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Feynman propagator in a linearly expanding universe
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It is demonstrated that three reasonable physical criteria yield a unique Feynman propa-
gator in a linearly expanding Robertson-Walker universe.

I. INTRODUCTION II. PRELIMINARIES

The generalization of quantum-field-theory (QFT)
propagators from flat to curved space-time is not yet
solved (cf. Refs. 1—3), and there are different cri-
teria to define these Green's functions in arbitrary
geometries. On the other hand, to find the right cri-
terion, i.e., to define a good particle model in curved
space-time, is a very important problem not only for
QFT in a curved background but also for quantum
gravity.

This work is intended to be a concise mathemati-
cal study of four of these criteria, focused on the
definition of the Feynman propagator in a
Robertson-Walker universe with linear evolution
a (t) = t. All these criteria have an "exact" statement
in common, i.e., they can be formulated indepen-
dently of a power development (for criteria stated in
a power development, see DeWitt, Parker, and
Castagnino et al. ').

First, we shall see how they work in flat space-
time, and afterwards it will be shown that in a linear
evolution three of these criteria single out a unique
propagator, introduced for the first time by Chitre
and Hartle. Charach and Parker made a deeper
study of this original work and showed that the con-
ditions stated by Chitre and Hartle were insufficient
to define the propagator uniquely. They added a
new condition that is studied and compared with the
other criteria below (condition 2). Thus this work
can be considered as a continuation of this line of
thought.

Section II is devoted to establishing the basic
properties of the Feynman propagator and its
development in the "proper time" formalism. In
Sec. III, we introduce the four criteria and use them
in flat space-time. Later, in Sec. IV, we do the same
in a linearly expanding universe. Finally, we discuss
the results in Sec. V.

In this section, we review the principal equations
and results, referring the reader to Refs. 3 and 8 for
a complete treatment of the subject.

We shall study the problem in a Robertson-
Walker universe. Its metric is

ds = dt +a (—t)(dx +dy +dz ), (2.1)

where a (t) is the radius of the universe, that we
shall choose with a singularity at t =0, and with
R~0 when t~ oo. The Klein-Gordon equation

( V„V"+m—+JR)/=0 (2.2)

1 d 3d k
a pk+ 2+m +JR gk ——0. (23)a3 t t a

Let IP k I U IP k I be the "out" basis, i.e., P k

(P=„) is the particle (antiparticle) model wave func-
tion in the far future (when R ~&1), and let

i k ~ xP+-„=,, Pk(t), (2.4a)(2~)'"
i' x

P=„=
3~2 Qk(t) .

(2m) i (2Ab)

The gk(t) function is a solution of Eq. (2.3) that sat-
isfies the normalization condition

Pk fk Pk
a

This condition yields

(P+-„,P+-„, ) = —(P=„,P=„, ) =6(k —k'),

(2.5)

(2.6a)

(2.6b)

can be solved by a function pk(x)=e' "gk(t) if
fk(t) satisfies
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where (, ) is the Klein-Gordon product

(g,h)=i f dga(g"0"h —hh"g") . (2.7)

F k
=Bkr"-. +Ck~ k

F k BkP k
—+—Ck I'+q .

(2.8a)

(2.8b)

As a result of the spatial homogeneity of the metric,
the Bk and Ck can only depend on the length k, of
k, and not on its orientation. F+„and F=„satisfy a
set of equations similar to (2.4), (2.5), and (2.6) with
the norinalization

IBI I' —
I

Ck I'=1 (2.9)

If functions g and h are solutions of Eq. (2.2), this
product is independent of the spatial integration sur-
face X.

Let now IF k I U I F+z I be the "in" basis. Both in
and out bases are arbitrary, but we shall suppose
that the in basis fixes the particle model at the
singularity, i.e., at the time origin. The in basis can
be obtained from the out basis by a Bogoliubov
transfog gghation,

The creation and annihilation operators satisfy the
usual canonical commutation relations, and they are
related by

g k
——BkA k +CkA

a k
——CkA k +BkA

We define the Feynman propagator as

G~(x,x ') =i (0,„, ~
0;„}

(2.11a)

(2.11b)

X (0,„~ T(P(x)P(x'))
~
0;„}, (2.12)

where ~0;„} and ~0,„,} are the in and out vacua,
respectively, and T means the time-ordered product.
Taking into account the symmetries of the problem,
we can write GF as

The field P(x) can be developed either in the out
or the in basis as

6(x)= fd'h[agP+„(x-)+a ePe (x)]

Ge(x x') if =s e'" '* * ' de(s& ) h" ( s&s)s+ (2.13)

Here t) ——max(t, t'), t( ——min(t, t'). If we consider
G~(x,x') as a function of x only, and t&t', it is
clear that it is a solution of Eq. (2.2). At t =t', B,GF
is not continuous. In fact, taking Eq. (2.5) into ac-
count,

GF(t'+ ) — GF(t' ) = 5( x —x') . (2.14)
t a

Therefore GF is a solution of

( VqV" +m +—gR)Gp(x, x')

3 5(x —x ')5(t r') . —
[a (r)]'

(2.15)

We can try to write GF(x,x ) using an integral
representation (cf. Schwinger and Parker ),

Ge(x, x')=1 f ds e ™*(x,s (x',0), (2.16)

where the kernel (x,s
~

x', 0} is the solution of

(x,s
~

x', 0}=(—V„V&+JR) &x,s
~

x',0},
S

(2.17a)

(x,O
i
x', 0}= 5(x —x') .

a (t)
(2.17b)

This integral representation is a natural generali-
zation of the Schwinger representation of the Feyn-
man propagator in flat space-time. Thus, we could
state that only the real physical propagator can be
developed in this way. In order to study this conjec-
ture, that later on will prove to be wrong, it is in-
teresting to find the inversion foririula of Eq. (2.16),
i.e., given Gz, the way to find (x,s

~

x', 0}.A natur-
al idea is to consider Eq. (2.16) as a Laplace or
Fourier transforigi and thus to take into account the
set of all GF(x,x', m ) as functions of the parameter

Since m is real and positive, at first sight we can
take (x,s i x,O } as the Laplace transf'or igh of
GF(m ). Nevertheless, we shall not find Eq. (2.16)
in this way, but a similar one with positive sign in
the exponent and integration bounds oi ao an.d-
o +i 0() in the complex variable o +is

If we consider Eq. (2.16) as a Fourier transform
of ((x,s ix', 0}, this problem disappears, but now
both m and s are to be considered as real variables,
also taking negative values, and some ambiguities
show up.

Anyhow, let us suppose that it is possible to find a
function I ~(x,x',a) that satisfies
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(a) I F(x,x', a)=GF(x,x', m ) if m =a&0.

(b) ( V—„V"+a+JR)l F(x,x', a)= 35(x —x') for all aER,
a

(c) For all x,x', I F is a tempered distribution for the variable n .

(d) The Fourier transforttt of I F,
OO

F[IF]=y(x,x', s) = da e'"I F(x,x', a)

(2.18)

vanishes when s &0.

Then, putting

(x,s
i

x',0) = . y(x,x',s),
27Tl

Eq. (2.16) is nothing else than the Fourier inversion
forrttula. We can also find Eq. (2.17) from (2.18);
for it we transfort/1 (2.18b) side by side, and we ob-
tain

Later on we shall see that not all GF of Eq. (2.13)
have a I F that satisfies (2.18). But in all cases we
shall have

Gs(xx', ms)=i f dss ' *(xs ~x', 0)

+e' '(x, ( —s)
i
x', 0)] .

( V&V"+—gR )y i = —5(x —x')5(s) .By=2~

(2.19)

(2.21)

We shall also call this integral representation a
"proper-time formalism" to avoid the invention of
an additional name.

Here By/Bs is the derivative of y as a distribution.
Taking into account the discontinuity of y at s=0,

+ (0)5(&) (2.20)

/(aII)= —f da1 ~ R((2)
a —cxo

(2.18d')

On the right-hand side, By/Bs is the ordinary
derivative. Putting (2.20) back into (2.19), we get
(2.17a) for s&0 and (2.17b) for s =0.

We can put (2.18d) in a slightly different manner.
If R (a) and I(a) are the real and imaginary parts of
I (a), (2.18d) proves to be equivalent to

III. THE FEYNMAN PROPAGATOR
IN FLAT SPACE-TIME

I
~k

I

' —
I Pk I

'=1
and the most general Feynman propagator is

(3.2)

As an example, let us see what happens in flat
space-time. The most general solution of (2.3) is

lCrPk E

e e
~k t k 1/2 +~k 1/2(2cok )

where rok = (k +m )'/ . Condition (2.5) gives

d3k ei k. ( x —x ')

Gs(x,x')=I' f (2m-)'

itd/ (t —t ) —
2 ttdk(t t ) g —tt!P/(t+t') —y itI// (t+t')x (2k e ' + k e ' +~kpke + king. ke

—!& ( k+tt ) 2 I t0/(t + t )s—t ts//s ( t —t ) /( t tots)t
[(2k e + k e +ak k e +e (3.3)

In flat space-time it is natural to demand that the real physical propagator must be invariant under space-
time translations. This requirement yields

~k Pk+
' )fc

(3Aa)



28 FEYNMAN PROPAGATOR IN A LINEARLY EXPANDING . . . 1301

(3.4b)

From Eq. (3.2), ak&0 as

(Ck/Bk)*

Using Eq. (2.9), we have pk =0, and now (3.4a) gives Ck ——0. We can choose ak and Bk real [the GF of Eq.
(2.13) is invariant under phase transfollllation of the basis], and thus ak and Bk become fixed by Eqs. (2.9) and
(3.2). Finally, the Feynman propagator turns out to be

(,)
. f dk e3 i''(x —x ')

F X,X =l e
( 277 ) 2&k

(3.5)

Let us define now

(k +a)'~ if k +a)0,
oak(a) =

i(
~

k—+a
~

)'~2 if k2+a(0, (3.6)

and

e
2tok(a)

d3k ei k (x —x ')
I F(a) =i~

~

(2m)3

—i cok (a)(t —t ) (3.7)

This definition provides a generalization of bF to negative values of m . It can be shown that I'F satisfies
conditions (2.18) and its Fourier transforni leads us to the Schwinger formula

I' . ; 2 . 1 . (t —t') —(x —x')
EF(x,x') = Ji i ds e ' ' i exp i—

0 (4mis) 4s
(3.8)

Let us now give some alternative definitions of the physical propagator.
The invariance requirement under translation, that defines the physical hF among all the possible propaga-

tors in flat space-time, has no analog in the Robertson-Walker universe, because the metric itself is not invari-
ant under time translations. Therefore, it is interesting to find another criterion that can be generalized from
flat to curved space-time. We shall study the most usual criteria that can be found in the literature on the sub-

ject.
Criterion 1 /see Schwinger (Ref. 9) and De Witt (Ref. 4)J. The physical GF can be developed as in Eq. (2.16),

i.e., it is analytic in the lower semiplane of the variable m .
We recall the development'

e
2oik

(3.9)

which comes from the spatial Fourier transfoiiii of Eq. (3.8). Using both Eq. (3.9) and its complex conjugate,
we can write the most general GF as
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~
—i m/4

Gs(s,s')= J i ds
2 ms

3
i k.(x —x ')k

3e
(2m )

—&ms —tks~ 2 ~

e e
—i(t —t') /4s

&kPk

+ t2»p»+ ak H(t+t')

+ Pk et» + p 2 H( (t +ts)),e t (t—+t') /4s

im seik s
I P» I

'+ i(t —t') /4sk&k

Pka;+ Pk' H(t+t')

2 H( (t+ts)) et(t+t') /24s (3.10)

where H is the Heaviside function. Therefore cri-
terion 1 yields (3.12b)

ak =0, (3.11a)

k
I

Pk (3.12c)

Pk+&k (3.11b)

ak =0. (3.11c)

k &k+ (3.12a)

This system is equivalent to Eqs. (3.4), so it has
the same unique solution P» =Ck ——0 that yields b,~.

Criterion 2 /see Charach and Parker (Ref. 7)j.
The physical GF can be developed as in Eq. (2.21)
with the square-integrable kernel in Euclidean space.

We can go to Euclidean space-time by writing
t =+is. On the other hand, it is necessary to change
s into cr=is, in order that function e'" /' becomes

—x 2/4ae " / and turns out to be integrable. Then the
—it 2/4s —t 2/4ofunction e " / ' becomes e ' /, which is intepra-

+it 2/4sble, and the function e+" / ' becomes e+' /

which is divergent. Therefore, criterion 2 also yields
system (3.11).

If we choose tr= is instead of—a=+is, we will
find, besides the divergence in e+" /, the equations

These equations yield ak ——0 and so they are incom-
patible with Eq. (3.2).

Criterion 3 csee De 8'itt (Ref. 4)J. The physical GF
is the analytic continuation of the unique Green's
function of the operator ( —64+m ) in the four-
dimensional Euclidean space.

Here b,„ is the Laplace operator in n dimensions.
Let us call r the Euclidean time. The unique solu-
tion of

2 —b 3+m J(x,x') =5( x —x ')5(r r'), —

that is a tempered distribution, is

(3.13)

3 —cok(v —v )d k . k. - - eJ(x,x') = 1 k'(x —x ')

(2m ) 2t'ok

(3.14)

where cok =(k +m )'/ . Going back to Minkowski
space-time, we can change r for t = ir or t =ir. —
The first choice yields G~(x,x') =bF(x,x'), up to an
irrelevant phase factor. The second choice yields
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We use the formula

1=- —+in5(x) .
e—+0 X+l6 (3.16)

again system (3.12) and, as we already know, an in-
compatible result with Eq. (3.2). Therefore, the
method works if we define the Euclidean time as
~=I.t, t = —i~.

Criterion 4 (see Schwinger (Ref. 9), DeWitt (Ref.
4) and Rumpf and Urbantke (Ref. 11)J. The physi-
cal GF is the limit, when z~m i—O+, of the
unique Green's function of the operator —CI+z in
Minkowski space-time.

Let z =m +i@, e~O. The quoted Green's func-
tion is

d k3

g(x x') f =e"'*
(2m. )

After an elementary integration we can see that we
find the correct result with the minus sign, i.e.,
z =m —i 0+, while the plus sign yields again (3.12).
Therefore, the limit we must take is z ~m —i 0+.

Other criteria. A natural condition, that we can
suppose the physical Feynman propagator has in the
case of arbitrary metrics, is that GF "resembles" h~
of flat space-time when x~x' (see Castagnino and
Weder, ' and Ceccato et al. ' An attempt to make
this statement precise is to ask that both GF and b~
have the same singular structure when x —+x' (see
Castagnino et al. Ref. 5). When we have a universe
such that R —+0 when t moo—, we can also choose as
the out solution a (WKB) approximation.

But, as we shall see immediately, these "inexact"
criteria do not lead to a unique GF even in flat
space-time. If we put Pk ——0, ak =1 in Eq. (3.3), we
have

2&k

d3k ik (x —x')
GF(x,x )= J —e

(2m. )'
i cok (—t t )— —i~k(t + t')

e (3.17)

and we can choose (Ck!Bk)* in infinite ways such
that the second terna in the parentheses would be
regular at the origin. In this way, GF and AF will
have the same singular structure.

Let use remark that all these choices have a com-
mon limit (Ck/Bk) 0 when k oo, because the
Fourier transforrri interchanges regularity with van-
ishing at infinity.

Where these criteria are used, normally it is stated
that (Ck/Bk)=0 implicitly by choosing a power
development in k or x that automatically eliminates
tern~s in (Ck/Bk). Therefore, the asymptotic parti-
cle model for k~ ao is only a local value around the
point where the development is made. Although
they are useful, and well proved by their success in
renorinalization methods, they do not fit to solve
our problem.

[H(2)( )]((e H())( ((e) (4.2a)

H()) ( )
i vnH())( )

H(2) (z) e i vrrH(2) (z)— (4.2b)

H(„"(z)H„(z)—H„(z)H„(z)= .
I&Z

(4.2c)

The normalization equation (2.5) turns out to be

where H k
" ' are the Hankel functions that satisfy

IV. ROBERTSON-WALKER UNIVERSE
WITH LINEAR EXPANSION

(See Nariai and Azuma, ' Chitre and Hartle, and
Charach and Parker. ) Let us consider Eq. (2.3)

1
with a(t)=t, R =6t, and g'=

6 (confoiiiial cou-
pling). The general solution is

H~y'(mt) Hi'„"(mt)
+Pa 4

Now we can introduce the Bessel functions

J2(z) = —,[H~"(z)+H~2 '(z)],

( ) '[ i(, H &)( )+ —iA, H( )( )]

The most general Gz becomes

(4.4a)

(4.4b)
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.—+

G (x x') =' f e'"'* " '() —e "
)tt' (2ir)

x 'Hk (mt )J'k(mt ) e
~ teak ~

e &kpk+ «kpk —e "teak')

kH—' ;'k(mt )J;k(mt& ) e "
~ teak ~

—e tzkpk+
k

(
—2k'~ p e

—2k'~ 2)

+Hk'(mt )Jk(mt ) —e
~
pk

~

+e " tzkpk+ (Pk' e"—tzkpk)

k—H'";k(mt )J k(mt() —e"
I Pk I'+e "tzkpk+

k
(Pk' otkpk—) (4.5)

We proceed now to test criteria 1—4.
Criterion g'. We shall use an integral representation of the product of Hankel and Bessel functions (see Wat-

son, ' p. 439),

exp (i/2) s+ —(Z +z )
1 2 2

S
(4.6a)

H„' '(Z)J„(z)= f I„ep —x(i/2) s+ (Z +z )i~ o s s S
(4.6b)

(p e
—2k (4.7a)

Pk e Pk+e ak

(Pk —
tzk ) (4.7b)

Taking (4.3) into account, we find

Pk+e &k Pk —e

pk+e ~zk Pk —tzk
det

where Re(v) )—1,
~

Z
~
)

~

z ~, and I„(z) is the
modified Bessel function I„(z)=i "J„(iz). If we
change the variable s to 2m s, with m )0, it is
clear that the tei-ills rejected by criterion 1 are those
with H;k or H k, i.e., the last two telllls in the(1) (&)

curly brackets in (4.5).' Therefore we have

Criterion 2'. We must use the Euclidean metric

ds =dr +r (dpi +dg2 +d(3 ) .

From our previous experience in flat space-time,
we make the changes t = i~ (see—criterion 3) and
S = io. (see criterion—2). But these transformations
alone are not enough, and we must also change the
spatial coordinates. We have now two possibilities,
x = +i g and the correlative change k = +i ri, in
order that ri remains the canonical conjugated co-
ordinates of g. Nevertheless, the magnitudes of
physical relevance have spherical symmetries and
both possibilities lead us to the same physical re-
sults. Furthermore, we must treat g=(f,g)'~ as a
positive number, but, as (ri, rt)= —(k, k)= —k,
thus 2l =+ik.

Let us consider again Eq. (4.6) and the integral
representation (see Watson, ' p. 181)

I„(z)= ( —,z) dr r " 'e"+' ~ " .
2&i

( 1
—2k&)~0 (4.8) If we take rt =ik and we go back to (4.S), we find

(a) the second term has a
The system (4.7) implies that pk ——0, which coin-

cides with the WKB solution for the out basis (see
Chitre and Hartle and Charach and Parker ), but
GF is not fully deterrllined because Ck/Bk remains
undefined.

tt'
—ik

in its proper-time development, and by (4.9) a
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( —77'/4o ) " tei iri, divergent when 7,7'~0. (b)
The third and fourth terms have the exponential

e =ei(t +t' }/4$ (7. +1 )/4a

in their proper-time development, and so diverge
when 7,7'~ ao. From (4.7) we know that this leads
us to pk =0, and therefore from (a) we conclude

1/2k' w 0+k e ~ Pk

( 1
—2k'')1/2

e —kn( 1 e —2k@
)
—1/2

Therefore the out basis turns out to be

ik x

(4.11a)

(4.11b)

e '" -~ak e —2k'~ 2 ()k (4.10)

Taking ak, 8k real, from (2.9) and (4.3) it follows
that

P k

i k. x

(2~)'"
and the in basis is

1/2knH(2)( t)
2t

—1/2kmH(1)( t)
2t

(4.12)

F==
k

eik x

( 1 e 2k1r) ——I/2[eke'/2H(2)(mt) +e —3krr/2H(1)( mt) ]e ik m e ik m

eik x

(1 e 2k') —1/2[e —kn/2H— (1)(mt)+eikn/2H(2)(mt)]
(2 )3/2

(4.13)

More concisely,

ik ~ x
F+ e ~

( 1
—2k@)1/2 krr/2J (—mt)

(277)3/

d'7i e™~e

Qp(i, i')= f ~, h(r, ~', f', vy) .
(2m. )

(4.17)

These bases appear for the first time in the work of
Chitre and Hartle as a consequence of a generaliza-
tion of the Feynman path integral from flat to
curved space-time. Charach and Parker found
again these bases by requiring that the kernel
(x,s

~

x'0) would be square integrable, and the out
base be the WKB basis. As we can see, the last con-
dition is redundant.

If we take 7i= ik, the —divergence in the origin
appears in the first terra of (4.5), so we are led to

Thus h must satisfy

a' 1 ah+ — h —(m2+ )h
a 7 7

5(7 7')e—(4.18)

The solution of this Bessel equation that is regular
for all 7 is (see Courant and Hilbert', Vol. I, Chap.
VII, pp. 470 and 501)

e
—km.~ 2 e kn()— '

(4.14)
h(7)=A(g'', 7', 7i)J&(im7) if 0&7&7',

(4.19a)

This is incompatible with (2.9) and (4.3).
Criterion 3' /see Mensky and Karmakov (Ref. 18),

Wald (Ref. 19), and Candelas and Raine (Ref. 20)J.
The Euclidean metric is

h(7)=8(g', 7', 7i)H& (im7) if 7'&7& oo

(4.19b)

At 7=7', h must be a continuous function, but its
first derivative Bh /87 must be discontinuous, with a
jump of —(1/7')e ' " ~. Therefore

ds =d7 +v (dg'1 +dg2 +dg3 ) (4.15)

with R = —67 . In this metric the Euclidean ver-
sion of Eq. (2.15) is 8( g ', 7', 7i )H„'"(im7')

(4.20a)—A(g ', 7', 7i)J„(im7')=0,
8 3 8 1 1

a7 7 d7 7Qz —— Q~ ~3QF +m 'Qs Q~—
5(7—7')5(g —g') .

Let us write Qz( g, g') as

(4.16)
8( g ', 7', 7l )Hq' "(im7')

—A(g ', 7', 7l)J„'(im7') = (4.20b)
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A (g' ', r', ri) = Hz" (im~')e
2

(4.21a)

This system has a deterininant 2(m.m~') ' and its
solution is

(4.25)

Then the solution of (4.24) that is regular for all t is

&(t')J,~(pt) if 0&t&t',
ht(t, t')= .

&(t')H, 'g'(pt) if t'&t & ~ .

g(g ',~',f ) = Jz(imv')e
2

The final result is

(4.2 lb)
Repeating the calculations of criterion 3', and

then going to the limit e,g~0, we shall find the
Chitre and Hartle propagator.

DISCUSSION AND CONCLUSIONS(tt) l17 f Tf

2'' (2m. ) The remarkable coincidence of criteria 2', 3', and
4' to single out the Chitre and Hartle propagator
must be based on any of the following causes.

(a) The studied criteria are basically equivalent.
(b) The Chitre and Hartle propagator is the real

physical propagator for the linear expansion.
(c) The Robertson-Walker universe with linear ex-

pansion and conformal coupling is such a special
case that all criteria give the same reasonable result.

Obviously, proposition (b) can neither be accepted
nor rejected by now, until we have at our disposal
more soundly based physical criteria working in
every kind of geometry. As regards proposition (c),
we must also say that the problem with linear ex-
pansion and conformal coupling is really exception-
al. In fact, it is the only metric plus coupling where
the definition of the particle model via Hamiltonian
diagonalization works, giving a finite creation of
particles [see Fulling (Ref. 21)J. The propagator of
this particle model is again the one of Chitre and
Hartle.

Finally, on the possible equivalence of the dif-
ferent criteria, proposition (a), we would like to
make the following remarks.

(i) Criterion 2 is basically a refinement of criterion
1. The conclusion we get in criterion 1' is that in a
general metric the Cauchy data [Eq. (2.17b)J is not
enough to single out a unique solution for Eq.
(2.17a), but it should be obvious from the structure
of this equation that, if we add boundary conditions
over the kernel (x,s

~

x', 0), when x and x' go to 00
or to the singularity, we get uniqueness. The most
natural choice of that boundary value is the homo-
geneous one. So we can think of Parker and
Charach's ansatz as being a particular way of im-
posing null boundary conditions and regularity at
zero over Schwinger's kernel Never. theless, we
stress the fact that formally criteria 2 and 2' are in-
dependent of criteria 1' because the terms with the
wrong dependence upon m s are also divergent in
QO ~

(ii) Both criteria 1 and 4 use the same idea, i.e., to
make the analytic continuation of GF to complex
values of m . Nevertheless, criterion 4 gives a more
definite result because it has stronger restrictions on
the behavior of GF at the singularity and at infinity.

&&Hz" (imr& )J&(im~&) .

(4.22)

We note that t = i ~, a—nd

(4.23a)

Jq(imr() =J~( mt & ) = ——J q( mt ( )

(4.23b)

So if we try to return to Euclidean space by taking
g=ik as in criterion 2, we find the incompatible
Eq. (4.14), but if we put q= ik, we lead —again to
Chitre and Hartle's solution, up to a numerical fac-
tor.

Criterion 4'. Now we shall try to solve Eq. (2.15)
by translating, to the linear expanding universe, the
Feynman prescription for displacing the poles of the
propagator in the co complex plane. In fiat space-
time, the prescription is to turn (co —k —m ) to
(co —k —m —ie). This can be achieved by adding
a negative imaginary part to m (as is usually stat-
ed), but also by adding it to k~, or both.

Although a divergence may appear when the
e' " " terna is integrated, it is not essential, because
it disappears if this integration is postponed to the
end.

If we put
d'k e"'" "'

GF(x,x')=, hg(t, t', x, x '),
(2~) tt'

then h must satisfy

Bh 1Bh p k
m + h

dt t t t'

(4.24)

A, =a ib, p=c id, a—,b, c,d—&0;
=k i', p,

~=m—' —ie .

= —,5(x —x ')5(t t') . —
t'

Now we "displace the poles" by putting k iq in-—
stead of k, and m i e instead of —m . If we define
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These restrictions are completely natural since one
tries to Fourier analyze GF (in criterion 4 this
transforrri is only spatial, but it remains physically
implausible that GF diverges when time goes to zero
or moreover to oo when the metric is "almost" flat).
On the contrary, it does not seem natural to impose
arbitrary limits to the growth of kernel (x,s

~

x'0)
at infinity, since neither this kernel nor the parame-
ter s have a clear physical meaning.

On the other hand, criterion 4 is only a formal-
ized version of the commonly used shift of real poles
to the complex plane, before integrating a function
using the residue theorem, while the proper-time
formalism appears to bear different motivation ac-
cording to different authors (see Schwinger, Chitre
and Hartle, and Parker ). It is the authors' hope
that their treatment of the proper-time formalism as
a Fourier transforrrt could give a better insight into
this subject in the future.

(iii) Criteria 2 and 3 are based on a very common
idea in the current literature: i.e., to shift problems
of the pseudo-Euclidean metrics to Euclidean ones.

Again, we can see that criterion 3 has regularity
requirements pn the propagator that are not explicit-

ly stated, but implicitly in the fact that the propaga-
tor has a Fourier transform, and in the physical
meaning of both times involved, the Euclidean v and
the physical time t. On the other hand, in criteria 2
and 2', we demand that the kernel be L, when real-
ly we only want to eliminate some divergences, that
can equally be excluded by weaker conditions, e.g.,
that the kernel would be a tempered distribution.

Nevertheless, there are some ambiguities in the
concept of "Euclidean techniques, " e.g., the subtle
role played by the ri sign in criteria 2' and 3', that
can be a serious drawback for these methods in more
general metrics.

We conclude that the Chitre and Hartle propaga-
tor, in a linearly expanding universe, has so many
properties belonging to the Feynman propagator of
flat space-time that it is impossible to deny that it is
a good candidate to play that role.

Nevertheless, it is premature to draw conclusions
until other geometries have been studied and we
have a deeper knowledge of the physical foundations
of our methods. These are the lines that we shall
follow in our future research.
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