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For the singularity theorems of Hawking and Penrose to hold, the stress-energy tensor of
matter must satisfy certain restrictions. A model is developed representing the interior of a
collapsing, spherically symmetric cloud of matter, which is everywhere free of singularities,
due to a relaxation of the so-called “weak energy condition.” The regions of the model in
which the condition must be violated, and the properties of matter and energy which result,
are determined. The indications are that, at least in spherically symmetric cases involving
very large masses, the energy condition must be violated in a region where the density is no
larger than normal matter densities, which seems physically implausible. Hence suspending
the energy conditions may not be a reasonable approach to the avoidance of singularities.

I. INTRODUCTION

This paper is concerned with one aspect of the
singularity theorems due to R. Penrose, S. Hawking,
and R. Geroch, which assert that, under fairly gen-
eral conditions, singularities of spacetime cannot be
avoided. These conditions include some causality
requirements, and also certain restrictions on the
stress-energy tensor of matter. We shall examine the
possible circumvention of the impact of these
theorems by a relaxation of what are known as “the
energy conditions.”

The “weak energy condition” with which we shall
be concerned requires that T, W¥WY>0 for every
timelike vector W¥. By continuity, this inequality
also holds when W* is a null vector. This assump-
tion is equivalent to saying that the energy density
as measured by any observer is non-negative. The

“strong] energy  condition” requires  that
(Tyy—58uyT)WHW?Y >0, with W# again any time-

like vector; this inequality implies that gravity is al-
ways an attractive force. These conditions ensure
that matter always has a converging effect on null
and timelike geodesics, respectively. (For details, see
Hawking and Ellis,! which will be referred to as
HE.) Formally, the convergence of a congruence of
timelike or null geodesics, ¢, is defined as
c=—W*#,, with W*" representing the field of
tangent vectors, taken to be unit vectors when time-
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like, and indicating the increase in the affine param-
eter when null.

One can initiate convergence in bundles of geo-
desics by various methods. For example, a theorem
involving the gravitational collapse of a star, such as
Penrose’s theorem (Penrose,> HE, p. 263), assumes
the existence of a closed trapped surface, which is
defined to be a closed spacelike two-surface on
which both the ingoing and outgoing null geodesics
orthogonal to the surface are converging. This con-
cept is intended to make rigorous the intuitive no-
tion of light being ‘“‘dragged back” by a massive
body. (The prototype closed trapped surfaces are
the surfaces t=const, r=const for r <2M in the
Schwarzschild solution.) The energy conditions
guarantee that convergence, once initiated, will con-
tinue until conjugate points form in the geodesic
congruence, a conjugate point being a point where
infinitesimally neighboring geodesics intersect. This
result can then be shown to contradict the assumed
global causal properties of the spacetime, indicating
that the spacetime is geodesically incomplete.

To evaluate the implications of the singularity
theorems we may ask the following: Can the as-
sumptions involved be relaxed sufficiently so that
singularities are avoided without producing even
more objectionable physical situations? Attempts to
circumvent the predicted singularities have usually
consisted of modifying either the causality require-
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ments or the energy conditions. Work by Tipler?
seems to indicate that relaxation of the causality re-
quirements (by allowing, for example, the existence
of closed timelike curves) is more likely to facilitate
the formation of singularities than to prevent them.
Bekenstein* has created a closed homogeneous and
isotropic model universe which ‘“bounces,” under
certain circumstances, after reaching a critical densi-
ty upon recollapse. The “bounce” results from a
violation of the strong energy condition by a classi-
cal conformal massless scalar field which constitutes
part of the total stress-energy tensor of the model.
A paper of Tipler’s® suggests that, in fact, a more
realistic version of Bekenstein’s model (i.e., one that
allows the development of inhomgeneities) would
evolve singularities. Tipler has shown that singular-
ities predicted by the Hawking-Penrose theorem will
still occur if the strong energy condition is replaced
by the weak energy condition and the requirement
that the strong energy condition hold on the aver-
age. (For a review of this and other results concern-
ing singularities and horizons, see Tipler, Clarke,
and Ellis.®) In considering whether the weak energy
condition is violated, Tipler shows that if T, WH*W™
is bounded from below for all unit timelike vectors
W#, and if Ty, is type I (see HE, p. 89), then
T,,K*K" >0 for all null vectors K*.

In our investigation, we work exclusively with
Penrose’s theorem, which states the following.

Spacetime (M,g) cannot be null geodesically com-
plete if
() R, KFKY>0 for all null vectors K*
[(1) 1s implied by the weak energy condition],
(2) there is a noncompact Cauchy surface H in
M,
(3) there is a closed trapped surface 7 in M.

We ask how badly must one violate the weak energy
condition (while maintaining the other assumptions
of Penrose’s theorem) in order to obtain a spacetime
which is singularity free. Our motivation for con-
sidering violations of the weak energy condition
(which is certainly satisfied by all known forms of
classical matter) is the possibility that under the ex-
treme conditions of high density and large spacetime
curvature, as would exist in the late stages of gravi-
tational collapse, one’s notion of what constitutes
“reasonable” behavior of matter may have to be
modified.

In Sec. II, we formulate a general line element for
a singularity-free, spherically symmetric spacetime,
containing trapped surfaces, that might represent a
collapsing “star.” Differentiating that line element
leads to an expression for G,,, the Einstein tensor,
and hence to T,,, the stress-energy tensor. If the

spacetime is to be singularity-free, in the presence of
a trapped surface, the weak energy condition must
be violated somewhere, since we assume that the
other condition of the theorem, i.e., the noncom-
pact-Cauchy-surface requirement, is satisfied. The
goal of Sec. III is to discover where in spacetime the
weak energy condition must be violated. The result-
ing properties of the stress-energy tensor are exam-
ined in Sec. IV. Difficulties with our model do
arise, in that it predicts that for large masses the
weak energy condition must be violated even in re-
gions of low density, a result that appears physically
implausible. These difficulties are discussed in Sec.
V, and very briefly, the question of whether the en-
ergy condition violation required by the model can
be provided by particle production processes, due to
the nonstationary character of the metric, is con-
sidered. Our general conclusion is that, at least in
the spherically symmetric case, violation of the
weak energy condition does not seem to be a reason-
able way of avoiding singularities.

Units and signs. We work in units of G=c=1
and our metric signature is chosen to be
( > + ’ + ’ + )-

II. THE METRIC AND
THE GEOMETRIC PICTURE

Our model is to have the following properties. (a)
Absence of singularities, (b) spherical symmetry, (c)
presence of trapped surfaces, and (d) the existence of
a noncompact Cauchy surface. Conditions (c) and
(d) are required for Penrose’s theorem to hold. We
will assume that the spacetime is asymptotically
simple and empty (HE, pp. 222 and 223). Such a
spacetime will be asymptotically flat and will admit
a Cauchy surface; thus condition (d) is satisfied. As
we require freedom from singularities, the weak en-
ergy condition must be violated somewhere in the
model. We have restricted ourselves to a spherically
symmetric model in order to simplify the situation,
both calculationally and intuitively. We will consid-
er these four physical properties in turn.

The line element representing the interior of a col-
lapsing spherically symmetric cloud of matter is
taken to be

ds?>= —2F(u,v)du dv+r*(u,v)dQ? , 2.1

where dQ?=d 6%+ sin20d¢2, r=r(u,v) is the lumi-
nosity radius, and u# and v are null coordinates. We
work in null coordinates to avoid the types of coor-
dinate problems that one encounters in the
Schwarzschild metric at » =2M, and the interpreta-
tional ambiguities that arise for the region r <2M.
F is an undetermined function of u,v; the only a
priori requirements are that F >0 and finite every-
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where, and that F is C2 [In order to satisfy (a), F
must be nonzero everywhere, hence it has the same
sign throughout; it is positive if both u and v are
chosen to be future-pointing.] The luminosity ra-
dius r(u,v) is a nonvanishing positive C? function of
u and v (except at the center where r =0).

Because the functions F and r, and their deriva-
tives, will appear later in the stress-energy tensor, we
shall examine their transformation properties. As
relative signs of terms in T, will be important in
consideration of the energy conditions, let us list the
quantities that have covariant signs. The only coor-
dinate transformations preserving the character of
our null coordinates (i.e., future-pointing, linearly
independent) must be of the form

u=u(u), —>0,
dii
and (2.2)
dv
vr=v(v), —>0
v d17>

The only quantities whose signs are invariant under
the transformations (2.2) are »#, its first partial
derivatives r , and r ,, its second mixed derivative
r.uw, and F. The derivatives r,, and r,, may
change signs under (2.2), except when the first
derivatives of r are zero. Although the sign of F is
invariant, those of its first and higher derivatives are
not. These fairly obvious invariance properties will
be used later in this section and in Sec. III.

Let us now focus our attention on property (c),
the presence of a trapped surface. The usual dia-
grams illustrating the gravitational collapse of a star
that one finds in the literature (e.g., Hawking’) show
a trapped surface being formed when the surface of
the star passes through its Schwarzschild radius at
r=2M. The first trapped surface is depicted as ap-
pearing in the vacuum outside the collapsing matter.
Although such pictures are useful in emphasizing
the main features of gravitational collapse, they do
not illustrate the general case. Clearly there is no
need to synchronize the formation of the first
trapped surface with the passage of the star’s boun-
dary through r=2M. A real star has no such well-
defined “surface” in any case, since its mass distri-
bution tapers off gradually. Consider a massive
spherically symmetric collapsing cloud of matter
with mass M. A trapped surface will still form if
some portion of the cloud with mass AM, passes
through its Schwarzschild radius, r=2AM. This
portion will be surrounded by the rest of the matter
distribution; hence, in general, the first trapped sur-
face forms inside the body of the collapsing object.
As the collapse continues, a region of trapped sur-

faces will develop and grow both outward from the
center and inward toward the center. When the en-
tire mass M has fallen inside »=2M, the region of
trapped surfaces extends into the vacuum surround-
ing the star, and a black hole of mass M is formed.

Although trapping need not begin at the surface
of the collapsing object, it cannot begin at r =0. In
the spherically symmetric case, trapping at »=0 is
coincident with the presence of a singularity. If
r =0 is spacelike and therefore trapped, timelike and
null geodesics cannot pass through the origin and
remain causal. Such geodesics will have end points
on the curve r=0, and thus the spacetime will be
geodesically incomplete. (This is also true in the
limiting case when the curve =0 has an inflection
point, where its tangent is null. A timelike geodesic
encountering this point could not pass through the
origin without becoming null or spacelike.)

An instructive example illustrating the relation-
ship between trapped surfaces and singularities is
the case of a collapsing thin spherical shell. Outside
the shell, the metric is that of Kruskal. The metric
inside the shell is Minkowskian, since the spacetime
is flat. When the shell passes through its
Schwarzschild radius, trapped surfaces will form in
the vacuum outside the shell. The vacuum space-
time interior to the shell, however, is still Min-
kowskian, and will remain so until the imploding
shell reaches »=0. Thus, in this case, the trapped
region grows inward as the shell collapses, eventual-
ly intersecting r =0, with the formation of a singu-
larity.

As a prelude to the discussion of the formation of
trapped surfaces in our model, we now consider
some features of Kruskal’s extension of the
Schwarzschild line element (Kruskal,® HE, p. 155).
The Kruskal metric may be cast in the form (2.1)

M3e —r/2M

ds’=—32 dudv+r3dQ? . 2.3)

The function F of Eq. (2.1) is F=(16M3/r)e "M
and r, in turn is given implicitly by

r
———1|e"M=_up .
2M
Conversely, here u=—e~t=r/4M  and
: 3 .
b et Hr/aM iy
r
r¥=r4+2MIn|——1
2M ’

and t being the Schwarzschild time. (The relation-
ship between u, v, r, and ¢ given above holds for the
region r >2M, — o <t < + . For further details,
see Misner, Thorne, and Wheeler.?)
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On a Kruskal diagram we can examine the
r=const curves for the three regions r <2M,
r=2M, and r>2M (see Fig. 1). In the region
¥ >2M, the r =const curves are timelike hyperbolas
with null asymptotes r =2M, t=+ o and r=2M,
t=—o0. In the region r <2M, the r =const curves
are spacelike hyperbolas with the same asymptotes.
The line r =2M, t = + oo is the future event horizon,
i.e., it is the boundary of the region from which it is
possible to escape to infinity along a future-directed
causal curve. The transition of the r =const curves
from timelike to spacelike is characteristic of the
presence of trapped surfaces. Figure 1 is the dia-
gram representing an extension of the Schwarzschild
line element which is everywhere matter-free. Note
that in this diagram, each r =const curve is timelike,
null, or spacelike in its entirety. The situation is
somewhat different in the case of a spherically sym-
metric cloud of pressureless dust collapsing to form
a black hole.

One can represent the interior metric of the dust
cloud by a Friedmann geometry which is joined to a
Kruskal vacuum exterior. A Kruskal-type diagram
illustrates the situation in Fig. 2. (taken, with minor
modifications, from Rees, Ruffini, and Wheeler!?).
The curve AF represents the world line of the sur-
face of the cloud, which collapses from radius 3M to
r=0. As before, the line r=2M, t=+ o, is the
event horizon. All points to the left of AF are inside
the dust cloud, all points to the right of AF are in
the exterior vacuum region. Note that Fig. 2 differs
from Fig. 1 in that each of the » =const curves for
r <2M makes a transition from timelike-to-null-to-
spacelike; this transition occurs inside the body of
the cloud. Each point where an »=const curve is
spacelike, in both Figs. 1 and 2, represents a trapped
two-sphere.

There is an important distinction between a
trapped surface and event horizon. The event hor-

FIG. 1. Kruskal’s vacuum extension of the
Schwarzschild metric, in null coordinates. Each r =const
curve is timelike, null, or spacelike, in its entirety.

FIG. 2. Collapse of a dust cloud to a black hole, in null
coordinates. The r=const curves for r <2M undergo a
transition from timelike to null to spacelike (see Ref. 10).

izon, defined to be the boundary of the past of # 1,
is a global concept in the sense that in order to lo-
cate the event horizon one must have access to the
entire evolution of the spacetime. By contrast, a
trapped surface is a local concept, which implies the
existence of an event horizon only if the weak ener-
gy condition is satisfied. Penrose’s theorem applies
to a spacetime that contains at least one trapped sur-
face. It states that once a trapped surface has
formed in spacetime, and provided the weak energy
condition holds, then the degree of convergence in-
creases, until eventually a singularity forms.

Our model is shown in Fig. 3. The crisscrossed
lines at 45° are the null lines of constant u and v.
The heavy lines represent the congruence of
r=const curves; these are timelike outside the boun-
dary 8, null upon intersecting 8, and spacelike inside
the boundary 8. The region interior to 6 will be
hereafter referred to as the domain of trapped sur-
faces &. The intrinsic points A4,B,C,D are the
points where the tangent to 8 becomes null. The in-
terior metric for the spherically symmetric collaps-
ing cloud of matter, illustrated by Fig. 3 is described
by Eq. (2.1); we require that the spacetime is locally
Minkowskian at the origin, which precludes inter-
section of =0 by &, and asymptotically flat (i.e.,
“scri” is null).

This model represents a situation in which a re-
gion of trapped surfaces develops, exists for some
finite time, and then disappears. Kodama'!!? has
recently claimed that the occurrence and disappear-
ance of a trapped region between two partial Cauchy
surfaces, satisfying certain conditions, is necessarily
accompanied by the formation of a naked singulari-
ty. Our model does not exhibit this property, as, by
construction it is everywhere singularity-free.
Kodama’s use of what he refers to as a “locally
trapped region” suggests that in his terminology a
trapped surface is invisible from .#*, which is true
only if the weak energy condition holds (HE propo-
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FIG. 3. Our geometric model, showing the domain of
trapped surfaces, &. The heavy black lines are r =const
curves. A given r=const curve is timelike outside &,
null upon intersecting &, and spacelike inside &Z.

sition 9.2.1). Notice that there is no event horizon in
this model—all world points inside & are connected
with #* by null geodesics. Outgoing null rays
starting at the center, r=0, cross the r=const
curves in an increasing direction until they reach §;
once inside the domain of the trapped surfaces, &,
they cross the r =const lines in a decreasing direc-
tion; on leaving & they again cross the r=const
curves in an increasing direction.

In the u,v plane, we wish to require that & be
connected and simply connected, which means that
8 is S'! (topologically equivalent to a circle); the pur-
pose of these assumptions to keep the model as sim-
ple as possible. For example, allowing the r =const
curves to oscillate in character between timelike and
spacelike inside & (i.e., & nonsimply connected)
would needlessly complicate the physical situation.

To view the evolution of the trapped surface re-
gion, we may look at a series of spacelike slices
through & in Figs. 4(a) and 4(b). A single “margin-
ally trapped” sphere is present on S; (a marginally
trapped surface is a closed spacelike two-surface on
which the outgoing null geodesics orthogonal to the
surface have zero convergence); on S, the trapped
surfaces occupy a region between two concentric
spheres. This region continues to grow inward and
outward until S3; by S,, it has begun to shrink,
disappearing altogether after S5. Figure 4(b) illus-
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FIG. 4. Time evolution on a series of two-dimensional
spacelike slices.

trates this evolution in two dimensions.

As we have previously listed those derivatives of »
whose signs are invariant, we will determine the
signs of these derivatives in the different regions of
Fig. 3 for use in the next section.

In our notation, a u =const line is parametrized
by v; i.e,, 8/0v is a directional derivative along a
u =const line. An ingoing null ray (v=const line)
always crosses the » =const lines in a decreasing or-
der, both inside and outside <. Therefore,
dr/du <0 everywhere in Fig. 3. An outgoing null
ray (u =const line) crosses the r =const lines in an
increasing order outside &, but in a decreasing or-
der inside <. Therefore, dr/dv >0 outside &,
dr /dv <0 inside &, and dr /dv =0 on §, the boun-
dary of &. If we examine r ,=3dr /3dv along an in-
going null ray (v =const line), we see that r , is posi-
tive outside &, and negative inside &, then r ,, <0
below a certain line, 7 ,, >0 above that line, and
=0 on that line. This line must connect points
C and D. (One sees this by choosing the ingoing
null ray to be the one passing through C or D. Since
r >0 outside & and r , <0 inside &, then r ,, =0
at points C and D.)

III. THE STRESS-ENERGY TENSOR
AND THE WEAK ENERGY CONDITION

Appendix I contains the components of the
stress-energy tensor, which were obtained by deriv-
ing G#V=Ruv—%gwR from the line element (2.1),
and setting this expression equal to 877 ,,. We wish
to examine the weak energy condition (referred to as
WEQC) for various timelike and null vectors. The
weak energy condition (HE, p. 89) states that
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T,,WHEW?Y >0 for every timelike vector W .
(3.1)

By continuity, this inequality also holds when Wis a
null vector.

In coordinates (u,v,0,¢), the requirement for an
arbitrary radial vector W#*=(c,K,0,0) to be timelike
is that ¢ and K have the same sign. Hence for time-
like radial vectors the WEC turns into

Ty WHEWY=c*T,, +2cKT,, +K*T,, >0, (3.2)

which in turn is equivalent to a set of inequalities in-
volving the stress-energy tensor alone.

Assume first that T,,50, T,,#0. Define a func-
tion f(x)=T,, +T,, +x*T,,, where x=K /c with
range 0 <x < oo. For the WEC to be satisfied, f(x)
must be non-negative throughout this range. Look-
ing both at the extremum of f(x), if any, and at the
boundaries of the range of x, we obtain the three
inequalities

Tuu > _(Tuu Tuv )1/2 ’ (3-3)
T, >0, 3.4)
T,,>0. (3.5

These inequalities can be shown to include the limit-
ing cases in which T,, or T, vanish, or both.
Equation (3.4) is equivalent to the statement of the
WEC along an arbitrary null vector in the u direc-
tion (¢ =0), while (3.5) is the same expression along
a null vector in the v direction (K =0).

Analogous results can be obtained for nonradial
timelike/null vectors. For such timelike vectors
with u,v,0 components, a necessary (but not suffi-
cient) condition for the WEC to hold is that

2
Top> —1F—[Tu.,+<T,m T,)'?] . (3.6)

Equation (3.6) is a sufficient condition for null vec-
tors, and therefore only a necessary condition for
timelike vectors, since the WEC is violated for some
timelike vectors if it is violated for null vectors.
(This is simply the contrapositive of the earlier
statement that if the WEC is satisfied for timelike
vectors, then it is satisfied for null vectors.) An ex-
pression similar to (3.6) may be obtained for the
timelike/null vectors with u,v,¢ components.

Using the relevant expressions from Appendix I,'

(3.4) and (3.5) may be rewritten as

=7 w r,vF,v

——>0, 3.7
p + F > (3.7
—r r o F
222250, (3.8)
r rF

respectively. Equations (3.3) and (3.6) may be recast
in a similar fashion, but because of their length, we
do not include them explicitly. (Note that the ap-
parent singularities that occur in certain terms, at
r=0, are merely coordinate singularities, due to our
choice of spherical coordinates. Recall that our
metric is intrinsically singularity-free, by construc-
tion.)

As our next step we shall examine the inequalities
stemming from (3.3) to (3.6) in different regions of
Fig. 3, so as to ascertain where the WEC violation
occurs. Our approach is to assume initially that the
energy condition is satisfied everywhere and then at-
tempt to arrive at a contradiction. The discussion of
such equations as (3.7) and (3.8) is hampered by the
occurrence of derivatives of » and F whose signs are
not covariant. However, for Eq. (3.7) only these
derivatives drop out on the boundary 8, so this is
where we shall focus our attention. On the boun-
dary, Eq. (3.7) reduces to

—rw>0, (3.9)

an invariant statement as r ,=0 on §.

Consider (3.9) on different portions of 8. At A4,
(3.9) is trivially satisfied; since 4 is an inflection
point of an r=const curve, r,,=0. The same is
true at B. Along the open interval ABC, r ,, <0;
therefore (3.9) is satisfied; along open interval ADB,
r w>0; therefore (3.9) cannot be satisfied. This
violation of the WEC along ADB is independent of F
and its derivatives; there is no way to adjust F for its
derivatives in order to preserve the energy condition
in this region—its violation is unavoidable because
of the geometry of the model. The only way to re-
move it would be to allow the »=const curves em-
erging from & to be timelike past-pointing. (De-
forming the shape of & will not remove this
feature: it is a characteristic of the transition of the
r=const curves from spacelike to timelike, i.e., of
trapped surfaces becoming ‘“untrapped.”) Placing
the curve r =0 to the right of &, instead of to the
left, in Fig. 3, is not a viable alternative either; in
that case an outgoing future-pointing null ray from
the origin always crosses the r =const curves in an
increasing order; therefore, there are no (future)
trapped surfaces.

A little more information as to the extent of the
region of energy condition violation can be obtained
by examining the Raychaudhuri equation (HE, Secs.
4.1 and 4.2) along a radially outgoing null geodesic
that passes through the interior of &. That equa-
tion is

dc

2
2 c
T =RWUMU 2074207+ 5, (3.10)

where c is the convergence of infinitesimally neigh-
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boring null geodesics, @ is the vorticity, o is the
shear (see HE, Secs. 4.1 and 4.2 for details; in our
notation ¢= —6, where 0 is the expansion used in
HE), and A is the affine parameter along the geo-
desic. Because of the spherical symmetry of our
model, the shear and vorticity vanish for radial geo-
desics and the Raychaudhuri equation reduces to

dc c?

—— =R, UFUY+ — , 3.11

dn uv + 2 ( )
or, using the field equations and setting
U=(0,¢,0,0), to

dc c?

H-—:Sﬂasz—}-T (3.12)
along radially outgoing null geodesics. In fact, the
Raychaudhuri equation (3.12) is simply the field
equation (see Appendix II):

27 N 2r ,F, -

8T == r rF

(3.13)

Outside &, the convergence is negative. On the
interval ACB, the convergence along U* is zero, as it
is on interval ADB. In the interior of &, the con-
vergence is positive, since each point in this region
represents a trapped surface. Therefore, the conver-
gence must have at least one maximum somewhere
inside &. Consider the simplest case of a single
maximum. Let A; be the point where the null geo-
desic intersects ACB (i.e., enters &), A; the point
where it intersects ADB (i.e., exits &), and A, the
point in the interior of & where the convergence
reaches its maximum.

At the point A, c=0 and dc/dA >0, as the null
geodesic is passing from a region of negative conver-
gence to a region of positive convergence. Hence,
T,, >0 at A,. This argument holds at all points on
the open interval ADB. At A,, dc/dA=0 and
a*T,, = —c?/2, implying T,, <0 at A,. At A3, ¢=0
and dc /d A <0; therefore T, <0 everywhere on open
interval ADB in accordance with our earlier result.
As T, is positive at A, and negative at A,, T,, must
have a zero between A; and A,. It follows directly
from the field equation (3.13) that T,,=0 at the
points 4 and B, since r ,=0 at all points of 5, the
boundary of &, and r ,,=0 at 4 and B, as both are
inflection points for the r =const curves that pass
through them.

If we connect the points along each null geodesic
where T,, changes sign, and connect the points
along each null geodesic where dc /dA changes sign,
we obtain two ‘“‘spines” connecting points 4 and B,
as illustrated in Fig. 5. The solid dark line connects
the turning points of T,,, and the dash-dotted line
connects the turning points of dc/dA. We again

FIG. 5. Zero lines of T,, and dc/dA. The solid dark
line connects the turning points of T,,, and the dash-
dotted lines connects the turning points of dc /dA.

note that along each null geodesic (with the excep-
tion of those passing through points 4 and B), T,
changes sign before (i.e., at a smaller value of the af-
fine parameter) the convergence has reached its
maximum value.

Thus the region of unavoidable WEC violation
extends beyond a narrow neighborhood of the boun-
dary ADB, and penetrates deep into the interior of
D as well. (We have shown that the WEC is violat-
ed for null vectors in these regions; therefore, by
continuity, it is also violated for some timelike vec-
tors.) Violations may occur in other regions of Fig.
3, however such violations do not seem to be forced
upon us, in contrast to the cases just discussed.

IV. CONSEQUENCES OF THE VIOLATION
OF THE WEAK ENERGY CONDITION

In order to examine the physical consequences of
the WEC violation, we will express the components
of T, in a local Lorentz frame. Defining new time-
like and spacelike coordinates, ¢ and x, by

S UV S PR
t—‘/i(v—ku)——x ) x—‘/i(v u)=x",

4.1)
we transform T, to obtain
Too=3Tuu+ T +2T) ,
Ti=5(Tuu+Tow—2Tw) » 42
Tor=T10=7Tp—Tu) -
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A straightforward calculation shows that, in a lo-
cal Lorentz frame, an arbitrary two-dimensional
stress-energy tensor can be diagonalized by a
Lorentz transformation (i.e., the T, component
vanishes in the new frame of reference) only if the
following inequality holds:

AT 102 < (Too+T11)? . (4.3)

Equation (4.3) is a necessary (though not suffi-
cient) condition for diagonalization. [This is the
condition that the usual special-relativistic velocity
parameter B, of the transformation, be real. Since f3
must also be less than 1, (4.3) is not sufficient.] Sub-
stituting expressions (4.2) in (4.3) we arrive at the
condition

1, T,>0, (4.4)

which is equivalent to (4.3). T,,T,, >0 is satisfied
only if T, and T,, have the same sign.

We have seen in Sec. III that there is no reason-
able way to avoid a violation of the weak energy
condition in the form of T, <0 in a neighborhood
of §, the boundary of &, and in a portion of the in-
terior of <. However, we are not forced to con-
clude that T,, <O in these regions. The only reason
for requiring T, <0 would be to avert the focusing
of ingoing null rays. Since ingoing null rays con-
verge even in Minkowski spacetime, there does not
seem to be sufficient justification for demanding
that T,, <O (Tipler'®). We will subsequently as-
sume that T,, >0, for although it is possible that
Ty, <0, we are not driven to such a conclusion, in
contrast to the case of T,, <O.

Therefore, in the regions of Fig. 3 where T,, >0
and T, <O, the inequality (4.4) cannot be satisfied.
There exist no local observers who see zero energy
flux.

What are the conditions for Ty <0 in some
frame of reference, where Ty, is the Lorentz-
transformed energy density? T, <O implies that

Too=v>Too—2By>T1o+B* Ty <0, 4.5)

where B is the usual special-relativistic velocity
parameter, and y=(1—p£?)"12 Assume Ty >0,
T, >0. Define f(B)=To—2BT10+B*T;,, with
—1<B<1. Since y? is positive, f(B) has the same
sign as Too. If f(B) <O at either end of the range,
then there will be frames of reference (with |p|
close to 1) where To <0. At the ends of the range,

Tow+Ty <2Ty, ,

(4.6)
Too+T11<—2Ty

. So=—7,
Tyy=%pofuEy , (“cold dust”) with

are the conditions for f(B) <0. Equation (4.6) can
be rewritten as

| Tor | > 5(Too+T11) 4.7)
or
4T 2> (Too+T11)? .

Equation (4.7) is the condition that f(8) <0, on at
least one end of the range. Comparing with (4.3),
we see that (4.7) is equivalent to the non-
diagonalizability requirement.

Does f(B) have a minimum? Setting f'(3)=0, we
find that

TOl

min=— 5 - (4.8)
B T]l

Since | 8| must be <1,
| Tor | <Ty - 4.9)

For f(B) <0 at the minimum, the condition
ToTyy <Top? (4.10)

must be satisfied along with (4.9). Equation (4.10)
can be rewritten as

4T 012> (Too+T11 )2 —(Too—T1; )* . @.11)

Comparing (4.7) with (4.11), we see that a sufficient
condition for (4.11) to hold is that (4.7) is satisfied.

Thus in regions of our model where T,, <0 and
Ty, >0, T,, is nondiagonalizable in a local Lorentz
frame; this implies that there will also exist local
Lorentz observers for whom the energy density is
negative.

The fact that T, is nondiagonalizable does not
necessarily imply noncausal propagation of informa-
tion. As an example, we consider a (very naive)
two-dimensional model in Minkowski spacetime.
Take a system whose total stress-energy tensor con-
sists of the stress-energy of two oppositely directed
streams of noninteracting particles, one whose parti-
cles have positive rest mass, the other consisting of
particles with negative rest mass. The particles
move with equal but opposite velocities in some
Lorentz frame of reference, and in that frame let
p_=—p, (i.e, equal but opposite mass densities).
The stress-energy tensor for each stream has the
form

§1=1PBy with0<B <1 and py>0,
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where p, is the absolute value of the mass density in
the rest frame of the particles and B is the magni-
tude of the velocity of the stream, in units of ¢, in
the observer’s Lorentz frame. The total stress-
energy tensor for the entire system has the form

0 —2poBy?®
Tw=|—208y> 0

Applying condition (4.3) to (4.12), we see that
(4.3) is violated, i.e., (4.12) cannot be diagonalized by
a Lorentz transformation. (In the Lorentz frame we
started with, because of the opposite signs of the
mass densities, 7905%40.) However, nondiagonaliza-
bility of T, does not, in itself, imply a violation of
the WEC (e.g., the stress-energy tensor for elec-
tromagnetic radiation, all of which is moving in one
direction, is nondiagonalizable, but obviously does
not violate the WEC).

For a timelike vector W*=(1,0), the WEC ap-
plied to the stress-energy tensor of (4.12) yields

T, WHWY=0.

(4.12)

Similarly for an ingoing null vector V#=(1,—1),
T, V*V¥=4p,By 2>0.

However, for an outgoing null vector U*¥=(1,1) we
obtain

T,,UFU"= —4pBy* <0 .

Hence, the WEC is violated. Interestingly enough,
in our model also the WEC is violated along outgo-
ing null rays.

For our model, T™ represents the local energy
flux, in terms of local timelike and spacelike coordi-
nates ¢t and x. If T%>0 or equivalently T, <O
(since T™= —T,,), then the flux is outwards (i.e.,
positive energy is transported away from the center,
or negative energy is transported toward the center
of the matter cloud). If T" <0 or equivalently
T, >0, then the flux is inwards (i.e., positive energy
is transported toward the center, or negative energy
is transported away from the center of the cloud).

Recalling that T, = %( Ty —Tyu)=—T% (note
that in null coordinates T%*=T,,), we see that if
T,, <0 and T,, >0, then T%>0. Therefore, one
consequence of the WEC violation can be interpret-
ed as the existence of an outgoing energy flux (or
equivalently, negative-energy transport toward the
center), which cannot be reduced to zero in any local
Lorentz frame.

The stress-energy tensor (4.12) and that of our
model are both examples of a Type-IV stress-energy
tensor (HE, p. 90), i.e., T, has no timelike or null
eigenvector.

V. PHYSICAL PLAUSIBILITY OF THE MODEL

Originally it was planned to develop this scenario.
A spherically symmetric cloud of matter is undergo-
ing gravitational collapse. The collapse proceeds un-
til trapped surfaces begin to form inside the body of
the cloud. Meanwhile, the density of matter in the
core is steadily increasing, to become ultimately
many orders of magnitude larger than any densities
that have been observed in the laboratory. We pos-
tulate that under these “exotic” conditions the weak
energy condition may be violated sufficiently that no
singularity forms.

We have shown that the WEC is violated at least
in a neighborhood of the interval ADB, on the boun-
dary of &, including a region interior to &. Our
model will have these same physical properties even
for the case of very large masses. That this is so can
be seen by considering a “scaling” argument.

In a quasi-Cartesian coordinate system (i.e., one in
which the coordinates all have the same dimension,
that of length) the Christoffel symbols have the di-
mension of (length)_'. The Einstein tensor, G,“,, be-
ing formed from derivatives of the Christoffel sym-
bols, has the dimension of (length) ~2. If one “scales
up” the coordinates (i.e., let x—ax?, a>0), then
the Christoffel symbols are scaled by a factor of
a~!, and the components of T,, are scaled by a fac-
tor of @2, while the total mass increases by a factor
of a. Therefore, if one forms a new solution of the
Einstein equations by scaling up the original solu-
tion, then the new solution will have the same physi-
cal properties (e.g., trapped surfaces) as the original
solution, since the new right-hand side of the field
equations only differs from the original right-hand
side by a factor of a—2.

The r =const curve that passes through A4, r;,, is
the smallest value of r intercepted by &; the
r=const curve that passes through B, r,., is the
largest value of r intercepted by &. B represents the
largest value of r at which a trapped surface begins
to form. For a large enough mass, r,, can be quite
large, and the density in this neighborhood may be
quite small. If the mass undergoing collapse is of
the order of the mass of a galaxy, for example, the
density of matter in the region where a trapped sur-
face first forms may be less than the density of air.
An observer falling freely through this region would
notice no gross deviation from flat spacetime; he
would experience no excessive tidal forces.

Therefore, in the case of large masses, a neighbor-
hood of B could be a region of normal matter densi-
ty; whereas a neighborhood of A4, being closer to the
core, could be a region of high density. The results
of our model imply that the weak energy condition
must be violated even in regions that may be of very
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low density. We saw earlier that one consequence of
this violation was that any local inertial observer in
this region must see an energy flux. How does the
matter of the cloud “know” to behave in a bizarre
fashion, since this region would not otherwise ap-
pear to exhibit any exotic properties to a freely fal-
ling observer? Such behavior would be more accept-
able if it occurred in regions of high density because
matter there would experience enormous curvatures
and tidal forces.

One might consider the possibility that the WEC
violation observed in the low-density region is a re-
sult of a violation which first began in the high-
density region and propagated outward. We can
ask: Can & be stretched or distorted in such a way
that all observers will see the WEC violation begin
first in the high-density (i.e., close to the core) re-
gime? This idea can be made more precise. Recall
from Fig. 4(b) that if S is a spacelike slice through
9, then SN has the form of an annulus when re-
stricted to two dimensions. Referring to Fig. 6, the
trapped region on S is confined to the annulus, and
the outer boundary of this region, which is defined
to be the apparent horizon (HE, p. 320) on S, is indi-
cated by the heavy circle. An observer having S as
one of his “f=const slices” would see the violation
begin initially in the low-density region, i.e., in a
neighborhood of the apparent horizon.

Suppose now that & is distorted, as in Fig. 7. An
observer with S’ as one of his # =const slices would
see the violation begin initially in the high-density
region, i.e., in a neighborhood of the dashed circle
marking the inner boundary of the annulus. In both
Fig. 4(a) and Fig. 7, 4 and B are defined as the two
inflection points of r;, and r,,,, respectively.

We see that the question we have raised depends
on the metric separation between 4 and B. If 4 and
B are spacelike separated, then for some observers

Tmax

FIG. 6. Onset of WEC violation in the low-density re-
gion. The curves labeled 7., and 7., are the smallest
and largest values of r intercepted by &, respectively. S
is a spacelike slice through <.

r=0

A [

FIG. 7. Distortion of &, with the purpose of shifting
the onset of the WEC violation to the high-density region.

the WEC violation begins in the low-density region.
This contingence could be avoided only if B is in the
causal future of point 4. If 4 < B (see HE, Chap. 6
or Penrose!* for notation), then all observers will see
the violation occur first in the high-density (close to
the core) regime. But this arrangement, B > A4, is
impossible.

If the domain & is compact, with smooth boun-
dary (this is necessary in order that the derivatives
of r be well defined), then in the u-v plane, the boun-
dary of & must have at least two timelike segments,
at least two spacelike segments, and at least four
points where the tangent to the boundary becomes
null. These are the points we have labeled 4,B,C,D.
Note, by comparing Fig. 6 and Fig. 7, that no
matter how & is drawn, 4 and C each lie along a
portion of a null cone such that the relationship be-
tween them is always timelike [see Fig. 8(a)]. Like-
wise, C and B each lie along a portion of the same
future-pointing light cone, such that the relationship
between them is always spacelike [Fig. 8(b)]. We no-
tice also that C <<A4 (4 is in the chronological fu-
ture of C; i.e., C can be connected to 4 by a future-
directed timelike curve; see HE, Chap. 6 or Pen-
rose!*).

Proof. Suppose that C <<A4 and A < B (B is in the
causal future of 4; i.e., 4 can be connected to B by a

(a) (b)

FIG. 8. Causal relations between 4, B, and C. A is in
the chronological future of C, while C and B are spacelike
separated.
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future-directed timelike or null curve). If
C <<A <B, then C <<B (see Geroch!®> or Geroch
and Horowitz!® for readable reviews of global tech-
niques in general relativity), which cannot be true
since we have seen previously that C and B must al-
ways be spacelike separated. Therefore, 4 £B, i.e.,
B cannot lie in the causal future of 4.

By a similar argument, one can show that if
C <<A and if D and A4 are spacelike separated, then
D £C. We cannot, however, conclude from this ar-
gument that B <A. In fact, it is possible to have ei-
ther B <A or A and B spacelike separated. In con-
clusion, then, there will always be some observers
who see the WEC violation begin in the low-density
region.

One might ask whether the trapped region must
be compact or whether the domain & could be non-
compact and still not intersect the curve r=0. We
have seen that the WEC violation arises from the
transition of the r =const curves from spacelike to
timelike. One might argue that this transition could
be avoided if the ADB section of the boundary were
moved off to infinity. This approach conflicts with
the requirement that there should exist observers
(stationed outside the collapsing cloud, at large
values of r) who never encounter the trapped region.
This requirement is implied by the supposition,
adopted in this whole investigation, that the collapse
of a starlike object is a local event, which does not
drastically modify the structure of infinity. Accord-
ingly, we have taken the spacetime to be asymptoti-
cally simple and empty (HE, p. 222), so that the
structure of infinity is the same as in Minkowski
spacetime. Constructions involving a noncompact
& can be shown (e.g., by means of Penrose dia-
grams) to be incompatible with at least one of the
following: (1) the assumption of asymptotic simpli-
city, (2) the existence of observers at large r who
never encounter the trapped region, or (3) the validi-
ty of the WEC throughout the low-density region.

In the search for a model of matter compatible
with the negative-energy flux needed to avoid the
occurrence of a singularity following the onset of
trapping, one contemplates, of course, the possibility
of postulating exotic states of quantum matter, in-
cluding particle creation resulting from spacetime
curvature (Hawking!” and subsequent literature). If
such processes occur, our (classical, nonquantum)
expressions for 7, might be interpreted as the ex-
pectation values of the stress-energy tensor that in-
cludes these quantum fields.

Hawking, in his paper on particle creation by
black holes, states that particle production by the
gravitational field arises from the uncertainty in the
local energy density, for modes of the matter field
whose wavelength is at least of the order of the ra-

dius of curvature of spacetime. According to
Hawking, the total uncertainty in the local energy
density is of order B multiplied by (L,’B), where B
is the magnitude of some component of the curva-
ture tensor and L, denotes the Planck length. In a
scaled-up version of our model, which corresponds
to the case of a large mass, the local energy density
of the created particles decreases by a factor of a ™%,
where a is the scaling parameter. However, the con-
vergence, ¢, decreases by a factor of a~!, because ¢
is proportional to the product of the curvature mul-
tiplied by the distance over which the curvature
focuses.

As the local curvature may be small in a trapped
region formed inside a collapsing body of large
mass, it would seem that for a macroscopic object
particle production is negligible and cannot provide
the negative-energy flux required by our model. Ac-
cording to Hawking, the negative-energy densities
involved in these processes cannot cause a break-
down of the classical singularity theorems until the
radius of curvature of spacetime becomes of the or-
der of the Planck length, ~ 1033 cm.

VI. CONCLUSION

We have constructed a model of a collapsing
spherically symmetric cloud of matter, containing a
region of trapped surfaces, &, which forms and
subsequently disappears. This disappearance of the
trapped region, as well as the singularity-free char-
acter of the model, are made possible by a violation
of the weak energy condition; this violation is re-
quired in a neighborhood of the outer boundary of
& and also in a portion of the interior of &. Any
local inertial observer in these regions will see a
nonzero energy flux, which can be interpreted as a
transport of negative energy toward the center of the
cloud. In addition, this nondiagonalizability of T,
by a Lorentz transformation implies that there exist
local Lorentz observers for whom the local energy
density is negative.

Another result of the model is that, in the case of
large masses, the weak energy condition must be
violated in regions of low matter density. Distortion
of the trapped region &, with the result of transfer-
ring the onset of the WEC violation to the high-
density regime, was shown to be impossible.

Although we did not offer a conclusive argument,
we consider it plausible that particle production pro-
cesses provide an insufficiently large energy condi-
tion violation, in regions of low density, for our
model.

Thus our conclusion is that, at least in spherically
symmetric cases involving large masses, violation of
the weak energy condition is probably not a viable
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method for preventing the formation of singulari-
ties.

Many workers in the field feel that the problem of
singularities can be resolved (if at all) only within
the framework of a satisfactory quantum theory of
gravity. Alternatively, one may have to learn to live
with spacetime singularities. The resolution of this
problem will have to be left to the future, as a work-
able quantum theory of gravitation does not yet ex-
ist.
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APPENDIX 1.

The following expressions can be derived from the
line element (2.1).
The Christoffel symbols:

D=7 Tlu=—"

R I

00="p > lee="p >
Thg=—>—sin’6 , I",’;¢=—’vsm29,
6 6 Fou T u
FuOZFGu— ’ F‘ﬁa&_rgu: y

6 T r
Fvo=rgv=7 , T¢=r4,= rv ,

Fg¢= — sinf cos6 , I“3¢= F$0= cotf .

The Ricci tensor:

2r 2r F 2r ,r
Ruuz""——’i&'{" — ’ R99= ot
r rF F
2rr
+——F:‘£+1 ’
27 2r ,F ,
R, =——— 22 Rys=Rggsin%0 ,
2 - + F ¢ g0 SIN
2r yy Fuw FLF,
R, —R. —_lw 7, Ll
uv vu r F + F2
The curvature scalar:
R=8",uv+2F,uv__2F,uF,v+4",ur,v+i
rF F? F3 r’F r?

The stress-energy tensor:

1 27 wu 2r JF ,

T, =—|_—— % ¥

e g r + rF ’
Tvuzi _ 2rw  2r,F, ,

8 r rF

T - 1 [2rw  2rury,  F

uw 87 r r2 r2 ’
T 1 2rr , r*F,, r?F,F,

06 — 8 - F - F2 F3 ’

T¢¢ = ng sin26 .

APPENDIX II

(1) Let U¥=(0,,0,0) be the tangent vector to an
outgoing null geodesic. Then
1
UK UY=0 =a=— .

(2) The convergence c is defined to be
c=—Uk,=—U",—(Th,+Tog+Ti)U"

2r,
© ¥F

Therefore,
2r,
rF

(3) If A is the affine parameter along the null geo-
desic, then

de _1lde = 2y  2r,)? N 2r ,F,
AN " Fdv 2 ' p2p? rF?
1 2rw  2r,F, 2(r ,)?
F? r rF riF?
2
—8ma?T,, + <
2
Therefore,
dc c?
"‘17 =87Ta2Tu,, + -2— s

which is the Raychaudhuri equation for a radial
outgoing null geodesic. Thus for the case of radial
null geodesics, the Raychaudhuri equation is simply
one of the field equations.
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