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The chaotic behavior of solutions to Einstein’s equations has recently been studied by Barrow
within the framework of the dynamical systems theory. Barrow’s program of gravitational tur-
bulence is implemented in part by considering the solutions of type VII, and IX as well as some in-
termediate types. Quantitative measures of chaos, such as the power spectrum and Lyapunov
characteristic exponent, are computed. By converting the equations of motion for the cosmic scale
factors to stochastic Langevin’s equations, the Mixmaster cosmology in the presence of driving noise
terms is investigated. Possible sources of noise can be attributed to an imperfect cancellation of the
effective vacuum energy density and the energy density associated with the Higgs field. An ensem-
ble average over random trajectories leads to the suppression of chaotic behavior for type-IX cosmol-

ogy.

I. INTRODUCTION

As is now well known, any isotropic homogeneous
universe governed by Einstein’s equations must have start-
ed with a singularity of infinite density.! This type of
singularity, referred to as a Friedmann-Robertson-Walker
(FRW) singularity, is characterized by the fact that the
vanishing of spatial distances occurs according to the
same law in all directions. The singularity of the oscilla-
tory type, as exemplified by the Mixmaster? cosmology, is
a general feature of solutions to the Einstein equations.
This feature is independent of the assumption about the
space homogeneity.> There exist numerous reasons for
considering non-FRW models. The arguments of primor-
dial chaos, as advanced by Misner* and Rees,’ have been
framed quantitatively in a general classification scheme of
anisotropic models.® The generic singularity of the Belin-
skii, Khalatnikov, and Lifshitz (BKL) type’ has recently
been discussed by Barrow,®® and Chernoff and Barrow,®
in the context of dynamical systems theory. In Ref. 9,
Barrow raised an intriguing question about the possibility
of gravitational turbulence. As the curvature parameter is
varied along the Bianchi sequence of cosmological models,
the system would—through period doubling or a succes-
sion of three Hopf’s bifurcations (Ruelle-Takens
mechanism)—tend to an increasingly chaotic behavior.

The Mixmaster evolution is highly chaotic in the sense
that the approach toward the singular point is made up of
successive series of oscillations the lengths of which have
the character of a random process. Since the model also
exhibits a sensitive dependence on initial conditions, it im-
plies stochasticity. For dissipative systems in three or
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more dimensions, there exist the structures which are
characterized as having a fractional dimension—strange
attractors.!® The statistical self-similarity or the Cantor
set behavior, which is a characteristic criterion of the
strange attractor, is not contained, however, in the Mix-
master model.

Within the context of the chaotic dynamics, the interre-
lation between the inherent chaotic behavior and the
noise-impressed fluctuations has repeatedly been investi-
gated.!! The purpose of this paper is to study the effect of
white noise on Mixmaster oscillatory evolution. It has
been stressed by BKL that in the perfect-fluid limit one
may neglect the influence of the stress-energy terms in the
Einstein equations. However, the oscillatory Mixmaster
behavior need not persist in a stiff-matter era where the
equation of state for density p and pressure p takes the
form p =p. The initial state of the Universe was then iso-
tropic and quiescent rather than chaotic.'> When matter
is described by an effective energy-momentum tensor con-
taining the vacuum energy due to the cosmological term,
the stress-energy terms become unimportant in the hard-
thermal-state limit p =p/3. What remains is the effective
vacuum energy density p, and the energy density p, asso-
ciated with spontaneous-symmetry-breaking terms.!> The
imperfect compensation between p, and p, is a possible
source of noise in the Einstein equations. Another source
of noise can be due to the fluctuations in the Euclidean
four-volume as considered by Hawking.'*

In the remainder of this paper, we summarize, in Sec.
II, the basic equations of the Mixmaster model. In Sec.
III, the chaotic behavior of the Mixmaster dynamics is
analyzed quantitatively by computing the Lyapunov ex-
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ponent and the power spectrum of the system. The
sources of noise are described in more detail in Sec. IV.
Finally, by considering an ensemble of Mixmaster trajec-
tories, starting all from the same initial point in the phase
space, we show in Sec. V that the fluctuating effective
cosmological term leads to suppression of the chaotic
behavior.

II. EINSTEIN’S EQUATIONS
IN ANISOTROPIC HOMOGENEOUS SPACE.

Following the Landau and Lifshitz!® timelike conven-
tion, we write Einstein’s field equations with a cosmologi-
cal term in the form

R,y — 5Rgu—Agyuy=87GT,, , (1)

where the metric has signature (+ — — —) and where we
have set the velocity of light ¢ =1. For a perfect relativis-
tic fluid the energy-momentum tensor has the form

Ty.vz —ngv"‘(P +P)Up u,, 2)

where p is the pressure, p the energy density, and U the
velocity of fluid in a comoving frame. By defining an ef-
fective (generalized) energy-momentum tensor

T,';,,:(A/81TG)g,W+TMV R (3)
we can write Eq. (1) as

R, = SvGS;v , 4)
where the source term S;v is

Siv=Thy—3T 8y - (5)
Here

Thy=—p*8uv+(p*+p*)U,U, , (6a)

p*=p—A/87G , (6b)

P =p+A/87G, (6¢)

T* =g'“'T:'“, . (6d)

In a synchronous (Gaussian normal) system of coordinates
the interval element is given as

ds’=dt*—dl*, (N

where the spatial line element involves components y;;
(i,j =1,2,3) of the spatial metric tensor

dI*=y;dx'dx’ . (8)

For a homogeneous space of Bianchi type VIII or IX, y;;
is

Vi () =1pq()e{Pef? &)
where
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TNpg (1) =diag(a’(1),b*(1),c (1))

and e{”’ (p =1,2,3) are the three frame vectors determined
by the structure of constants of the group of motions."

The matter filling the space cannot, in general, be at rest
relative to the synchronous reference frame. In fact, the
velocity four-vector U, satisfies the hydrodynamic equa-
tions” 13

(10a)
(10b)

abcUyp3/*=const ,
Urp'/*=const (k =1,2,3) .

However, if the synchronous frame is also comoving with
respect to matter, we have Uy=1 and U, =0 [Ref. 15(a)].
In this case the spatial components of Einstein’s equations
(4) yield

(Ina?)"=(ub?—vc?? —A%a*+87G (p* —p*)a?bc?
(11a)

(Inb?)"=(ve?—ra?)* —u?b*+87G (p* —p*)a®b2c?,
(11b)

(Inc?)"=(Aa?—ub?*—+*c*+87G (p* —p*)abc? ,
(11c)

where the prime denotes d,=abcd,, and A, yu, and v are
the only nonvanishing structure constants. The time com-
ponent Ry, in Eq. (4) becomes

[In(abc)]” —2[ (Ina)'(Ind)’ +(Ina)'(Inc)’ +(Inb)'(Inc)’]
=—47G (p* +3p*)a?bic?.
(12)

In the limit of the Kasner regime, 7~ Int, which causes us
to name 7 a logarithmic time scale. Equations (11) can
obviously be written in a dimensionless form by choosing
one of the structure constants, e.g., A as an inverse length
unit. In the numerical calculations that follow we set
A~l=1cm.

For a space of Bianchi type IX the structure constants
A, p, and v have the same sign and one usually sets
A=p=v=1. For a space of Bianchi type VIII, two con-
stants have signs opposite to that of the third and we can
put A=u=1, v=—1. Bianchi type VII,, characterized by
A=p=1, v=0, provides an example of nonchaotic
behavior. In the particular case where the elements of the
diagonal tensor 7,, are equal, @ =b =c =R, the equations
of the FRW cosmology are recovered. As can readily be
shown, by reverting to the time variable ¢, Eqs. (11) and
(12) become identical with the Einstein equations of Ref.
1, provided one identifies A=p=v with the conventional
curvature parameter 4k.

Equations (11) and (12) can be combined to yield the
first integral of the system of Eqgs. (11),

(Ina)'(Inb)’ +(Ina)'(Inc)’ + (Inb)'(Inc)’ = + (A2a* +u?b* +v2c*—2Aua 2 — 2ava%c?— 2uvb %c®) + 87Gp*a®b2c? . (13)

Equation (13) plays the role of a constraint imposed on the initial conditions of Egs. (11). Although a detailed qualitative
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study of solutions to Eqgs. (11) in the neighborhood of the singular point is contained in Refs. 7 and 15, a numerical
analysis encompassing a wide range of initial conditions is desirable.'® This will be the subject of the next section.

III. CHAOTIC BEHAVIOR

The first-integral condition expressed by Eq. (13) cannot be satisfied exactly. Experimentally or numerically the initial
conditions are known only within the accuracy of a measuring device or the computer round-off error. For this reason,
when solving Egs. (11), we consider three types of initial conditions.

(a) Free—the relationship between the scale factors and their derivatives remains arbitrary.
(b) Kasner—the temporal evolution commences from the Kasner regime at 7=y, i.e.,

a =exp(rop1) , b=exp(ropy), c=exp(rops), a’'=pa, b'=pyb, c¢'=psc, (14)
where the numbers p, p,, and p; are given in parametric form through the formulas

—u 1+u u(l+u)
_—, (u)=———""—", (U)=———".
14u+u? P2 14+u +u? ps 14u+u?

(c) First integral—the first-integral error € defined (in empty space) as

pilu)= (15)

€=(Ina)'(Inb)’' 4 (Ina)'(Inc)’ + (Inb)"(Inc)’ — + (A2a* +u?b*++12c* —2Aua?b? —2Ava*c* —2uvb*c?) , (16)

is minimized.

Table I gives the values of scale factors and their deriva-
tives together with the values of €. Similarly to the work
of BKL, we consider the evolution of the metric at t—0
(r— — o), so that the initial conditions correspond to a
later and not an earlier time.

We come now to the description of our numerical re-
sults. The computations were performed on a CDC 7600
computer, with double-precision arithmetic to minimize
the round-off error. The integration algorithm was the
multistep Hamming’s predictor-corrector method,!” hav-
ing a small per-step truncation error. Starting values were
determined by using a fourth-order Runge-Kutta method.
Typically, the time step was A7=0.001—0.0001 and the
computations involved 10° steps.

The general behavior of the solution of Egs. (11) is
shown in Fig. 1 for initial conditions A. Figure 1(a) fur-
nishes an illustration of chaotic trajectory of Bianchi type
IX, while Fig. 1(b), shown for the sake of comparison,
refers to Bianchi type VII;. A more conventional repre-
sentation is given in Fig. 2 which depicts the oscillatory
evolution of the Mixmaster scale factors for three dif-
ferent initial conditions. In Fig. 2(b), the evolution starts
with the initial nonzero energy density p(0)=8.4163 % 10'?
g/cm?.  As the matter is dominated by relativistic parti-
cles, we see from Eq. (10a) that (abc)*3=const. The
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TABLE 1. Initial conditions for the equations of motion.

alrg)  b(re) cl(ro)
Type To a'(To) b’('T()) C’(To) €

(a) Free 0.0 1.2570 0.7882 0.2523 1.068x 10? %
—0.0480 0.0313 0.2519

(b) Kasner —2.6670 1.8541 0.4385 0.0854 3.378x 10!

—0.4292 0.1355 0.0788 (b)

0%.p)
06 ¢

%

(c) First
integral 0.0 1.8540 0.4385 0.0854 5.464% 10—° FIG. 1. Three-dimensional trajectory in the space

imposed —0.4292 0.1355 2.9655 (a' (7"),[7.(7'),6‘(7')) corrc_:sponfiing to the free initial conditions. (a)
Bianchi type IX, (b) Bianchi type VII,.
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FIG. 2. Oscillatory evolution of the Mixmaster scale factors as a function of the logarithmic time 7. (a) Initial conditions 4, empty
space, (b) initial conditions 4, matter density p(0)=8.4163< 10'2 gcm~3, (c) initial conditions B, Kasner, (d) initial condition C, first

integral imposed.

chosen value of p(0) corresponds to the temperature of
10'2°K, which is slightly above the temperature
1.3 10''°K marking the neutrino decoupling. The con-
tinuation of the temporal evolution towards large negative
logarithmic times is based on a bold assumption that the
quantum gravity era also possesses a Mixmaster descrip-
tion.'"® Note that the Planck length t,=1.61610"% cm
is translated as 7, = —75.5.

When the motion of a dynamical system is periodic, the
power spectrum of an appropriate dynamical variable con-
tains a discrete number of components localized at charac-
teristic frequencies. In contrast, for a chaotic motion we
would expect a broad-band spectrum. This simple cri-
terion is illustrated in Fig. 3, where the power spectrum of
the scale factor a(7) is shown. The notion of chaos in a
dynamical system can be formalized in terms of the
Lyapunov characteristic exponent!® whose positive alge-
braic sign indicates sensitive dependence of initial condi-
tions.

If we write Egs. (11) in autonomous form, then, symbol-
ically, we have

X'=FZ,Au,v) , an

where X=(a,b,c,a’,b’,c’) and F is determined explicitly
by Egs. (11). Given a solution X(7) with X(0)=X,, one
defines the Lyapunov characteristic exponent by

X= lim X,, (18) -

[7] >
where X, is an approximate Lyapunov exponent given as
1

X,=——In||E(7)|| . (19)
|7
In Eq. (19), é?(r) is the solution of the corresponding vari-
ational equation with initial condition £(0)=§,
and || - - - || is the Euclidean norm.

As our phase space is six dimensional, X takes actually
six different values and the outlined procedure yields the
largest characteristic exponent, independently of the initial
value of £,. Figure 4 shows the approximate Lyapunov
exponent as a function of time 7 with the parameter v tak-
ing the values of 1.0, 0.5, and 0.0. In the last case the
Lyapunov exponent remains negative. This is in accord
with the fact that Bianchi type-VII; solution exhibits or-
der (nonchaos). A similar behavior of X, is found for Bi-
anchi type-VIII models, where v<0. As 7— — oo,
X,—7.813% 1072 and 1.037X10~!, for v=—0.5 and
v=—1.0, respectively.

IV. SOURCES OF NOISE

The arguments that we invoke to introduce driving
noise terms into equations of motion are related to the
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FIG. 3. Power spectrum, defined as the square of the absolute
value of the temporal Fourier transform of a (1), for (a) free ini-
tial conditions and (b) initial conditions satisfying the first in-
tegral.

smallness of the apparent cosmological constant. In terms
of the Planck mass mp=G ~!/2, one can place an upper
limit'* of about 107 on | A/mp | 172

When matter is described by a field theory with a scalar
Higgs field ¢ responsible for the spontaneous symmetry
breaking, the energy-momentum tensor will contain an ad-
ditional term due to energy density of the vacuum. If
V(#) denotes the effective potential, the classical expecta-
tion value of the energy-momentum tensor is

<0! T;w | 0)= V(¢0)g;wEPOg,uv .

In Eq. (20), | 0) denotes the true vacuum state and ¢, the
classical field, is the value of ¢ for which ¥V (¢) attains an
extremum.

The present small value of the apparent cosmological
constant can be thought of as a result of cancellation of
the vacuum induced energy p, and the effective vacuum
energy pp=A/8mG. In other words, to avoid contradic-
tion with observation, one demands

(20)

Prot=Po+pa=10"Pgem™> . 21

Classically, the Higgs field will fluctuate about the value
¢=do leading, by virtue of Eq. (20), to a fluctuating value
of po. Assuming that in the absence of fluctuations p
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FIG. 4. Approximate Lyapunov exponent as a function of
logarithmic time. The parameters A=p =1, while v takes on the
values 1.0, 0.5, and 0.0.

exactly equals zero, we see that p,,, will become a fluctuat-
ing function of time 8p.,(¢). Equivalently, one can think
in terms of the fluctuations of p, due to the fluctuating
cosmological constant A(¢). Neglecting the contributions
arising from the p and p terms in Eq. (6), we thus write
the spatial components of Eq. (4) in the form

Ry = —08A(t)gy - (22)

Equation (22) is a Langevin stochastic equation, which
can be converted into equations for three expansion fac-
tors. They read

(lnaz)”=(ubz—vcz)z—kza4+a2b2026Aa(7‘) , (23a)

(Inb?)" =(ver—ra?)? —u?b*+a?h?c?8A, (1), (23b)
72

(Inc?)" =(Aa?—ub?)?—+1*c*+a%h%?8A.(r) . (23¢c)

That the average value of p,,, now is small or zero does
not imply that it was vanishing once the Universe was
hotter than T, ~10'* GeV, when the cosmological phase
transition took place. In fact, according to the inflation-
ary scenario,’®?! the era of Prot =0 was preceded by two
earlier eras. First, when T >>T,, the hot big-bang
scenario was characterized by p >>p.;=pa. At this stage
p =p/3. Second, as the process of supercooling was ini-
tiated, p,,;=pa>>p and the equation of state became
P =—p,. (Actually, these conditions are usually written
by introducing the false vacuum energy in place of py.)
Therefore, Eqgs. (23) describing the fluctuations of the
scale factors in the absence of matter can only apply once
the de Sitter phase of uniform expansion is terminated.??
We stress that the cosmological constant terms have, in
general, a negligible effect on Mixmaster as t—0. If Mix-
master dynamics exists at temperatures when the grand-
unified-gauge-theories phase transition occurs, the infla-
tionary phase can be prevented.?

The balance of the symmetry breaking and cosmological
contributions implied by Eq. (21) is unsatisfactory, chiefly
because of the required accuracy of cancellations having
such different origins. To resolve this puzzle, Hawking'*
assumed that the quantum state of the Universe is not
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chosen at random, but contains only states with a large
Euclidean four-volume, V. On length scales, L, such that
A~1V2? <L << V,'/*, there are the solutions of Einstein’s
equations that appear nearly flat. In the limit that
Vo— «, the observed cosmological constant would be
zero. One can thus consider large but finite fluctuating
values of ¥V, as a possible source of fluctuations of the
cosmological constant.

V. NOISE-INDUCED SUPPRESSION OF CHAOS

In this section, we assume explicitly that the A terms
in Egs. (23) are §-correlated Gaussian random processes
with zero mean:

(8A,)=(8A,)=(8A.)=0, (24)
(8AL(T1)8AL(75)) =Q,8(r1—T7) , (25a)
(8A4(71)8Ap(72)) =Qp8(1)—T73) , (25b)
(8A(T1)8A(13)) =Q.8(T)—T7,) . (25¢)

The constants Q,, Qp, and Q. in Eqgs. (25) describe the
strength of the random process. The assumption that the
8A’s form a white-noise process, as expressed by Egs. (25),
implies a correct interpretation of Eqgs. (23) in terms of the
Ito differential equations.?* To integrate Eqgs. (23) numeri-
cally, one usually seeks a polygonal approximation to the
random trajectories a(7), b(7), and ¢(r) and a smooth
representation of the noise terms. More specifically, if we
go back to the generic equation (17), we write its stochas-
tic equivalent as

X =F(X,Apu, v +F(X)E() , (26)

where E('r) is a white-noise-type random vector. The ap-
proximate random trajectories at the points X;=%X(7;),
j=1,...,n, can then be obtained according to the formu-
1a®

X(1j 1) =X(1))+ ATF(X ;A u,v) + Fy(Z)VALE, ,  (27)

where A7 is the time step and E, are independent normal
random vectors with zero mean and the variance equal to

—

Q=(Q,,04,0Q.). In determining the strength of the fluc-
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FIG. S. Sample trajectory for fluctuation parameters
4a =q» =q.=107>. Initial conditions C.
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tuations what counts then are the products g, =(Q,A7)'/2,
a» =(QpAT)1/2, and g, =(Q.A7)'”2. For the initial condi-
tions (c) that satisfy the first integral we show in Fig. 5 the
result of numerical integration of Egs. (25) with
9.=95=9.=10"° (Q,=Q, =Q.=10"%. Since the ran-
dom nature of the process (a (7),b (7),c (7)) makes it more
meaningful to ask questions about ensemble averages rath-
er than sample values, we show in Fig. 6 the result of an
ensemble averaging over 10 and 200 trajectories. The
averaging is performed by starting with the same initial
conditions for each sample trajectory. As can be seen by
inspection of Fig. 6, the chaotic oscillations present in
Figs. 2 and 5 tend to disappear as the logarithmic time 7
becomes more and more negative. Similar behavior is
shown in Fig. 7 for the initial conditions (a) and (b). We
interpret the quenching of chaotic behavior as being due
to the smearing of the scale-factor oscillations during each
Mixmaster era. The driving-noise terms shift the length
of the oscillations however slightly, averaging out the os-
cillations when the ensemble of random trajectories is con-
structed.

VI. CONCLUSIONS

The numerical analysis of the chaotic behavior of the
Mixmaster universe is formulated within a sufficiently
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FIG. 6. Ensemble average over (a) 10 and (b) 200 random tra-
jectories. First integral satisfied. g, =a, =g.=10"5.
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FIG. 7. Ensemble average over 200 random trajectories for
(a) free and (b) Kasner initial conditions.

general framework to allow extensions for models with Bi-
anchi types different from IX or VIII. We hope that this
investigation constitutes the first step towards the pro-
gram of gravitational turbulence as formulated by Bar-
row.’ This consists in examining the behavior of Egs. (11)
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as the parameters {A,u,v} vary in the range (— w0, ). A
physical interpretation of such a procedure is in imagining
that the cases {A,u,v} =(1,1,%1) represent a spatial varia-
tion in the best-fit homogeneous model as one moves
about the Universe. As the parameter v decreases from
the value v=1 to v=0, we have found the solutions to be-
come less and less chaotic. The full implementation of the
Barrow program remains yet to be accomplished. The
main difficulty of such an undertaking lies in the runaway
solutions, closely related to the open potential walls in the
Hamiltonian formulation of the Einstein equations. What
we have found in our numerical simulation is that the
solutions depend strongly both on A, u, v, and on the ini-
tial conditions. A sweep through the nine-dimensional pa-
rameter space to find out stable solutions of Egs. (11) is a
formidable task. By the same token, we are prevented
from investigating the effect of the “noise” created by a
whole ensemble of different Mixmasters on a single Mix-
master model.

The main result of this paper is the suppression of
chaotic behavior for Bianchi type IX when an ensemble
average over trajectories driven by random-noise terms is
taken. As is evident from Figs. 5—7, the cosmic scale fac-
tors attain constant values for sufficiently large negative
times. The problems of quantum gravity and cosmologi-
cal phase transition aside, the time for which the scale-
factor functional dependence is flat could conveniently be
taken as the time ¢, defining the initial-value problem for
the Einstein equations. Guth?® has suggested to begin the
hot big-bang scenario at some temperature T~ 10'7 GeV,
which corresponds to t5 ~ 1073 cm=3.3x 10~*! sec. De-
pending on the initial conditions, the origin 7 of the loga-
rithmic time scale satisfies —20<7,< —10. This would
correspond to 10“315t0510_1°~cm (3.3 x107* <ty
<3.3 X102 sec).

ACKNOWLEDGMENTS

I am grateful for valuable conversations with J. D.
Farmer, E. W. Kolb, A. S. Lapedes, and H. A. Rose.

1S. Weinberg, Gravitation and Cosmology (Wiley, New York,
1972).

2C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969).

3V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov, Zh.
Eksp. Teor. Fiz. 62, 1606 (1972) [Sov. Phys.—JETP 35, 838
(1972)].

4C. W. Misner, Astrophys. J. 151, 431 (1968).

5M. J. Rees, Phys. Rev. Lett. 25, 1669 (1972).

6M. McCallum, in Physics of the Expanding Universe, edited by
M. Demianski (Springer, New York, 1979); also in General
Relativity: An Einstein Centenary Survey, edited by S. W.
Hawking and W. Israel (Cambridge University Press, Cam-
bridge, England, 1979).

7V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Adv.
Phys. 19, 525 (1970); V. A. Belinskii, E. M. Lifshitz, and 1.
M. Khalatnikov, Usp. Fiz. Nauk. 102, 463 (1970) [Sov.
Phys.—Usp. 13, 745 (1971)]; J. D. Barrow and F. J. Tipler,
Phys. Rep. 56, 371 (1979); Y. Elskens, Phys. Rev. D 28, 1033

(1983).

8J. D. Barrow, Phys. Rev. Lett. 46, 963 (1981); 46, 1436(E)
(1981); D. F. Chernoff and J. D. Barrow, ibid. 50, 134 (1983).

9J. D. Barrow, Phys. Rep. 85, 1 (1982).

I0R. Shaw, Z. Naturforsch. 36A, 80 (1981); J. P. Eckmann, Rev.
Mod. Phys. 53, 643 (1981); E. Ott, ibid. 53, 655 (1981).

113, P. Crutchfield and B. A. Huberman, Phys. Lett. 77A, 407
(1980); J. P. Crutchfield, M. Nauenberg, and J. Rudnick,
Phys. Rev. Lett. 46, 933 (1981); G. Mayer—Kress and H.
Haken, J. Stat. Phys. 26, 149 (1981); A. Zardecki, Phys. Lett.
90A, 274 (1982); J. P. Crutchfield, J. D. Farmer, and B. A.
Huberman, Phys. Rep. 92, 45 (1982).

12J. D. Barrow, Nature (London) 272, 211 (1978).

13E. W. Kolb and S. Wolfram, Astrophys. J. 239, 428 (1980).

145, W. Hawking, in Unified Theory of Elementary Particles,
edited by P. Breitenlohner and H. P. Diirr (Springer, New
York, 1982); Nucl. Phys. B143, 349 (1978).

ISL. D. Landau and E. M. Lifshitz, The Classical Theory of




1242

Fields (Pergamon, New York, 1975).

152aWhen U540, the Bianchi type-VII, models also have Mix-
master oscillations. [J. D. Barrow (unpublished)]. Also, in the
presence of electromagnetic fields Bianchi type-VII, has oscil-
lations.

16For a special choice of initial conditions, the results of numeri-
cal integration are given by V. A. Belinskii and I. M. Khalat-
nikov, Zh. Eksp. Teor. Fiz. 56, 4701 (1969) [Sov. Phys.—
JETP 29, 911 (1969)]. Numerical solutions for symmetric Bi-
anchi type-IX universes were found by A. R. Moser, R. A.
Matzner, and M. P. Ryan, Jr., Ann. Phys. (N.Y.) 79, 558
(1973), utilizing the Hamiltonian approach.

17B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numeri-
cal Methods (Wiley, New York, 1969).

18This viewpoint is advocated by Barrow in Ref. 9 and C. W.
Misner, Phys. Rev. 186, 1328 (1969). Restrictions on the
model of a Mixmaster universe are discussed by A. V.
Doroshkevich and I. D. Novikov, Astron. Zh. 47, 948 (1970)
[Sov. Astron. 14, 763 (1971)].

19G. Benettin, L. Galgani, and J. M. Strelcyn, Phys. Rev. A 14,

ANDREW ZARDECKI 28

2338 (1976); 1. Shimada and T. Nagashima, Prog. Theor.
Phys. 61, 1605 (1979). Our computational algorithm is based
on the work of G. Benettin and L. Galgani, J. Stat. Phys. 27,
153 (1982).

20A. Guth, Phys. Rev. D 23, 347 (1981).

21A. Guth, in Birth of the Universe, Proceedings of the XVII
Rencontre de Moriond, Les Arcs, F{ance, 1982, edited by J.
Audouze and J. Tran Thanh Van (Editions Fronticres, Gif-
sur-Yvette, 1982); A. Guth and E. J. Weinberg, Phys. Rev. D
23, 876 (1981).

22A. Vilenkin and L. H. Ford, Phys. Rev. D 26, 1231 (1982).

233, D. Barrow and M. S. Turner, Nature (London) 298, 801
(1982).

241, Arnold, Stochastic Differential
Interscience, New York, 1974).

25A. Zardecki, Phys. Rev. A 22, 1664 (1980). This procedure
neglects the terms of order At in the last term of Eq. (27). See
N. J. Rao, J. D. Borwankar, and D. Ramkrishna, SIAM (Soc.
Ind. Appl. Math.) J. Control. 12, 124 (1974).

Equations (Wiley-



