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We discuss the problem of quantizing mixed spin (0 and %) two-particle systems in the

framework of predictive relativistic mechanics. We propose a general scheme for quantiza-
tion, but a detailed analysis is given only for the linearized scalar or vector interactions (with
short or long ranges). Approximate wave equations are derived for the electromagnetic in-
teraction in the cases where the particles are slowly moving or have very different masses.

I. INTRODUCTION

In a preceding paper! we discussed the problem of
quantizing two-particle systems in the framework of
predictive relativistic mechanics. We assumed there
that both particles had spin 0. In this paper, we
consider the case where one particle (say particle 1)
has spin % and the other one (particle 2) has spin O.
We propose a general scheme for quantization, but
as in Ref. 1 a rather detailed analysis is given only
for the linearized scalar or vector interactions (with
short or long ranges). This scheme is rather compli-
cated in the short-range case because it forces the in-
troduction of, so to speak, point-dependent Dirac
matrices. This complication is not present in the
long-range case. The situation here is therefore dif-
ferent from that of Ref. 1 where all these interac-
tions could be treated on the same basis.

From the point of view of possible physical appli-
cations we have concentrated our attention on the
case of the electromagnetic interaction. Initially, the
formalism that we present is only suitable for deal-
ing with scattering problems, but an induction pro-
cedure permits widening the scope of the theory. In
general this procedure leads to the consideration of
rather complicated nonlocal operators; to simplify
the problem we have considered three approxima-
tion methods to obtain an induced wave equation at
the center of mass. These equations summarize par-
tially the physical content of the theory.

We have considered first the “slow-motion ap-
proximation method” which consists of using for-
mal expansions in terms of inverse powers of the
speed of light in vacuum (c). Neglecting terms of
order higher than 1/c? in the final result the wave
equation which we obtain coincides, except for the
Darwin-type term (term which contains a Dirac §),
with the equation which could be naively derived

from Breit’s” equation for two spin-—;- particles by
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assuming that only particle 1 has spin %, i.e., by
dropping the terms which contain Pauli matrices
which refer to particle 2.

The second approximation method which we have
considered is the “heavy-spin approximation
method” which consists of using formal expansions
in powers of 1/m . Neglecting in the final result all
terms of order higher than 1/m; the wave equation
which we obtain still contains nonlocal operators.
These operators are not present though in the limit
of m going to infinity in which case the wave equa-
tion reduces to two uncoupled Klein-Gordon equa-
tions modified by a Coulomb field. This last result
could1 have been anticipated from the fact that a
spin- particle is endowed with a magnetic moment
inversely proportional to its mass and therefore is
zero if its mass goes to infinity.

And finally we have considered the “light-spin
approximation method” which consists of using for-
mal expansions in powers of 1/m, and neglecting
all terms of order higher than 1/m,. This approxi-
mation method is simpler than the preceding ones.
The wave equation which we obtain does not con-
tain nonlocal operators and when m, tends to infini-
ty it reduces to the Dirac equation for a spin-5 par-
ticle in a Coulomb field.

Most often the Dirac equation is inadequate to
deal with mixed spin-(%,O) systems because it does
not take into account the recoil of the heavier parti-
cle** when m, <<m,, or because it is not the ap-
propriate equation when the masses m, and m, are
comparable or when m;>>m,. The above-
mentioned results provide a complete framework to
deal with all these cases.>®

II. PREDICTIVE POINCARE-INVARIANT
SYSTEMS

Let M, be Minkowski space-time and let TM, be
the manifold of pairs’ (x%?), where x*€M, and
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P is a timelike (175173 <0) future-oriented (7°>0)
tangent vector to M, at the point x%. In predictive
relativistic mechanics the phase space of a system of
two pointlike structureless particles is (7M,)? whose
points will be designated by? (x:,qrf ). The genera-
tors of the space-time translations and of the
Lorentz group acting on (TM,)? are’

= d
Pp=—¢,—, (2.1)
A a axak
= d d
T au=8mp,—8mpn) |xB e +78 5 |
a a

where 7, is the metric tensor of M,. The Lie
brackets of these vector fields satisfy the commuta-
tion relations of the Lie algebra P of the Poincaré
group:

[F,B,]=0,

[P)L»—-f;w] znkvis,u‘“nkyi;v s (2.2)

- —

[ J;w’ Jpa]=77,u,pJvo+nvaJyp_nvauo—77pa_jvp ’

The equations of motion of a predictive
Poincaré-invariant system (PIS) are

dx} dnf
=TT, a,
dr @ dr

where the functions 6, satisfy the following equa-

=0XxfwY), (2.3)

a a
b aie‘f"’ +6p aajj‘,p =0, (2.4)
ZL(B05=0, 2.5)
L (33,008 =8%0,,—8%0,3 ,

where .7 is the Lie derivative operator, and
05,0 =0 . (2.6)

F11'c1>m these last equations it follows, in particular,
that

T = — T Mg =m,> (2.7)
are first integrals of Eqgs. (2.3) which we consider as
constraints that allow to specify the masses m, of
the particles.

As is well known'? Egs. (2.4) make the system of
ordinary differential equations (2.3) equivalent to
the following completely integrable system of partial
differential equations:

IxZ g

apa =Tar oo =0l

. . (2.8)
ox, o,
are " 37 =0

It follows from this result that any PIS can be
equivalently defined by two vector fields of (TM,)%:

H, =8, m‘,’gi? +65 ai,;' (2.9)
satisfying the Lie bracket conditions

[H,,H,1=0, (2.10)

[H,,P,]1=0, [H,,T,]1=0, 2.11)

and the mass constraints
L(H, ) (m21m59)=0 . (2.12)

From Egs. (2.2), (2.10), and (2.11) we see that the
vector fields P,, J Aws and H, can be considered as a
basis of a Lie algebra G of dimension 12 which is
the direct sum of the Lie algebra P and an Abelian
algebra 4, of dimension 2:

G=A,+P. (2.13)

We call G the Lie algebra of the complete symmetry
group. This algebra is a central concept in the
theory of PIS both at the classical level and at the
quantum level.

A PIS is said to be separable if!>

lim 67 (xf,x3 =x{+An?,7l)=0 (2.14)

—

for any unit spacelike vector n?. And we say that
the separability index is s if s is the supremum of the
real members p for which

Alim )»"Bg(x’l’,x‘z’zx‘l’—{-kn”,w";):O . (2.15)
Unless otherwise stated from now on we shall as-
sume that the PIS being considered has a separabili-
ty index s > 2.

Let f(xZ,mf) be a scalar or tensor function. And
let us define the shift operators

R, Mf(x2xE al)=f(xZ+Anl xB, 7)) .
(2.16)

We shall say that f tends to zero at the infinite past
(future) and we shall write

lim f=0, (2.17)

2
X —Pwp(n

if we have'4

lim R{(MR,(A)f =0. (2.18)
A——oo(+wo)

III. CANONICAL REALIZATION OF G

Let us consider a separable PIS. The Hamilton
form in the past is by definition'>!> the symplectic
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form Q of (TM,)*:

dQ =0, Q%%0, 3.1)
which is invariant by the complete symmetry group

ZL(K)Q=0, KEG (3.2)
a_nd which satisfies the following asymptotic condi-
tions:
legn (3 —QP)=0 (4,B,...=1,2,...,12),

©p

(3.3)

where Q5 are the components of Q and Q)% the
components of

QO=gxZAdr?, (3.4)

with respect to the cobasis (dx2,drf).
A PIS is said to be conservative if moreover

lim (QAB—Q )_' (35)

xz'—me

From now on we shall consider conservative PIS’s
only.

To each A €G it corresponds to a function A
which is defined, up to an additive constant, by the
formula

i(A)Q=—dA , (3.6)

where i(A) is the mterlor product operator. We
have proved elsewhere!® that under very general as-
sumptions we have

H,=~m,>. 3.7

Let P and J§ (” | be the particular solutions of Eq.
(3.6) correspondmg to the generators P, and J,,
which satisfy the asymptotic conditions

lim (PP —e,w8)=0,

PLEN, (3.8)
hm (J;{’“ Xg ATy, +Xg,73)=0

X ——>o°p

The general solution is then
Po=PP +ay, Jru=JE +sru > (3.9)

where a, and s,,, are arbitrary constants.

Let [A;,A,] be the Poisson bracket, in the sense
of two functions A; and A,. From Egs. (3.7)—(3.9)
and from

LA DA =[A},A,],
i([K1, A2DQ=—d[A,Ay],
it follows that

(3.10)

[Hl ’H2]=0 ’
[Pp.’Halzo’ [JA;L’Ha]IO »
[Py, Pu]=0, (3.11)

[PA’Jyv]=77A.V(P,u“ay)"'nly.(Pv_av) ’
[Jy,wJpo]=77pp('lva—sva')+77vo(Jyp_syp)
—n#a(va'_svp)"“nvp(Jpa_spa) .

Let us write Egs. (2.2), (2.10), and (2.11) in the
compact form

[A;, A ]=CEAx, ILJK,...=12,...,12.
' (3.12)

It is easy to see from Egs. (3.11) that the linear map-
ping C:A;EG—A; is an isomorphism of G onto
the finite-dimensional Poisson algebra generated by
A I

[A, A/ ]1=ClAk , (3.13)

if and only if @, =s,,=0. When this choice of the
arbitrary constants is made C is by definition the
canonical realization of G. P, is then interpreted as
the total energy-momentum and J,, as the general-
ized angular momentum of the PIS.

It is important to notice that the Lie algebra gen-
erated by P,, Jy,, and H,, and the Lie algebra gen-
erated by P,, Jy,, and F,(H,), where F, are arbi-
trary functions of their argument, are both the same
abstract Lie algebra. In the next section we shall
consider the case where H is substituted by

Si=m " 'mpml=mul=—v2H, , (3.14)

uf being the unit future-pointing vector collinear to
mf. From Egs. (2.7) it follows that S| is the first in-
tegral of the equations of motion (2.3) which is asso-
ciated with the constraint

S1=_m1 . (315)

We shall say that a canonical coordmate system,
i.e., a system of coordinates (g ,pB) of (TM,)?* for
whlch € takes the form

Q=dqiNdpf, (3.16)

is an adapted canomcal coordmated system if'® the
functions (g2 ,pﬁ) of (x2,7f) are smooth enough and
satisfy the equations

ZL(B,)(gl
j(_jl,u)qa =819ay-8zqal ’
g(_P.a)sz()i j(—jkp)pﬁznlﬁpz_nuﬂpg ’

—x2)=0
(3.17)

and the asymptotic conditions
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, lim (¢gf—xJ)=0,
X" ®pand f (3.18)
lim (pg—’ﬂg)=0 .
X2 %p and f
For each canonical coordinate system satisfying
Egs. (3.17), and therefore in particular for each

adapted coordinate system, P, and J,, take the very
simple form

Pa=€apga lezqakpz _qaypg. . (3.19)

Instead the functions H, or S; which are very sim-
ple functions of 7J will become in general compli-
cated expressions in terms of an adapted canonical
coordinate system.

IV. QUANTIZATION OF MIXED
SPIN-(-;—,O) TWO-PARTICLE PIS

In Ref. 1 we considered the problem of quantizing
two-particle PIS’s assuming that both particles had
spin 0. We consider here the case where one parti-
cle, say particle 1, has spin % and particle 2 has spin
0. We take for granted that this implies that the
state vectors can be described by two-point four-
component spinors:

As a departure point we shall take as fundamental
vector space the space & of all spinors ¥ which have
a Fourier transform \I’(k‘{',kg)E(WA(kl,kz)):

P(x,)
1 i ay.c A
= — vk
T d w100 exp | xlke \WAKS) .
(4.2)

h =2m# being the Planck constant and

nky)=dkdA - - - ANdk3 .
This formula can also be written as

__ 1 Y

Y= P I tgt MEAY 4.3)
with

E,=(8%)exp éx:k; ) (4.4)

Let F be a linear operator acting on &. And let

Pxy,x;) Fa(x,,ky) be the components of the 4 X 4 matrix de-
$2x 1,5 fined by
P(x,x8)= ¥3(x1,%7) =(P(x1,x,)) , FE ((x4,ky) =F2(x4,ky)Ep(x.,kg) . 4.5)
¥x1x2) We shall call F(x,k) the indicial matrix of F. This
A,B=1,23,4. (4.1) operator being linear we have
J
Bp=— [ ) Fxy, ko )Ep(xg,k WA(K)) (4.6)
(2#)* ¥ R*XR
and therefore the knowledge of the indicial matrix is equivalent to the knowledge of Fitself. We shall write
F=06(F), F=6-\(F). @7
Two linear operators Fand 6 being given, let us set by definition
(FoGYA=[0(F G4 . 4.8)
A straightforward calculation then yields
(FoG)= (277117)8 fR4n<xa) fR477(k,; VFA(x. k)G R (X, + Ao,k p) exp %(kg_k;g)xg ] (4.9)
I
or formulas (4.9) or (4.10), which we call the quantum
(FoGYA=F2GP, 4.10) composition law of two matrices, is linear and asso-

the composition law in the right-hand term being
the quantum composition of two functions which
we defined in Ref. 1. The composition law given by

ciative, and as for functions, it has some other sim-
ple properties easy to derive.

The quantum bracket of two 44 matrices will
be by definition the expression
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(F,G}=FoG—GoF . @.11)

This bracket defines on the set of 4X4 matrices
whose elements are functions of (xZ,kf) a structure
of Lie algebra. Moreover, it is clear that

o([F,G)={F,G}, (4.12)

where [F,G] is the commutator of the operators F
and G.

Let us now proceled to quantize PIS’s for which
particle 1 has spin 5 and particle 2 has spin 0. We
consider as fundamental for this case the Lie algebra
generated by P, and J,, as defined by Egs. (3.9),
where again we consider a, and s,, as arbitrary
constants, by S; as defined in (3.14) and by H, as
defined by Eq. (3.7). Any of these functions will be
generally designated by A; and we shall refer to the
Lie algebra they generate as G. By definition we
shall say that @ is a quantizer, or that ¢ defines a
quantization, if @ is a linear mapping of G onto a
ﬁnite-dimensionz;l vector space generated by 12
linear operators A; acting on &:

@:Ar—Ar=@(A;) (4.13)
such that
[ALA;1=CKAk , (4.14)

Cf being the structure constants of the Lie algebra
as defined by (3.12). Since any ¢ can always be
written in a unique way as

(p:G—lop , (4.15)

p being a linear mapping of G onto a finite-
dimensional vector space generated by 12 4 X4 ma-
trices A;(x,k):

p:A;—>A;=p(A;), (4.16)

it follows from Eq. (4.12) that we can equivalently
say that @ is a quantizer if p is such that

(A A;)=iACEAy . (4.17)

It is obvious that the definition of a quantizer that
we have just given is too general to be of any physi-
cal interest because it does not bear any information
about the dynamics of any particular PIS. There-
fore we are going to select a large class of quantizers
by giving restrictive constructive prescriptions to de-
fine p.

A general expression which includes every func-
tion A’ is the following:

A=FP(x,7)+eulm,+e , (4.18)

where F'P is P‘L"), J(ﬁ,), or Hy; € is either 1 or 0, and
e is a, or s;,. We shall assume that A has the fol-
lowing general expression:

A =FP(x,k)-I +€A%x,k)7F1,+ , (4.19)

I being the unit 4X4 matrix, and 7,,F'? being
functions, A ¢ 4 X4 point-dependent matrices, and &
constant 4 X 4 matrices defined below.

(i) Let [q:‘(x,ﬂ),p,g(x,vr)] be an adapted canonical
coordinate system of the Hamilton form Q. We
shall refer to it as ¢. Let [f:(q,p),gp’?(q,p)] be the
inverted functions. And let us define the functions
of (x,k):

FI=f2x,k), 7h=gh(xk). (4.20)

We say then that 7 { in Eq. (4.19) is the correspond-
ing function (4.20) and that

FPx,k)=FP[%(x,k),7(x,k)] . 4.21)

The functions 7 ¢ and F  are therefore associated
with . _We shall see in a moment that not all coor-
dinates ® will be admissible.

(ii) The matrices A ¢ are 4 X4 matrices with the
following properties:

(1) They satisfy the equations

AABL AP a= _2qf] . (4.22)
(2) Under a Poincaré transformation
x"*=L§(xP—4P), k'*=LZkP (4.23)
they behave as follows:
A°[L(x —A),Lk]=LETAP(x,k)L~',  (4.24)

where I'(L) are the matrices satisfying the equations
LgyP=r"1y°r (4.25)

and defining the spinor representation of the Poin-
caré group.
(3) They satisfy the asymptotic conditions!’

lim (A%—y%)=0 (4.26)
xz—"°°p and f

(y® being the usual Dirac matrices).

From the fundamental theorem on Dirac matrices
it follows that equivalently we can say _that A ® have
to be matrices associated to a matrix U(x,k) by the
formula

re=U ~yeU(x,k) 4.27)

with U behaving under a Poincaré transformation as
follows:

U[L(x —A),Lk]=TU(x,k)I ! (4.28)
and satisfying the asymptotic condition

lim (U—I)=0. (4.28")

2
X" p and £

(iii) € are the matrices
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N

«=0, Siyu [yk,y“] (4.29)
Whichever choice of ® and U we make, satisfying
the prescribed properties, it follows from Egs. (3.19)
that Eq. (4.19) gives in particular
P,=e, kI ,
(4.30)
Jl.p —(xakky xauk}»)I + [7’}»;7#] ’
which are the well-known expressions for the indi-
cial matrices of the generators of the spinor repre-
sentation of the Poincaré group. Equations (4.30)
are thus consistent with our initial assumption by
which we assumed that the state vector had to be a
two-point four-component spinor. The necessity of
having this consistency is part of the logic lying
behind the proposition of the properties (i), (ii), and
(iii) above. Moreover these conditions imply that
Eq. (4.17) will all be satisfied except

{S,,H,}=0. (4.31)

This leads us to the following, and final, defini-
tion of a physically admissible quantizer. We shall
say that the linear mapping ¢ is a quantizer (for
short) if the linear mapping p defined by Egs.
(4.19)—(4.26) and (4.29) is such that Eq. (4.31) is sa-
tisfied.!'®

We have seen in Sec. II that the concept of a PIS
contained two basic ingredients. The Lie algebra G
(2.13) and the mass constraints (2.7). For a mixed
spin (%,O) we have considered as fundamental the
canonical realization of G generated by S,, H;, P,,
and J,, and as fundamental constraints (2.7), with
a=2 and (3.15). The idea of representing G by
commutators as in (4.14) has led us to the concept of
a quantization. We use now the mass constraints to
prescribe the evolution equations for the quantized
system:

S\W=—m ¥, 2H,¥Y=m,*¥, 4.32)
where S 1 and A , are the operators with indicial ma-
trices:

S\ =A7 10 Hy=—57F2al (4.33)
in accordance with the preceding rules based on and
following Eq. (4.19). The evolution equations must

be supplemented with some regularity conditions.
We shall require here the two conditions

sup Pl (X Xpt) <0,
x5 (4.34)

f@lxgz¢¢*<i’1,iz,t>d3x’ld3iz< © ,

2, being any two bounded domains of R 3, ¥ the re-
striction of W to equal times

YE, X)) =W(E, Epxd=x)=1) (4.35)

and 1[1T the Hermitian conjugate of ¥[X, =(x.)].

Let E be the vector space generated by the solu-
tions of Egs. (4.32) which satisfy conditions (4.34)
and let us consider a regular linear operator F acting
on &, which commutes with P, and J;,,:

[B,,F1=0, [J),,F]=0 (4.36)
and which is such that for VEE
V=FV (4.37)

satisfies again conditions (4.34). It is obvious then
that the operators

A4 =FA,F-! (4.38)

will satisfy Eq. (4.14) and that E'=FE will be the
vector space of admissible solutions of equations:

S'W=_—m ¥V, W =m2¥. (4.39)

We shall say that each operator F provides a quanti-
zation equlvalent to the preceding one. Notice that
the operators A 1 associated to a given operator F
may not corresRond to a quantization defined by a
quantizer (®*,U’). Notice also that the quantiza-
tlons defined by two distinct quantizers (®,U) and
(<I> 1) may, a priori, be inequivalent, i.e., an
operator F with the required properties may not ex-
ist. We shall reexamine this point in the more re-
stricted framework of the next section.

To be complete, the general scheme of quantiza-
tion that we have presented here should include the
definition of a Poincaré-invariant product { | ) on
E. Let us assume for a moment that this scalar
product has been defined. It is clear then that the
scalar product on E°,

(V1) | Yo '=(Vy) | Vo) , (4.40)

would be Poincaré invariant because of Egs. (4.36).
Moreover this choice automatically makes the
operator F unitary. At the present time we do not
have any general proposition to make to define { | ).
Nevertheless, as we shall see in Sec. VII, this is not
an obstacle for some applications of the theory
based on approximations. The particular problems
we shall study there will help in guessing the scalar
product that one should consider.

In the free-particle case, i.e., when 0 =0,
Q=0 and the simplest choice for (¥ %,7£) and
A? satisfying the required properties is

Xe=x2, 7TE=kf, XP=yr. (4.41)

For this quantization the evolution equations (4.32)
are

(—ifid,+m V=0, (#O,—m>)¥=0 (4.42)
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with

PYRPL B W (4.43)
=Y ax?’ 2= axgaxs ’ '

To each pair of solutions (¥(;),¥(,)) we can asso-
ciate the conserved bicurrent

J1%2— b2 Yoy ' —5¥o

d
aﬂ
d

— Y0
axg

’ W=\I”T‘VO ’

(4.44)

YWy

from which one can construct, as usual, a Poincaré-
invariant sesquilinear form, and a scalar product in
the reduced space of positive-positive-energy solu-
tions.

V. LINEARIZED PIS’s

Let us consider functions 6,"* and formal power
series of a coupling constant g of the following
form:

0:=g9£”"+g29,§2)“+ . (5.1)

These series 2 define a formal PIS if their coeffi-
cients are solutions of Eqgs. (2.4)—(2.6) considered or-
der by order. From now on we shall consider linear-
ized PIS’s, i.e., we shall neglect all powers of g
greater than or equal to g%

02=go\V= . (5.2)

To this approximation the Hamilton form can be
written as

Q=04gq® (5.3)

and any adapted canonical coordinate system of
as

pe=mg+gps"*

qa =Xgq +gQal)a(x’7T)

(x,7) ,
(5.4)

the general expressions for (pi!’%q;"P) being (Ref.
1

(1

(l)a f d}\.Rl()\,)R (}»)l 0(1)(1]

(5.5)

" _piba '
ord ¢ ’

(5.6

0
¢."*=— [__dAR{(MRy(M)

where ®! is any function which makes the func-

tions (g."*p{"8) smooth enough, which satisfies the
equations
LB ) V=0, £(T,,)0V=0 (5.7)

and the asymptotic conditions, equivalent to Egs.
(3.18),

e(l)a

ST aaR R, |2 =0, (5.8)

ax,,

. (5.9

a

@ (1)
[T dAR (MR () {aq’ —pVe | =
—w omg

From Egs. (4.20) it follows that the general ex-
pression for the functions (£%,7 %) which might
lead to a quantization of the PIS is

.Xa'_xa +gx(1)a, 7?:=ka+gﬁ:11)a (5.10)
with
f“’“:-c’jf,”“(x,k) ﬂ_(al)a___ﬁ(l)a(x’k),

(5.11)

?,”a,p \IP) being the functions (g.!'%ps!"#) where

is substituted by kf. We shall always use the
tilde to indicate this substitution.
The indicial matrix H, given by Eq. (4.33) calcu-
lated using expressions (5.10) is

Hy=(—5kSkou+8® )1
with
&= kg7l (5.12)

Writing the matrices A ¢ introduced in the preced-
ing section as

Xaz,ya_‘_g")\"(l)a, (5.13)

it follows from Eqgs. (4.27)—(4.28’) that the general
expression for A (V2 will be

K(l)a=[,},a’U(l)] , (5.14)

UV being a matrix which satisfies Egs. (4.28) and
the asymptotic condition

lim U®Y=o0. (5.15)

2
X500, and f

The indicial matrix S, given by Eq. (4.33), calcu-
lated using expressions (5.10) and (5.13) is

Si=v%1a+g5 "
with
SO=F Wag, 4 ezl (5.16)

The couple (® 1V, T ") will define a first-order
quantization of the PIS if Eq. (4.31) is satisfied.
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Taking into account the fact that because of Egs.
(3.17) and (4 24) both 7."'* and X (" depend on xf
through x®*=x{ —x9% only, Eq. (4.31) can be written

asl9

DX V% — 05 Lyt R V) =

(5.17)

where

2
D2§7T’2’“§_, DE’Y}“B—Q——-—

(5.18)
ox8 3x9x?

Let us assume that (® 0, U V) is a quantizer.
The evolution equations (4.32) will then be

(—ifid;+gS\ " W=—m ¥,

- (5.19)
(#0,+28P )W =m,>¥ .

These two equations, if we consider them as exact
equations, will not be compatible in general because
Eq. (5.17) guarantees the commutation of the opera-
tors in the left-hand terms only when all powers of g
are neglected. Therefore they have to be considered
as equations for the coefficients of a formal expan-
sion of ¥ itself:

Y=y o) (5.20)

and in this sense they are equivalent to the following
set of equations:

(-—iﬁa,+m1)\ll(°)=0

(5.21)

(#0,—m W9 =0,
(—i#id +m )WV =_FDg© (5.22)
(#0,—m2) WV = 23 Dy (5.23)
If we assume in particular that ¢(® is a plane wave?°
VO =4 (ky,k,) exp —ﬁ—x,, ol ] (5.24)

then Eqgs. (5.21) give
(v 1q+m A =0, ki2=m,2 ky’=m,?

(k2= —kZk,,) (5.25)
and Egs. (5.22) and (5.23) become

(—ifid;+m )W V=_F V@O

. - (5.26)
(#Oy—m, )WV = 2 Dy |

The system of Egs. (5.25) and (5.26) is well adapt-
ed to discuss first-order scattering problems, and for

the moment this is the system of equations we are
going to study. Later on, in Sec. VII, we shall see

how the scope of the theory can be enlarged to dis-
cuss more general problems.

Let us examine now the problem of the
equivalence of different quantizers that we men-
tioned in the preceding section. Let us consider two
different quantizers (® ", U ") and (&', T"").
The substitution of ® ‘1) by & *!) in Egs. (5.5) and
(5.6) generates the canonical transformation

aT(l) @ ‘ aT(l)
. Pa=pa+
ars Pa =Pa T8 axs

9=9;—8 , (527

where

0
TW= [ dAR (MR,(AN@' V- . (5.28)

Therefore the functions (5.11) will be changed into

~ta a rv ~ta ~a af(l)
Xg=x4+8 PSR T o= q— 2 (5.29)
a o

and the corresponding change of H, [Eq. (5.12)] is
HY=H,+gD, TV 1. (5.30)

The substitution of TV by U*" in Eq. (5.14)
gives

re=xe4g[ye,N ]
with
NO_grv_gm (5.31)

and this, together with Egs. (5.29), induces the fol-
lowing modification of S; [Eq. (5.16)]:

af(l)

§ v (1
§1=S1+g |[v%N Vlkig—7*® e

(5.32)

_ And finally because of Egs. (4.30), it is clear that
P, and J, will remain unchanged:

PL=P,, Tiu=Tr . (5.33)

Since we are assuming that both (& V,T ") and
(@ T V) are quantizers, Eq. (5.17) will be satis-
fied for both (7 {}),X (V8) and (74, *V8). There-
fore we shall have

_ (0
Doy N ey — P |- 2T

50| v+ N Mk

=0. (5.34)

According to our definition of equivalent quanti-
zations _that we gave in the preceding section,
(@D, TM) and (@', T*V) will be first-order
equivalent quantizers if there exists a matrix F F
such that
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H =1 +gF Vo(—7k8ky,+gH o (I —gF V)
=ﬁ2—g{“‘zl'k’2,k2p’ﬁm}

=H~2—'g

7 .
_Z'DZF“)"‘iﬁDZF“) ,

Si=U +gF V)o(yPk,+gS "o (I —gF V)
=S, —g{v?k 1, F V)

=S\+g iﬁ’}’aaa

x{

F~(l)+[ﬁ(l)’7’a]kla] ’

PL=U +gi(”)of",,0(1 —gF 1)
=P, —itig L (PHF 1V,
Tiu=UI +gF Mo T),0(1 —gFV)
=Ju+itig{— L (T, )FD
+7F O lraradl)

and such that for each admissible solution ¥ of Eqgs.
(5.21), (5.22), and (5.23)

¢'=\Il+gf“"l1‘°)

(5.35)

(5.36)

is again admissible, i.e., satisfies conditions (4.34).
From Egs. (5.30), (5.32), (5.33), and (5.35) we see
that as necessary conditions for the two quantizers
to be equivalent there must exist a matrix F ‘!’ satis-
fying the following equations:

2
DZT<‘>=—iﬂDZF“’—ﬁ2—D2F<” , (5.37)

aT
ox“

[yarﬁ(”]kla_ya
=iﬁyaa_2_;i;v"(l)+[f(l),,},a]kla ’
1

FPBHFV=0, (5.38)

LT F V=2 [F Iyl (5.39)

We are going to prove that Egs. (5.37) and (5.38)
always have a solution satisfying the asymptotic
condition

lim FP=o0.
x2—~)wp

(5.40)

These equations being linear in (7', NV) we can
decompose the proof in two parts by assuming first
that N'V is zero and then that 7" is zero. If NV is
zero then Eqgs. (5.34) and (5.37) become

~ 0 ~ ~
FO=1 [ dAR(MR,(A) iﬁe“DaF‘“+yP%[N‘”,7“]k1a .

ox

0 &)
axe ol =0, (5.41)
D T“)____iﬁDZF(l)_ﬁZDZﬁ“) ,
aT(l) 3 ~(1)
a =—ihay*——F""' . (5.42)
ax® e

Equations (5.41) together with the asymptotic condi-
tions

TV
xe

lim

2
X" 04 and f

(5.43)

which follow from the fact that both (q:‘,pfg’ ) and

(q,:",péb) satisfy the asymptotic conditions (3.18), im-
ply that

o7r'"=o0 (5.44)
and therefore

FO_LAFO_ 4im 7O |1 (5.45)

is a solution of Egs. (5.42), (5.38), and (5.39) satisfy-
ing the asymptotic condition (5.40).

Let us assume now that 7'" is zero. Then Egs.
(5.34) and (5.37) become

Daly*, NV Yera— 200y« N ki =0, (546
if

D,FV= TDZF‘“ , (5.47)

G V=i aiaF(l)"’[f“)_ﬁ“)’ya]kla:o )
1

(5.48)
The operator i#id; acting on this last equation gives
Dlﬁ(l):___lﬁmlﬁ(l)_i_%,},p d [N ek,
2 dx”
D=kt |, (5.49)
x4
which can be equivalently written as
D](F(l)_ﬁ(l))
i =, 0 d =
=—030 —|aP (N, a
5 OiF +2l7’ ar ¥
+yoppL g kig. (550
ox”?

Taking into account now the asymptotic condition
(5.40) and the “integrability equation (5.46)” from
what we proved elsewhere!? it follows that the sys-
tem of Egs. (5.47) and (5.49) has the same solutions
as that of the integral equation

(5.51)
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Assuming that both N and F'!’ are analytic func-
tions of # allows us to solve this equation order by
order in 7. The solution thus obtained is actually a
solution also of Eqgs. (5.48). To prove it let us con-
sider the operators D, acting on the left-hand term
of Eqgs. (5.48). From Egs. (5.47) and (5.49), or (5.50),
we get, using Eq. (5.46),

Dﬁ‘”:’—zﬁ—mac}“” . (5.52)
It follows then from this system of differential equa-
tions and from the asymptotic condition (5.40) that

~ 1 0 ~
Gm:% J__dAR (MR, (MeT, GV . (5.53)

Therefore Eqs. (5.48) will be satisfied order by order
in #i. A similar calculation would prove that Egs.
(5.38) and (5.39) are also satisfied. The existence of
a solution of Egs. (5.37)— (5 39) is a necessary condi-
tion for two quantizers (®'V,T") and (&', T*V)
to be equivalent. The ex1stence of this solution and
its uniqueness has been proved under some mild ad-
ditional conditions. But these two quantizers will be
only actually equivalent if the spinors (5.36) satisfy
the supplementary conditions (4.34). The discussion
we have presented does not prove that all quantizers
are equivalent but may serve as a starting point to
prove more precise results for particular examples.
From now on we shall choose particular quantizers.
This choice will have to be considered on the
grounds of its simplicity. But we will have to keep
in mind that the generality will be lost, except if it is
true that all quantizers are equivalent.
Let us consider the matrices

1 Py P, o
ypl Pr:FSUII Gry l"")/a', ISrS4’

r

where 6,3 ;’ is the Kronecker tensor, and let us
write the matrices A''* as

)\'(l)a_¢(l)a1+~(l)a,yﬂ+ . +¢(ﬂ}k)a ,}/Blyp .

(5.55)

From Eq. (5.17) we see that only $g ° i

is coupled to
7)) and that the remaining quantltles will have to
satisfy the same equations when there is no interac-

tion. Therefore we shall assume that P
=0, §g%..5=0, forr>2. (5.56)

From Eq. (4.42) it follows that $3’® must be skew
symmetric

Pup+ P =0, Fup=n,55", (5.57)

and from Eq. (4.24) it follows that 5,(,13) must be a

Poincaré-invariant tensor?!

ZL(P)Fog=0,
5.58
J(J oLl = ~(1)_ ~(1) ( )
Ap ¢aB NarPup NauPrp
~(1)
+77ﬁh¢7a;t NpuPanr -
Defining

FV =g K8 (5.59)

and taking into account the simplifying assumptions
(5.56), Eq. (5.17) becomes

D, — l;l oF P +a")=0. (5.60)

This equation shows that the function ®(!) in Egs.
(5.5) and (5.6) cannot be chosen arbitrarily. In fact,
because of Egs. (5.57) we get

&k =0 (5.61)

and therefore Eq. (5.60) tells us that necessarily we
must have

aF Ve = (5.62)

Actually this condition is also a sufficient condition
which guarantees the existence of 5;” satisfying the
required properties. The general formula which en-
ables us to calculate 5;” order by order in 7 is

i 0
o= [0 aar,oE el
+a,", (5.63)
where a")',; ‘Y must be a solution of

D5, V=0, &, k=0, (5.64)
satisfying order by order the asymptotic conditions

lim R{(v)&, “D_o ,

YV— — o0
lim R(v)&d, ;
v—+ 0
- 71unR1(v)f dAR,(WOF Ve .
YV—> 0

(5.65)

For each acceptable solution a")'é”, the general ex-

pression for 4yd will be

Paip = (kRK1p) =@ Kk 1p— 35 K1) +Pap
(5.66)

<7>;,(3” being any skew-symmetric tensor satisfying the

appropriate asymptotic conditions and the con-
straints:

Fop KB =0. (5.67)
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Let us assume that a function <I>(” leadmg to the
condition (5.62), and the solution @' of Eq. (5.60)
have been found. The first group of evolution equa-
tions (5.26) take now the simpler form

(—iﬁ«'z)1+m1)\lf“’= (~(}z)+&~)(1) 7/a\l,(o) .
(5.68)

The operator —(i#id;+m (I) acting on both terms of
this equation yields

(#0,—m )

= |2w ks + 2 y"‘"F“) 70 WO, (5.69)
where
=)_ 0 3 _) Fnm__0 )
Faﬂz dx a/‘l'ﬁ - axﬁl"‘a ’ Q = axa Ha >
Bo =7l +a, . (5.70)

Let us assume now that V¥ is an eigenstate of ﬁa:
P, ¥=P, V¥, (5.71)

where here P, are four real numbers. From Egs.
(4.30) and from (5.24) it follows that

Py=kig+kiy , (5.72)
WO=4 exp ;(k’,’—k’z’)xp exp 2—1ﬁ—Pa(x‘11+x‘21)
Y=y V(xPexp Zh Py (x§+x%) (5.73)

Substituting these expressions for W% in Eq.
(5.68), after a left multiplication by y°, in the secondl

(mB+a*pp )V

1
2P

1
— k
P(

From now on we shall assume that each quantity
in this equation which depends on x° is restricted to
x%=0. This equation then becomes an initial condi-
tion for the evolution equation (5.68). The corre-
sponding solutions are solutions also of the second
equation (5.26) and therefore, in its restricted form,
the wave equation (5.79) is equivalent to the system
(5.26). Remember of course that ¥(? is now

P 9=4 exp (5.80)

i .
—ﬁ—ijj

and must be, as it is easy to see, a solution of

~(l)kp)

equation (5.26) and in Eq. (5.69), we obtain in the
center-of-mass frame of reference

Py=ky+kyo=—P, Pi=k;i+ky=0, (574

—_in<_
oax°
~(1)

= —(a"Bic+Bm W — @+ W,
(5.75)

’P lp(l)

. d 1
ﬁZD—tﬁPaE—}—;PZ P!

=m V427 Pk, (5.76)

ﬁ2D+iﬁP§2—6+—}P2 P

(1) .y
____m12¢(1)+ '}’aBFaB—lﬁQ(l) ¢(0) ,

~ i
27 ‘,},’k'f + ‘1’2‘“

(5.77)

where B=19°, a‘=9%/, pp = —i#d/dx*, and where,
because of Eqgs. (5.25) and (5.74) it is understood
that each function of k; is in fact a function of
three variables k =(k‘) which is obtained from the
original function by making the following substitu-
tions?2:

kKi=ki ki=—ki k9=4(m2+Kk)12,
k9= +(my2+ K312, (5.78)

Subtracting Eq. (5.77) from Eq. (5.76) we get an ex-
pression for (3/8x°)y" and this expression substi-
tuted in Eq. (5.75) gives the equation

~(1) ~(1) k VaﬂF((JIB)_ ifi "’(1) ¢(0) (5.79)
P .

1B+ P = 2 (P > m

(5.81)

VI. THE SCALAR AND
VECTOR INTERACTIONS??

We consider here the problem of two interacting
scalar or vector “charges” e¢,. The linearized PIS’s
corresponding to these interactions are given by the
functions?*?°
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O;I)azra—:*(]-{_‘u,ra Jexp(—pur,)

X(NgAgh®+Lyyz,ts) 6.1)
where

Za="1aA _2[7Ta’2(x"7'a )—k(xmg)] ,

”7a=(—1)a+l, kz‘—’]T(lx”TZa >

2__ 2__ 1.2 2.2
Ta _—ﬁﬂap’ A=k — Ty,
(xﬂ'a):xa'n-aw xa=x<11__x(21 ’ : (6.2)

(¢4 a a a 2
h®=x%—z\m{+z,75, h*=h"h, ,

2
ti=moms —kns

ra=(h2+A27Ta'—22a2)1/2=[x2+77-a'_2(x77'a’)2]1/2’
and

A, =—1, or Aa=7Ta'_1k ’ (6.3)

1 —1

—_— = -2 —
Loyg=ma~ 7y~ "k O Lyg=—mg" ",

depending on whether we consider the scalar or vec-
tor interactions. u >0 is the inverse of the range of
the interaction.

The separability index s of these interactions is oo
if u>0and 2 if u=0. The PIS’s with s=2 must be
treated with special care!® and for this reason, we
have assumed up to now that s was greater than 2.
But as we mentioned in Ref. 1 the complications
that appear when s=2 can be dealt with very easily
at the lowest order of approximation that we are
considering here. We shall not exclude then the case
pn=0 and actually in the next section we shall con-
centrate our attention to the case of the vector in-
teraction with p=0 (electromagnetic interaction).
The PIS’s defined by Eq. (6.1) are conservative.
Moreover a straightforward calculation proves that

06, *=p20" . (6.4)

In our preceding paper (Ref. 1) where we con-
sidered a system of two spinless particles we used
the quantizer

&= _2BR ~lexp(—uR) , (6.5)
where

R =[x*4+T~%xM)?*]'?, N*=n%+77,

(6.6

IP=—TIIPI,, (xID=x°Il,, )
and where

B=——~1Tl772 orB=k (6.7)

depending on whether we consider the scalar or vec-
tor interactions. This function ® ‘! is a solution of

O V=p2p® (6.8)

From Egs. (5.5), (5.11), and (2.6) it follows that
the functions 7 f,f,) associated with the quantizer (6.5)
are such that

Fonkg=— 30" (6.9)
We see then using Eq. (6.8) that Eq. (5.62) will be sa-
tisfied if and only if u=0. Therefore function (6.1)
leads to a quantization of a mixed-spin PIS if u=0
but does not if pu=£0.

If =0, from Egs. (5.5), (5.11), (6.4), and (6.8) it
follows that the functions 7 ) are solutions of

o7 =0 (6.10)
and therefore the simplest solution of Eq. (5.60) is
&=0 (6.11)

for which, using also Eq. (6.9), the wave equation
(5.79) becomes

(myB+a*pr )y =

~() , ~() k I# ~(1)
To +7 1 ——?’GYBFaB

4p
ifi =) |0
— , .1
+ 2PQ }l,li (6.12)
where
~(1) 9 _ d _
Fa;:axaw(llﬂ)— axBﬂ-(I}x)y
(6.13
o= 0 F )
ax, °

If £>0 a possible choice of the function &V
would be

& V= _Br,~r, lexp(—pur,) . (6.14)

But for this choice, or for any other, Eq. (5.60), will
never have the solution (6.11). This makes the
quantization of short-range scalar or vector interac-
tions more difficult than the quantization of long-
range ones. We want to stress though that this is
just a technical complication and that nothing
would prevent us from developing the theory for

‘1 >0 as we shall do for the case of the electromag-

netic interaction.

VII. THE ELECTROMAGNETIC INTERACTION

We shall consider in this section three approxima-
tions of Eqgs. (5.81) and (6.12) for the case of the
electromagnetic interaction. In this case the func-
tions 6% are (g =e,e,)

0% = = lp, =3 kR @ —2,t%) . (7.1)
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A straightforward calculation shows that
d o0
ox“

and therefore, from Egs. (5.5), (5.11), and (6.8) for
pu=0, we see that the functions ﬁ;},’ associated with
the quantizer

(7.2)

V= _2kII-'R! (7.3)
satisfy the equation
=190

=— =0 7.4

Q axa T la ( )

Using Egs. (5.5), (7.1), and (7.3) we can calculate

P and the result is

pibe— nakh gy z,r, ' =M~ 'ZR ~Yh,
—iA—2kn—1R-1(t,,a—t,,,a)
c
1, —1
—?A Tata lg'a » (7.5)

where we have restored the speed of light in vacuum
-

1

m1cp® + Py ¢(0)=_P (P2 4+m %2 —my e H)yl”
1

—m e + o Pyt =—}; (P24+m,%?

0
_m2262)¢<2)
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¢ assuming that 77,, have dimensions of linear
momentum and x¢ have dlmensmns of a length.
From (7.5) we obtain the functions 7, waa by changing
the sign and substituting everywhere g by k.

The corresponding expressions for F,g are

1
Fop=——A"m," ' lk(hatip—hgtia)

+7T22(hat2ﬁ-—hﬁt2a)

+21(t1atzﬂ—t15t2a)] .
(7.6)

Let us introduce two-component spinors AN
and 93" such that

©0,1)
U4

7.7
¢(20,1) (7.7)

l/}(O,l):

Using the usual representation of the Dirac matrices
the zeroth-order wave equation (5.81) can be written
as

(7.8)

(7.9

o* being the Pauli matrices. And taking into account Eq. (7.4), the first-order wave equation (6.12) can be

written as
~ A ke ~ =
m el + ok, x/;‘”-——(P2+m1 2—my2l— |7 (1}))+; zUkFJgkn PO gk (11,‘)+_ﬁF(1) ©
(7.10)
(1) n__1 5 2 2 () A k(D |0 i = (©
—m ey +o*p Py = P (P*+m*c*—my’c WJ 1°+4P Fi' ¢y — 1k+ F .
(7.11)
[
WZ a}:e r;min(ti)ed' that in(SE:,7q8$).h(7.8)t——(;/).11) g":o, iy my o _w_ M [ K)? k2
and that the substitutions (5. ave to be made. 0= 37 3Mo=""77 2.2
A. The “slow-motion approximation method” to X max 2
deal with Egs. (7.8)—(7.11) will consist in using for- o =70 =0
mal series expansions in 1/c¢ and neglecting in the fi- .
nal result all terms of .order higher than 1/‘c2._ Let L = YT m = > Xi+(my+2m;)k; } ,
us write for any function f which has a limit for mjyx x
et 1 o= 7l =0
— 2 R . = 1
f=df + i TS (7.12) 1Flo' = ——3x',0F =0, (7.13)
. . . . g - 1
Using this notation, a rather long but straightfor 2F,(, 1_ - (xik; —x kg oF,m F(l)_o

ward calculation gives



28 QUANTUM MECHANICS OF PREDICTIVE. .. II. ... 1321

where . ka (1) M2 (0) _ ~(1) 4(0)
M=m,+m,, X=x), x=|%X|, 0Py = M Woy 1T100¥1 > (7.18)
- . — (7.14)
k=(k"), k=|k]| . and at the zeroth order Egs. (7.9) and (7.11) give
Let us now write —2my W0 4 kB &V =0 . (7.19)
P=M +£/- (7.15)
=Mer- - ) The left-hand terms of Egs. (7.17) and (7.18) can be
The expressions (7.13) and this definition of W im- calculated using Eq. (7.19) and then the former can
ply the following form of the formal solutions of be written
Egs. (7.8)—(7.11): o_ 122
0,1 _ (01 ©,1) 4 Woi =2, P o¥r
(2 o+ — 2 W +0(1/c¢t), “ (7.20)
(7.16) w_ 1820 ©
W =—
1/}(20,1)=L11,[j<20,1>+_?31/,(20,1)_|_0(1/c ). oY1 2 Po + oY1
¢ c .
At the first order in 1/c Egs. (7.8) and (7.10) give p being here the reduced mass of the system:
,u=m1m2/M.
ke 0 _ M2 (0) A similar (but much longer) calculation to the
7 Prryz M ot (7.17) next order yields the equations
J
1 52 1 1 1 |54
wap® =3 po_1 5 0 (7.21)
W1 2“P2¢1 3 m13+m23 P o¥1
1 52 1 1 1 a4 1
Wl = 5% 40 a* oy, 1 0
Y1 z‘upzlﬁ 8 |m3 T omy3 P o¥1 +x2¢1
k* 1 1 1 o 1 1
— — XXk 4+ — | —5+— |A=
+[m1m2x am 2 2mym, x30(x>< )+ 4 12+m22 .
2 my —2mm K
_pmitma w2 Xk, (7.22)
2 3 ‘
4m,*m, x

where o =(0o").

We reconsider now in a restricted form the equivalence problem that we mentioned in Secs. IV and V. Let E
be the linear vector space generated by the formal solutions of Egs. (7.20), (7.21), and (7.22) which satisfy the
appropriate regularity conditions implied by the conditions (4.34) and let E* be vector space generated by the
states obtained from E by the following transformations:

£(0) (0) () _ (1) HD gD | D 00
02¥1  =o0.2¥1 5> o¥1 o1 s Wi+ T oy (7.23)

where T ) is a function of (x?,k/), which is invariant under rotations and such that the states 1] satisfy the ap-
propriate regularity conditions. E’ is then the vector space generated by the regular solutions of Egs. (7.20),
(7.21), and

1 52 1 1 1 a4
WiV = Bl 4 L =g | (Bl
m my

k? 1 1 1 - #| 1 1 1

+ mmyx 4m,®>  2mym, FERd Xxk)+ 4 m12+m22 x
2m > +my>—2mym, 2% - 2

_ipdm + 22 . 1my X :< 4 lgm k2 k i (7.24)

4m, m, X ‘LL

The system of Egs. (7.20)—(7.22) can be considered equivalent to the system of Egs. (7.20), (7.21), and (7.24) in
so far as their regular solutions can be put in a one-to-one correspondence by the transformation (7.23). Let us
take
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. o7 2 2
Foo__i Xk 2midma’ 1 (7.25)
2AM X AMm m, x

Equation (7.24) becomes

1 »2 1 0) 1 1 a4 )
Wt — L t(1) o _ 1
Wi zﬂpzﬂb + a2 3 m13+m23 P o¥i
=.17)2 - 2,
L el Y Q) . L_ | Laaxi—s) [, (7.26
2m m,x x? 4m, 2mim, | x 2m,
where we have used the equation
A= _ams3) . (7.27)
x

We are reminded that in Eqgs. (7.20), (7.21), and (7.26), ¢, 9 are plane-wave two-component spinors

I -
029" =024 1€xp %k-x (7.28)

and therefore these equations will be useful for scattering problems only. Let us assume now that a general
equation exists,

Hy =Wy, , (7.29)

where the Hamiltonian A has the expression
H=o""+gA"+ 12 A0+ 5 Lo (7.30)
and being such that its formal solutions
Y=o ‘1°’+C%z¢‘1°)+go¢3”+fgz¢$"+-~- (7.31)
with g, © as in Eq (7.28) coincide with the solutions of Egs. (7.20), (7.21), and (7.26). Substituting these ex-

pressions and (7.30) in Eq. (7.29) and identifying term by term with the latter we see that H must necessarily be
the operator

152 g 1 1 1 |24 g 52 x'x) .
H= 2u P+y 82 |m®  m,} P+ 2m myc’ix P2 Pibi
2
L . L LGaxp -0 5z), (7.32)
¢’ | 4m, 2mym, |x 2¢*m,
I

where it is important to notice that the operators p; ing, in the attractive case, the bound energy prob-
are always to the right of any function of the opera- lems. It must be emphasized nevertheless that Eq.
tors-x/. We shall call H the induced Hamiltonian. (7.29) remains an approximate equation and that any
This Hamiltonian coincides, except for the Darwin- “exact” results which we could get from it should be
type last term, with Breit’s Hamiltonian if we drop discussed with special care. Actually since the first
in it all terms which contain the matrices ¢, which two terms in (7.32) coincide with the exact nonrela-
refer to particle 2. tivistic Hamiltonian Hyg, the safest position that
The introduction of the induced Hamiltonian and we can take in interpreting the induced Hamiltonian

the consideration of the wave equation (7.29) en- is to write it as

larges the scope of the theory insofar as we are now A .
in a position to deal with general problems includ- H=H\g +Hgrc (7.33)
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and to consider A rc as a small relativistic correc-
tion to H ~Nr- From this point of view ordinary first-
order perturbation theory must be used to take into
account H Hyrc. This does not present any difficulty
because H rc is Hermitian with respect to the usual
nonrelativistic scalar product. If we had defined A
using Eq. (7.22) instead of Eq. (7.26) the correspond-
ing HRC would not haye been Hermitian and the
safest interpretation of H would have been more dif-
ficult. This is the reason why we used the
equivalence transformation (7.23) with the function
(7.25).

B. The ‘“heavy-spin approximation method” to
deal with Eqgs. (7.8)—(7.11) will consist in using for-
mal series expansions in 1/m; and neglecting in the
final result-all terms of order higher than 1/m ;. Let
us write for any function f which has a limit when
mip—o0:

f=0f+L1f‘ T (7.34)
m;

Using this notation, a straightforward calculation
gives?®

1710 =maFy Y, ST = —maF TR0, oy =0,
o 11 =72% T2k THZK)(m, 7%, T —x ~ Dk,
+k‘2(7?2°x“‘—m271_1)k,- ,
T = —my %k T T E K ) (my 7 7% T —x iy
+hk 7 —my2x " m, 7% "Dk, (7.35)
oFio) =—m, ~1%,% %, 1 Fo' =0,
Fi = —m,y 7 gk —x;k;)
where
hi=x;—k ~A%-K)k;, h*=h;h",
Fr=[x24my "X K] 7,0=(m, 2+ k)12 .
(7.36)

Let us now define W by the formula
P=m,+W. (7.37)

The expressions (7.35) and this definition of W im-
ply the following form of the formal solutions of
Egs. (7.8)—(7.11):

1
PV =@V 4 PV 01 /m ),
1

o1 1 (7.38)
vy ’=m—1¢‘2°'”+0<1/m12> .
1

At the first order in 1/m; Egs. (7.8) and (7.10)
give

ka 0 1 g2 2y .1(0)
0Py =5 (W —m;y )¢y
1
=72

b

(7.39)

(1) __ 2 2y (1)
UP k12 (W=—my" )ty

1710 + 2 ij 1

~ ifi ;=
(n_ 1A i 5_1)]0 (0)

k ~(1) 0)
—0 077'1 k1 2 >

and the zeroth-order equations (7.9) and (7.11) give

—2 1/’2 +U pk ¢(10)=O ’ (7.40)

(1) k ~(1) ,(0)
— 25"+ o Bt = — oK ot

Using these equations as definitions of ;35" and
substituting the corresponding expressions into Egs.
(7.39) we obtain

A2
(W—P —my)'¥ =0,

42 W
(W =5 —m P —2==op{ =0

(7.41)

A similar (but longer) calculation to next order
yields the following equations:

32 L\,Z
(W2 —mp @ =wp ¥,

X w (7.42)
(W?—Pp —my?), (11)~2‘x—1¢(10)
A2 k2 i#i
=Wp Wi+ 27— am, ‘o'fy vt
where
~ L 3ifi 5,
fij= [rl o, 1 E K ik =ik
(7.43)

An induction procedure similar to the procedure
we used in subsection A to obtain the induced Ham-
iltonian H leads here to the general induced wave
equation:

2
A2
W—f —P —m22 (2]
1 52 2g..2 ifg i kP
= |W -4 =2 wologkf.
el LI I e L P LR

(7.44)

where fjk is the nonlocal operator with indicial
functlon given by f,J [Eq. (7.43)]. Strictly speaking
the g2 term of the left-hand term should be disre-
garded because the whole calculation has been a
first-order calculation in g. But we notice that in
the limiting case m;— «, Eq. (7.44) reduces to two
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uncoupled Klein-Gordon equations modified by a
Coulomb field. This result can be derived directly
by a standard quantization method in comt}ination
with the information which says that a spin- parti-
cle behaves as a monopole charge in the limit
m;— . Therefore we can maintain the g? term in
Eq. (7.44) because we know that this term would be
the leading term (zeroth order) of the 1/m series at
the second order in g.

Here again it must be emphasized that Eq. (7.44)
remains an approximate equation and probably the
best use we can make of it is to consider the opera-
tor in the right-hand term as small compared to the
operator in the left-hand term.

C. Let us consider finally the “light-spin approxi-
mation method.” This method is simpler than the
preceding ones because it is not necessary to decom-
pose ¥ as a direct sum of two-component spinors,
and will consist in using formal series expansions in
1/m, and neglecting all terms of order higher than
1/m,. Let us write for any function which has a
limit when m,— o:

f=fo+—1-1f+--~ . (7.45)
m,

Using this notation, a straightforward calculation
gives

0
o_ 1
o710 =""> 1710 X’
with 7] =(m 24+ k32,
k.
(1 ~(1 i
o =0, Fi'=—, (7.46)
X
FO—_ % Fh_g
i x3! ij
Let us write
1
¢(0,1)___0¢(0,1)+ ll/}(0,1) (747)
mj

and define W by the formula
P=m,+W. (7.48)

Taking into account Eqs. (7.4) and (7.46) the
zeroth-order equations (5.81) and (6.12) are

(mB+a'k)p P=wuw'?,

N 1
(m1B+apop=WopV——®,

(7.49)

and the first-order equations are
(mB+a'k;) @ = W,¢‘°)+%(m12— W)@,
(7.50)

A 1
(mB+a*pp ) 'V = Wﬂ/)m—;ﬂ/f(m

+%(M12—W2)0‘|/I“)

70 k.
+ | ——d
X X
i X
+ 7(11;‘:’_3 JO¢(O) .

(7.51)

Using the first equation (7.49) this last equation can
also be written as

(m1B+akp; ) = W1¢(1)__}1€1¢(0)

The general induced wave equation which can be de-
rived from Egs. (7.49), (7.50), and (7.52) is

(m1B+a*p 1= [W—f‘; v
.
m, 2 !
m if i_'xi_
(7.53)

This equation which reduces to the exact Dirac
equation for a spin-—;- particle in a Coulomb field
should be treated with the same care as that of Egs.
(7.32) and (7.44).

In most textbooks on relativistic quantum
mechanics the Dirac equation is used to derive the
energy-level patterns for bound states of hydrogen-
like atoms. For hydrogen itself this equation is not
accurate enough even if the magnetic moment of the
proton which is responsible for the hyperfine struc-
ture and the Lamb-type effects are neglected. The
reason is that the Dirac equation neglects the recoil
of the proton. To deal with this difficulty it has
sometimes been suggested that the mass of the elec-
tron should be replaced by the reduced mass of the
electron-proton system. This recipe has never been
justified theoretically and anyway it does not give
with sufficient quantitative precision the fine-
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structure pattern. Instead the Breit? equation takes
care of both the magnetic moment (not the
anomalous one) of the proton and its recoil.

For ionized helium, H}, the nucleus has spin zero
and therefore one of the limitations of the Dirac
equation, the magnetic moment of the nucleus, is
not present. The ratio m;/m, is four times smaller
than for hydrogen, but the charge of the nucleus is
twice that of the proton and this compensates the
smallness of this ratio. The net result is that the
Dirac equation is again an insufficient approxima-
tion to discuss the fine-structure pattern of H;}.

This problem can, a priori, be consistently handled
using either Egs. (7.32) or (7.53).

The ratio m /m, is not always small for interest-
ing cases. For instance if particle 1 is a proton and
particle 2 is a 7 — meson, this ratio is ~7. It would
be nonsense to use the Dirac equation and the
reduced-mass recipe to deal with the electromagnetic
contribution to this problem. On the other hand the
Klein-Gordon equation modified by a Coulomb po-
tential would be an insufficient approximation. De-
pending on the range of energies being considered
our proposition is to use either Eqgs. (7.32) or (7.44).
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