussion
we have presented does not prove that all quantizers
are equivalent but may serve as a starting point to
prove more precise results for particular examples.
From now on we shall choose particular quantizers.
This choice will have to be considered on the
grounds of its simplicity. But we will have to keep
in mind that the generality will be lost, except if it is
true that all quantizers are equivalent.

Let us consider the matrices

and taking into account the simplifying assumptions
(5.56), Eq. (5.17) becomes

D2co — Cl(n i +co )=0 .-(&) ~ —(&) -(I) (5.60)

and therefore Eq. (5.60) tells us that necessarily we
must have

Cl(n. ',"k, )=0 . (5.62)

Actually this condition is also a sufficient condition
which guarantees the existence of co'" satisfying the
required properties. The general formula which en-
ables us to calculate co order by order in A' is

0
m,

'" fd=3.R, (A, )(3(m ',"+m,"')

-«(1)+~a (5.63)

where co must be a solution of

(5.64}

This equation shows that the function @")in Eqs.
(5.5) and (5.6) cannot be chosen arbitrarily. In fact,
because of Eqs. (5.57) we get

(5.61)

(5.54)

From Eq. (5.17) we see that only ((()p is coupled to
m 'i" and that the remaining quantities will have to
satisfy the same equations when there is no interac-
tion. Therefore we shall assume that

q") =O, qp(i). . .p =O, for r)2. (5.56)

From Eq. (4.42) it follows that @p' must be skew
symmetric

—( I ) —( & ) —(1) —( $)p0'ap+f'pa =05 0'ap =ilap(pp— (5.57)

a&. . .a
where 5p . . . p' is the Kronecker tensor, and let us

I r
write the matrices A,

"' as

g(1)a —(1)a+ —(1)a p, , —(1)a pgppI+(Pp 'Y + ' ' +0'pappy'

(5.55)

satisfying order by order the asymptotic conditions

lim R((v)co ' =0,

lim R((v)co-«(1)
V —++ 00

+ 00

limR~(v) f d R3p( )3CI(F ~ +m ) .

(5.65)

For each acceptable solution co, the general ex--(1)

pression for g") will be

(p p
——(kikip) (co kip —cop ki )+q) p

—(&) p —] —(&) —(1) —(1)

(5.66)

q& p being any skew-symmetric tensor satisfying the
appropriate asymptotic conditions and the con-
straints:

and from Eq. (4.24) it follows that (p"p must be a -«(1) Py pki ——0. (5.67)



LUIS BEL

Let us assume that a function @ leading to the
condition (5.62), and the solution ol of Eq. (5.60)-(l)
have been found. The first group of evolution equa-
tions (5.26) take now the simpler form

( —lee, +m, )e")= —(~(,'.)+a(,'.))y ~(o) .

(5.68)

The operator (i—R(()1+m 1I) acting on both ternis of
this equation yields

equation (5.26) and in Eq. (5.69), we obtain in the
center-of-mass frame of reference

Po=kio+k2o= P,—P; =k»+kz; 0——, (5.74)

axo

(~—Pk+Pmi)4"' (I o—"+~ pk")p"',
(5.75)

2 '"k ' - PF'" 111'Q"'—e(o)~ la 1+ V aP (5.69) axo

where

-(1) () (1) () -(1) —(1) () -(1)ap: aPp ppa ~ Q:~ Pa
X X~

=m 'y'"+277"'k itl' '

a2O+im
Bx

(5.76)

(5.70)

Let us assume now that (Il is an eigenstate of P:
2y(1) + 2

—(1)kp+ 1 yap+(1) 1 gQ(1) y(o)
2

P %=P%, (5.71) (5.77)

P =ki +k2 (5.72)

0" '=2 exp (k~1 —k~2)xp exp P (xi +x2)2r ' 2X

where here Pa are four real numbers. From Eqs.
(4.30) and from (5.24) it follows that

where P=y, a'=y y', pq ———iA'()/Bx, and where,
because of Eqs. (5.25) and (5.74) it is understood
that each function of k, is in fact a function of
three variables k =(k') which is obtained from the
original function by making the following substitu-
tions

k', =k', k2 ———k', ki ——+(mi +k )'

e")=y("(x~)exp ' P.(x, +x, )
2

(5.73) k =+(m2 + k )' (5.78)

Substituting these expressions for 4 ' ' in Eq.
(5.68), after a left multiplication by y, in the second

Subtracting Eq. (5.77) from Eq. (5.76) we get an ex-
pression for (()/Bx )f") and this expression substi-
tuted in Eq. (5.75) gives the equation

(m (P+~ I"k)W'"

2 2 2 (1) 1 —(1) p (1) p (1) (1) k le p
—(1) lA —(1) (o)

2P
(P +ml ™2)g + (Fr( ki F2 k—2) po pk—+ + P F p QP P P'

4P '--2P (5.79)

From now on we shall assume that each quantity
in this equation which depends on x is restricted to
x =0. This equation then becomes an initial condi-
tion for the evolution equation (5.68). The corre-
sponding solutions are solutions also of the second
equation (5.26) and therefore, in its restricted form,
the wave equation (5.79) is equivalent to the system
(5.26). Remember of course that g( ' is now

(m ip+~~pk)g( '= (P +m 1'—m2')itj'o' .
1

2P

(5.81)

VI. THE SCALAR AND
VECTOR INTERACTIONS

q(o) =W exp —'k, x'

and must be, as it is easy to see, a solution of

(5.80)
We consider here the problem of two interacting

scalar or vector "charges" e . The linearized PIS's
corresponding to these interactions are given by the
functions
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B,'" =r, 3(1+pr, )exp( p—r, )

X(rI.A.h +L,z.t. ), (6.1)

From Eqs. (5.5), (5.11), and (2.6) it follows that
the functions rr,'" associated with the quantizer (6.5)
are such that

—(I) a ' (I)vr, k, = ——,4 (6.9)
z, =v), A '[~, '(x~, ) —k(xm, )],
g, =( —1)'+', k = n. )—~2

2 — 2 — 2 2 2Hn—.,p, A =k rr)—~2

(xn. )=x m, x =x) —x2,
h =x z)n)—+zzm2, h =h h~,

t, =m-. m., krr, ,—a 2 a a

(6.2)

We see then using Eq. (6.8) that Eq. (5.62) will be sa-
tisfied if and only if p =0. Therefore function (6.1)
leads to a quantization of a mixed-spin PIS if p=O
but does not if @+0.

If p=O, from Eqs. (5.5), (5.11), (6.4), and (6.8) it
follows that the functions Fr,'" are solutions of

(6.10)

and therefore the simplest solution of Eq. (5.60) is
r =(h +A n z )' =[x +m (xrr ) ]'

(6.11)

A, = —m; or A, =~, 'k,
L =m, m, k orL„=—m,

—I —2 —I

(6.3)

for which, using also Eq. (6.9), the wave equation
(5.79) becomes

(m(P+~ pg)Q'"= (P +m) —m2 )P")
2I'

depending on whether we consider the scalar or vec-
tor interactions. )M & 0 is the inverse of the range of
the interaction.

The separability index s of these interactions is oo

if p &0 and 2 if p=0. The PIS's with s=—2 must be
treated with special care' and for this reason, we
have assumed up to now that s was greater than 2.
But as we mentioned in Ref. 1 the complications
that appear when s=-2 can be dealt with very easily
at the lowest order of approximation that we are
considering here. We shall not exclude then the case
(M=0 and actually in the next section we shall con-
centrate our attention to the case of the vector in-
teraction with (u, =0 (electromagnetic interaction).
The PIS's defined by Eq. (6.1) are conservative.
Moreover a straightforward calculation proves that

Pro +F )k(z — y y F p
—()) —()) k & ~ ())

4I'

(6.12)

where

()) ~ —(1) () —())
F~p — TJ Ip p

7T

c1x ()x

()) () —())
Q = — rr)

Bx

(6.13)

If )L(, &0 a possible choice of the function N("
would be

gg())a 2g())a
a =P a (6.4)

Bm ) r2 e—xp( pr2) . —(I) —I —I (6.14)

@'"=—2BR 'exp( pR), —
where

(6.5)

In our preceding paper (Ref. 1) where we con-
sidered a system of two spinless particles we used
the quantizer

But for this choice, or for any other, Eq. (5.60), will
never have the solution (6.11). This makes the
quantization of short-range scalar or vector interac-
tions more difficult than the quantization of long-
range ones. We want to stress though that this is
just a technical complication and that nothing
would prevent us from developing the theory for
)M & 0 as we shall do for the case of the electromag-
IlCf lc 1Il't| I a.ct1OIl.

and where

(6.7)

depending on whether we consider the scalar or vec-
tor interactions. This function @ is a solution of

~@(1) 2~ ( I )

We shall consider in this section three approxima-
tions of Eqs. (5.81) and (6.12) for the case of the
electromagnetic interaction. In this case the func-
tions 0,"' are (g =e)ez)

(7.1)
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A straightforward calculation shows that

(7.2)

and therefore, from Eqs. (5.5), (5.11), and (6.8) for
p=0, we see that the functions lr, associated with
the quantizer

c assuming that lr, have dimensions of linear
momentum and x have dimensions of a length.
From (7.5) we obtain the functions lr,'~ by changing
the sign and substituting everywhere lr& by k, .

The corresponding expressions for F t3 are(1)

F p
———A lr2 r, [k(h t)p —hpt, )

(1. ) 1 —2 —1 —3

C

e")= —2k'-'R -'
satisfy the equation

(1) ~ (1)
Q = lr 1

——0.

(7.3)

(7.4)

+lr2'(h t2& —h&t2 )

+Z1(t lat2P —t1t3t2~ )] .

Using Eqs. (5.5), (7.1), and (7.3) we can calculate
p~ and the result is

(7.6)

Let us introduce two-component spinors g'1 ",
and q2(0 "such that

C

1
A 2kI—I )-R '(t-. —t. )

C

g.(0, 1)

(0, 1)
(0, 1)

42' (7.7)

1 —2 —1——A lr r, t. . .
C

(7.5)

where we have restored the speed of light in vacuum

Using the usual representation of the Dirac matrices
the zeroth-order wave equation (5.81) can be written
as

m(clt~) +o pkp2 —— (I' +m, c m2 c )g—,(0) k~ (0) 2 2 2 2 2 (0)

2P
(7.8)

—m(cg2 +(T Pkg) = (P +m) c ™2c )42(0) k

2P
(7.9)

(T" being the pauli matrices. And taking into account Eq. (7.4), the first-order wave equation (6.12) can be

written as
t

m)clp) +(T pk I//2 = '(P +m 1 c —m2 c )'(l)1 — 7T)0 + cT cT F k lp) —(T 1T)k+ Fk
(1) kr (1) 1 2 2 2 2 2 (1) (1) 115; k

—(1) (0) k (1) lA —(1) (0)
2P 2P

—m le/2 +(T Pk Pl
(1) k~ (1)

(7.10)
r

2 2 2 2 2 (1) —(1) l ~ i k (1) (0) k —(1) ill (1) (0)
2P +ml c m2 c W2 lr)0+ ~(T F'k P2 (T lrlk+ Fk4I 0 1

(7.11)

We are reminded that in Eqs. (7.8)—(7.11) x =0,
and that the substitutions (5.78) have to be made.

A. The "slow-motion approximation method" to
deal with Eqs. (7.8)—(7.11) will consist in using for-
mal series expansions in 1/c and neglecting in the fi-
nal result all terms of order higher than 1/c . Let
us write for any function f which has a limit for
C —+ oo.'

—(1) m2 (1)
1~10 ~ 3~10Mx

-(1) -(1)0~ 10 2~ 10 —O

(x k) k
2Mx +

m1m2

-(1)
2~1i

2Mm 2x

-(1) -(1)
0~ 1i 1~ 1i

X'
m1 x;+(m1+2m2)k;

1 1f 0f+ f+ . . + f—+. .—.
C

nn (7.12) -(1) 1 ; -(1)
1F;0 ——— x', 0F;J =0, (7.13)

Using this notation, a rather long but straightfor-
ward calculation gives m2x
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where
M =mI+m2, x =(x'), x =

~

x
~

(1) 2 (0) -(1) (0)a Pk1 4 WOPI I rlo 041 (7.18)

k=(k'), k=
~

k
~

Let us now write

(7.14)

(7.19)

and at the zeroth order Eqs. (7.9) and (7.11) give

(0, 1) k~ (0, 1)+a Pkofl '

P=Mc+ (7.15)

k~ (0) 2 {0)a. Pk I l)t2 —— WOW I (7.17)

C

The expressions (7.13) and this definition of W im-

ply the following form of the formal solutions of
Eqs. (7.8)—(7.11):

y(0, 1) y(0, 1)+ q(0, 1)+g(1/ 4)1

22 1

(7.16)
y(, ) y(, )+ q(, )+g(1/c5)1 1

C
1 2

At the first order in 1/c Eqs. (7.8) and (7.10) give

The left-hand terms of Eqs. (7.17) and (7.18) can be
calculated using Eq. (7.19) and then the former can
be written

(0) s (0)
P OV'I

(7.20)
(I) 1 ~ (I) 1 (0)

WOPI = p 041 + OPI—
p X

p being here the reduced mass of the system:
)(4 =m I m 2/M.

A similar (but much longer) calculation to the
next order yields the equations

(o) 1 -2 (o)
2ltl

2 P 2PI
8 3+

2)(4 m,
t. (0)

P OV'I
m2

(7.21)

W2$1
(1) 1 ~2 (I) 1 1 1

P 24) ——,+
2p m, ' m,

(I) 1 (0)
P 041 + 241

X

m1m2x
1 1 1 - Iti 12+ , a.(x x k)+

4m I 2m)m2 mI

1 1
b.—

m2 x
2 22m I +m2 —2m)m2

4m m X
041 (7.22)

where a =(a').
We reconsider now in a restricted form the equivalence problem that we mentioned in Secs. IV and V. Let E

be the linear vector space generated by the formal solutions of Eqs. (7.20), (7.21), and (7.22) which satisfy the
appropriate regularity conditions implied by the conditions (4.34) and let E' be vector space generated by the
states obtained from E by the following transfoi ntations:

0,241 —0, 21tt I ~ ottt I OI}t I ~ 21t I 2lt I +T 0 P I
t(0) {0) t(1) (1) t(1) (1) (1) (0) (7.23)

where T '" is a function of (x', kj), which is invariant under rotations and such that the states $1 satisfy the ap-
propriate regularity conditions. E is then the vector space generated by the regular solutions of Eqs. (7.20),
(7.21), and

t(I) 1 (0) 1 1
P 6'I +—6'I —8,+

2p X mI
t. ( I )

P 0V'1
m2

m1m2x
).

1 1 1 - I)1a"(x X k)+
4m, ' 2mIm2

1 1
2+

m1 m2 X

2m( +m2 2mlm2 x'k2 2

, T(1)
4mI m2 2p

I

(0)
041 (7.24)

The system of Eqs. (7.20)—(7.22) can be considered equivalent to the system of Eqs. (7.20), (7.21), and (7.24) in
so far as their regular solutions can be put in a one-to-one correspondence by the transformation (7.23). Let us
take



1322 LUIS BEL 2S

i x.k 2m' +m2 ]
4Mm)m 2 x

(7.25)

Equation (7.24) becomes

W2$1
~(&) 1 t(1) 1 (0) 1 1

P 6'1 +—6'1 —
8 3+

2p X m)

-4,.(1)
P oV'&

m2

+.
2m(m2x

2 (x k)+ (T-(x && k) — 5(x) .0$'1 ', (7.26)
4m1 2m)m2 x 2m1

where we have used the equation

1 = —4m.5—(x) .
X

We are reminded that in Eqs. (7.20), (7.21), and (7.26), 0 2$'1 ' are plane-wave two-component spinors

(7.27)

(0) 1

0 2/1 =0 2A)exp —k x (7.28)

and therefore these equations will be useful for scattering problems only. Let us assume now that a general
equation exists,

where the Hamiltonian H has the expression

~(0)+ ~(1)+ H(0)+ g H(1)
C C

and being such that its formal solutions

41 001 + 2 6') +g041 + 2 241 +(0) I (0) (&) g (&)

(7.29)

(7.30)

(7.31)

with 0 2/I ' as in Eq. (7.28) coincide with the solutions of Eqs. (7.20), (7.21), and (7.26). Substituting these ex-
pressions and (7.30) in Eq. (7.29) and identifying ternI by term with the latter we see that H must necessarily be
the operator

gp+ ——
P X

1 1 +
Sc m~

r 4

P 2m2 2m )m2c x
X XJ

P + 2 PrPJ
X

2g)ri 1 1 1 gA' ~
c2 4m 2 pm lm2 x pc2m 2

(7.32)

where it is important to notice that the operators p;
are always to the right of any function of the opera-
tors xj. We shall call H the induced Hamiltonian.
This Hamiltonian coincides, except for the Darwin-
type last term, with Breit's Hamiltonian if we drop
in it all terms which contain the matrices o 2 which
refer to particle 2.

The introduction of the induced Hamiltonian and
the consideration of the wave equation (7.29) en-
larges the scope of the theory insofar as we are now
in a position to deal with general problems includ- ~NR +~RC (7.33)

ing, in the attractive case, the bound energy prob-
lems. It must be emphasized nevertheless that Eq.
(7.29) remains an approximate equation and that any
"exact" results which we could get from it should be
discussed with special care. Actually since the first
two terms in (7.32) coincide with the exact nonrela-
tivistic Hamiltonian HNR, the safest position that
we can take in interpreting the induced Hamiltonian
is to write it as
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1f =Of+ if
m)

(7.34)

Using this notation, a straightforward calculation
gives

-(&) — ] —0 -(1)
1~10 ™21 2tr 10 m2ri Tr2 01rp

Oiri; n2 h ——k (xk)(m2 m2 r, —x )h.
—0 —2 —2 . —1 —0——1 —1

+k (m. 2 x ' m2r—1
')k

im. i; ———m2 k h (x.k)(m2 rr2 r, —x )h,.
—2 —2 ~ —1 —0——1 —1

+k ( —m2 x '+m21r2 ri ')k;,
(1.) ]- 0- 3 -(1)

0 io m2 ~2 rl xi 1Fio
-(i)

m2 r—i (x;kj xjk; ), —
where

(7.35)

h;=x; —k (x.k) k;, h =h;h',

[x2+ m
—2( x.k )2]1/2 —0

( 2+ k2)1/2

(7.36)

Let us now define W by the formula

P=mi+ W . (7.37)

and to consider HRC as a small relativistic correc-
tion to HNR. From this point of Diego ordinary first
order perturbation theory must be used to take into
account Hzc. This does not present any difficulty
because HRC is Hermitian with respect to the usual
nonrelativistic scalar product. If we had defined H
using Eq. (7.22) instead of Eq. (7.26) the correspond-
ing HRC would not have been Hermitian and the
safest interpretation of H would have been more dif-
ficult. This is the reason why we used the
equivalence transformation (7.23) with the function
(7.25).

B. The "heavy-spin approximation method" to
deal with Eqs. (7.8)—(7.11) will consist in using for-
mal series expansions in 1/m 1 and neglecting in the
final result all terms of order higher than 1/m i. Let
us write for any function f which has a limit when
mi ~ ao.

o pk(02 = 2(W —m2 )041
k~ (0) & 2 2 (0)

(7.39)

-(1) t)h
g j -(1) (0)1~10+ 4

~~0 ij 041

k -(&) (0)tr O~lk 1 P2

and the zeroth-order equations (7.9) and (7.11) give

2142 +(T pkpf1
(0) k~ (0)

(&) k~ (&) k -(&) (o)—2142 +o pk04) = —tT Oirikpli

(7.40)

Using these equations as definitions of 1$z
' " and

substituting the corresponding expressions into Eqs.
(7.39) we obtain

(W —p —m2 )pgi ——0,2 2 (0)

(W —p —m2 )0/1 —2 pfi ——0.2 2 (1) W (0)

X

(7.41)

where

~~2 (1) k t A'= WP 0/1 + 2 + Wo'o'fij pfix 2m 2

f; =ri + r. i (x.k) (x;k —x.k ) .
2mm2

(7.43)

An induction procedure similar to the procedure
we used in subsection A to obtain the induced Ham-
iltonian H leads here to the general induced wave
equation:

T 2

gW —— —p —m2
X

A similar (but longer) calculation to next order
yields the following equations:

(W' —p —m2')14i"= Wp 4')",
(7.42)

( W —p ™2) ig) —22 -"' 2

The expressions (7.35) and this definition of W im-
ply the following form of the foriiial solutions of
Eqs. (7.8)—(7.11):

mi
2g 2 17lg

Wp + p + Wojo "fjkx 2m 2

(7.44)
y(0, 1) q(0, 1) + y(0, 1) +O (1/ 2)

m&

1/2 '"+O(1/m12) .
mi

(7.38)

At the first order in 1/mi Eqs. (7.8) and (7.10)
give

where fjk is the nonlocal operator with indicial
function given by fJ [Eq. (7.43)]. Strictly speaking
the g term of the left-hand terra should be disre-
garded because the whole calculation has been a
first-order calculation in g. But we notice that in
the limiting case m i~ oo, Eq. (7.44) reduces to two



1324 LUIS BEL 28

uncoupled Klein-Csordon equations modified by a
Coulomb field. This result can be derived directly
by a standard quantization method in combination
with the information which says that a spin- —, parti-
cle behaves as a monopole charge in the limit
m i

—+ oo. Therefore we can maintain the g term in
Eq. (7.44) because we know that this terni would be
the leading term (zeroth order) of the 1/m i series at
the second order in g.

Here again it must be emphasized that Eq. (7.44)
remains an approximate equation and probably the
best use we can make of it is to consider the opera-
tor in the right-hand teiin as small compared to the
operator in the left-hand terna.

C. Let us consider finally the "light-spin approxi-
mation method. " This method is simpler than the
preceding ones because it is not necessary to decom-
pose g as a direct sum of two-component spinors,
and will consist in using foi-ideal series expansions in
1/m2 and neglecting all terms of order higher than
1/m2. Let us write for any function which has a
limit when m2~ oo.

1f=f + f+. . .
m2

(7.45)

Using this notation, a straightforward calculation
gives

-0
0~10 ~ 1~10x x

with n. i (m i + k )——'~2,

(m p+akp~) y(i) gr q(1) 1 q(o)

m,
0

x
k a'
x

/R i l (o)+
2
a', o)t('x'

(m i p+akJ"k), q")= W,q") ,q(—o)—

x

(7.52)

The general induced wave equation which can be de-
rived from Eqs. (7.49), (7.50), and (7.52) is

(m i p+a~pk )g= 8'——

+ —,(mi —8' )
1 1

m2

(7.51)

Using the first equation (7.49) this last equation can
also be written as

(1)
oFio =—xi -(1)

x oFJ =

-(1) -(1)
07r ii 0~ l~ ii (7A6) m) ig; xi

p+x 2

(7.53)
Let us write

y(0, 1) y(0, 1)+ y(0, 1)

m2

and define W by the formula

P=m2+8'.

(7.47)

(7.48)

Taking into account Eqs. (7.4) and (7.46) the
zeroth-order equations (5.81) and (6.12) are

(m, P+a'k;)yP( '= Wyf' ',
p+a&p ) y(i) ~ y(i) y(o)

(7A9)

and the first-order equations are

(m, P+aik;), Q' '=8', Q' '+ , (m, —W—)yb' ',
(7.50)

This equation which reduces to the exact Dirac
equation for a spin- —, particle in a Coulomb field
should be treated with the same care as that of Eqs.
(7.32) and (7A4).

In most textbooks on relativistic quantum
mechanics the Dirac equation is used to derive the
energy-level patterns for bound states of hydrogen-
like atoms. For hydrogen itself this equation is not
accurate enough even if the magnetic moment of the
proton which is responsible for the hyperfine struc-
ture and the Lamb-type effects are neglected. The
reason is that the Dirac equation neglects the recoil
of the proton. To deal with this difficulty it has
sometimes been suggested that the mass of the elec-
tron should be replaced by the reduced mass of the
electron-proton system. This recipe has never been
justified theoretically and anyway it does not give
with sufficient quantitative precision the fine-
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structure pattern. Instead the Breit equation takes
care of both the magnetic moment (not the
anomalous one) of the proton and its recoil.

For ionized helium, H,+, the nucleus has spin zero
and therefore one of the limitations of the Dirac
equation, the magnetic moment of the nucleus, is
not present. The ratio m~/m2 is four times smaller
than for hydrogen, but the charge of the nucleus is
twice that of the proton and this compensates the
smallness of this ratio. The net result is that the
Dirac equation is again an insufficient approxima-
tion to discuss the fine-structure pattern of H~+.

This problem can, a priori, be consistently handled
using either Eqs. (7.32) or (7.53).

The ratio m &/rn2 is not always small for interest-
ing cases. For instance if particle I is a proton and
particle 2 is a rr meson, this ratio is =7. It would
be nonsense to use the Dirac equation and the
reduced-mass recipe to deal with the electromagnetic
contribution to this problem. On the other hand the
Klein-Cxordon equation modified by a Coulomb po-
tential would be an insufficient approximation. De-
pending on the range of energies being considered
our proposition is to use either Eqs. (7.32) or (7.44).
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