
PARTICLES AND FIELDS

THIRD SERIES, VOLUME 28, NUMBER 6 15 SEPTEMBER 1983

Modeling in chaotic relativity

Andrew Zardecki
Theoretical DiUision, MS-M79, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 3 May 1983)

The chaotic behavior of solutions to Einstein's equations has recently been studied by Barrow
within the framework of the dynamical systems theory. Barrow's program of gravitational tur-
bulence is implemented in part by considering the solutions of type VIIO and IX as well as some in-
termediate types. Quantitative measures of chaos, such as the power spectrum and Lyapunov
characteristic exponent, are computed. By converting the equations of motion for the cosmic scale
factors to stochastic Langevin's equations, the Mixmaster cosmology in the presence of driving noise
terms is investigated. Possible sources of noise can be attributed to an imperfect cancellation of the
effective vacuum energy density and the energy density associated with the Higgs field. An ensem-
ble average over random trajectories leads to the suppression of chaotic behavior for type-IX cosmol-

ogy

I. INTRODUCTION

As is now well known, any isotropic homogeneous
universe governed by Einstein's equations must have start-
ed with a singularity of infinite density. ' This type of
singularity, referred to as a Friedmann-Robertson-Walker
(FRW) singularity, is characterized by the fact that the
vanishing of spatial distances occurs according to the
same law in all directions. The singularity of the oscilla-
tory type, as exemplified by the Mixmaster cosmology, is
a general feature of solutions to the Einstein equations.
This feature is independent of the assumption about the
space homogeneity. There exist numerous reasons for
considering non-FRW models. The arguments of primor-
dial chaos, as advanced by Misner and Rees, have been
framed quantitatively in a general classification scheme of
anisotropic models. The generic singularity of the Belin-
skii, Khalatnikov, and Lifshitz (BKL) type has recently
been discussed by Barrow, ' and Chernoff and Barrow,
in the context of dynamical systems theory. In Ref. 9,
Barrow raised an intriguing question about the possibility
of gravitational turbulence. As the curvature parameter is
varied along the Bianchi sequence of cosmological models,
the system would —through period doubling or a succes-
sion of three Hopf's bifurcations (Ruelle- Takens
mechanism) —tend to an increasingly chaotic behavior.

The Mixmaster evolution is highly chaotic in the sense
that the approach toward the singular point is made up of
successive series of oscillations the lengths of which have
the character of a random process. Since the model also
exhibits a sensitive dependence on initial conditions, it im-
plies stochasticity. For dissipative systems in three or

more dimensions, there exist the structures which are
characterized as having a fractional dimension —strange
attractors. ' The statistical self-similarity or the Cantor
set behavior, which is a characteristic criterion of the
strange attractor, is not contained, however, in the Mix-
master model.

Within the context of the chaotic dynamics, the interre-
lation between the inherent chaotic behavior and the
noise-impressed fluctuations has repeatedly been investi-
gated. " The purpose of this paper is to study the effect of
white noise on Mixmaster oscillatory evolution. It has
been stressed by BKL that in the perfect-fluid limit one
may neglect the influence of the stress-energy terms in the
Einstein equations. However, the oscillatory Mixmaster
behavior need not persist in a stiff-matter era where the
equation of state for density p and pressure p takes the
form p =p. The initial state of the Universe was then iso-
tropic and quiescent rather than chaotic. ' When matter
is described by an effective energy-momentum tensor con-
taining the vacuum energy due to the cosmological term,
the stress-energy terms become unimportant in the hard-
thermal-state limit p =p/3. What remains is the effective
vacuum energy density p~ and the energy density pq asso-
ciated with spontaneous-symmetry-breaking terms. ' The
imperfect compensation between pA and po is a possible
source of noise in the Einstein equations. Another source
of noise can be due to the fluctuations in the Euclidean
four-volume as considered by Hawking. '

In the remainder of this paper, we summarize, in Sec.
II, the basic equations of the Mixmaster model. In Sec.
III, the chaotic behavior of the Mixmaster dynamics is
analyzed quantitatively by computing the Lyapunov ex-
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ponent and the power spectrum of the system. The
sources of noise are described in more detail in Sec. IV.
Finally, by considering an ensemble of Mixmaster trajec-
tories, starting all from the same initial point in the phase
space, we show in Sec. V that the fluctuating effective
cosmological term leads to suppression of the chaotic
behavior.

g~q(t) =diag(a '(t), b'(t), c'(t) )

and e ~'
(p = 1,2, 3) are the three frame vectors determined

by the structure of constants of the group of motions. '

The matter filling the space cannot, in general, be at rest
relative to the synchronous reference frame. In fact, the
velocity four-vector U& satisfies the hydrodynamic equa-
tions '

II. EINSTEIN'S EQUATIONS
IN ANISOTROPIC HOMOGENEOUS SPACE.

abc Uop =const,

Ukp'~ =const (k =1,2, 3) .

(loa)

(10b)

Following the Landau and Lifshitz' timelike conven-
tion, we write Einstein s field equations with a cosmologi-
cal term in the form

1R pv 2 Rgpv Agpv =87TGTpv,

where the metric has signature (+ ———) and where we
have set the velocity of light c = 1. For a perfect relativis-
tic fluid the energy-momentum tensor has the form

However, if the synchronous frame is also comoving with
respect to matter, we have Uo ——1 and Uk =0 [Ref. 15(a)].
In this case the spatial components of Einstein's equations
(4) yield

(lna )"=(pb vc—) k—a +SAG(p' —p*)a b c

(1 la)

(lnb )"=(vc ka ) —pb +—Sm.G(p* —p')a b c
T„.= pg,.+(p+—p», U. (2)

(1 lb)
where p is the pressure, p the energy density, and U the
velocity of fluid in a comoving frame. By defining an ef-
fective (generalized) energy-momentum tensor

(inc )"=(Aa p,b , ) —vc —+Sm.G(p —p')a b c

(1 lc)

T„',= (A/SAG)gq„+ T„„,
we can write Eq. (1) as

Rp ——8m GSp

where the source term S& is
1

pv pv p

gpss

(3) where the prime denotes B,=abc'„and A, , p, and v are
the only nonvanishing structure constants. The time com-
ponent Roo in Eq. (4) becomes

(4)
[ln(abc) ]"—2[ (lna)'(lnb )'+ (lna)'(inc)'+ (lnb)'(inc)']

= —4m G (p'+ 3p') bac
(12)

T~„—p*gp, + (p" +p——*)U„U„,
p* =p —A/Sm G,
p'=p+A/SmG,

T g Tyre o

(6a)

(6b)

(6c)

(6d)

where the spatial line element involves components y,j.
(i,j = 1,2, 3) of the spatial metric tensor

dl g'Jdx dx (8)

For a homogeneous spape of Bianchi type VIII or IX, y,j-
1s

Ztj(t) =7)pq(t)e;~ ejq(p) (q)

where

In a synchronous (Gaussian normal) system of coordinates
the interval element is given as

ds2=dt2

In the limit of the Kasner regime, q-lnt, which causes us
to name r a logarithmic time scale. Equations (ll) can
obviously be written in a dimensionless form by choosing
one of the structure constants, e.g., A, as an inverse length
unit. In the numerical calculations that follow we set
X

—'=1 cm.
For a space of Bianchi type IX the structure constants

A, , p, and v have the same sign and one usually sets
A, =p=v= 1. For a space of Bianchi type VIII, two con-
stants have signs opposite to that of the third and we can
put A, =p=1, v= —1. Bianchi type VIIO, characterized by
A, =p, =l, v=0, provides an example of nonchaotic
behavior. In the particular case where the elements of the
diagonal tensor g~ are equal, a =b =c—=R, the equations
of the FRW cosmology are recovered. As can readily be
shown, by reverting to the time variable t, Eqs. (11) and
(12) become identical with the Einstein equations of Ref.
1, provided one identifies A, =p =v with the conventional
curvature parameter 4k.

Equations (11) and (12) can be combined to yield the
first integral of the system of Eqs. (11),

(lna)'(lnb)'+(lna)'(inc)'+(lnb)'(inc)'= ,'(I, a +p b +v c —2Apa b 2Ava c —2pvb c —)+SqrGp'a—b c . (13)

Equation (13) plays the role of a constraint imposed on the initial conditions of Eqs. (11). Although a detailed qualitative
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study of solutions to Eqs. (11) in the neighborh d f h
analysis encompassing a wide range f ' 't'

1 d'
p

'
tained in Refs. 7 and 15 a numer' 1or oo o t e singular oint is con

o i» ia con itions is desirable This will b
ca

e t e subject of the next section.

III. CHAOTIC BEHAVIOR

0~

a =exp(70D~ ), b =exp(rop2) c =exp(rou3), a'=via b'=u» & —P3& ~

The firhe first-integral condition expressed b E (13)
conditions are known only within the accur

y q. cannot be satisfied exactl . Ey. xperimentally or numerically the initial

wh
n e accuracy o a measuring device or the corn

ree ypes o initial conditions.o1 i E . (11), o id h t f' on,

a) ree—the relationship between the scale factors and th
'

(b) Kasner —the tern 1

e ac ors an their derivatives remains arbitrary.
er—e empora evolution commences from th Ke asner regime at r=~ i.e.,

where the numbers, and
~ ~

p&, p2, an p3 are given in parametric form thro h th froug e ormu as
—u

( )
1+u u(1+u)

1+u +u 1+u +
(c) First integral —the first-integral error d f' d ('ror F. e me (tn empty space) as

e= lna ' lnb)'+(lna)'(inc)'+(lnb)'(inc)' ——'(A, a + b +v —2A,
' —

4 a +p + c 2Apa—b —2Ava c —2pvb c ) (16)

is minimized.
able I gives the values of scale factors and their deriva-

of BKL w
tives together with the values of e. Similarl t th ko, we consider the evolution of the metric at t~0
r~ —Oo), so that the initial conditions correspond to a

later and not an earlier time.
We come now to the description of our numerical re-

sults. The corncomputations were performed on a CDC 7600
computer, with double-precision arith t'me ic to minimize

multiste H
t e round-o error. The integration algorithm hmwaste
mu istep Hamming's predictor-corrector method, ' hav-
ing a sma11 per-step truncation error. Startin v 1r. a ing va ues were

e ermined by using a fourth-order Runge-Kutta method.
Typically, the time step was 6~=0.001 —0.0001 and the
computations involved 10 steps.

The general behavior of the solution of Eqs. (11) is
s own in Fig. 1 for initial conditions A. Figure 1(a) fur-
nis es an illustration of chaotic trajector of 8' h

, w 1 e tg. 1(b), shown for the sake of comparison,
refers to Bianchi t e VIIype VIIO. A more conventional repre-
sentation is given in Fig. 2 which d

'
t hepic s t e oscillatory

evolution of the Mixmaster scale factors for three dif-
ferent initial conditions. In Fig. 2(b), the evolution starts
with the initial nonzero energy density p(0}=8.4163X 10'
g/cm . As the matter is dominated b 1

cles
y re ativistic parti-

c es, we see from Eq. (10a) that (abc) =const. The

(a)

TABLE I. Initial conditions for the equations of motion.

Type ip
a (~p)
a'(~p)

b (~p)
b'(~p)

(a) Free

(b) Kasner

0.0

—2.6670

1.2570 0.7882
—0.0480 0.0313

1.8541 0.4385
—0.4292 0.1355

0.2523 1.068 X 10
0.25 }9
0.0854 3.378 X 10'
0.0788 (b)

(c) First
integral
imposed

0.0 1.8540 0.4385 0.0854 5.464X10-'
—0.4292 0.1355 2.9655

FKx. 1. Three-dimensional trajectory in the s ace
(a(~),b(~) c(~ c~)) corresponding to the free initial conditions. (a)

sn e space

Bianchi type IX, (b) Bianchi type VIIp.
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of0 corresponds to the temperature o
1 bo h

kin the neutrino decoupling. e c1.3)& 10 K marking e
rds large negativehe tern oral evolution towar stinuation of t e emp

b ld sumption that theis based on a o assulogarithmic times is
M'xmaster descrip-ra also possesses a ixmasquantum grav1ty era a p

t =1.616~10 cmtion ' Note that the Planck length tz ——

is translated as ~z ———75.5

f a p t d namical variable con-
he motion of a dynarnica sys em

'

power spectrum of a pp pf an a ropriate ynam'
mber of components oca izetains a discrete number o

ies. In contrast, for a c ao ich tic motion weq
a broad-band spectrum.

h th o t ofte 'o is ill st ated
' 'g.in Fi . 3, w ere e p

r) is shown. The notion othe scale factor a (

m can be formalize in edynamical system
teristic exponent w oseLyapunov characteris

'
p

of initial condi-braic sign inuica es st sensitive dependence o ini
tions.

rm then, symbol-If we write qs.E (11) in autonomous form, , y
ically, we have

x '=F(x, k, ,lM, v),

c a' ', ') d F is determined explicitly
E s. (11). Cxiven a solution x r wit x

defines the Lyapunov characterist p

11m
frf~oo

a unov exponent given aswhere 7 is an approximate Lyap

(19)

IV. SGURCES GF NGISE
~ ~t we invoke to introduce drivingThe arguments that we invo e

noise terms in ot equations of motion are re a e

In
/ / g (7.)

/ /

.

19 (~) is the solution of the corresponding vari-
init1.a con

'
1

n'd'n'-'-du", -ld. h.
hase s ace is six dimensiona,

six different valueses and the out ine proce
d ntl of the initialristic ex onent, indepen en y olargest characteris

'
p

te LyapunovFi ure 4 shows the approxima e
a

' '
ith the parameter v tak-

h
a function of time ~ wi e

ing the values oof 1.0, 0.5, an . . n
This 1s in accordex onent remains negative. is

'

t e-VII solution exhibits or-with the fact that Bianchi type-
A similar behavior of X, is foun order (nonchaos).

' ' '
is foun or

anchi type-e-VIII models, where v &
037 10 ', for v = —0.5 and7~~7.813& 10 and 1.037&, o

v = —1.0, respectively.
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exactly equals zero, we see that p„, will become a fluctuat-
ing function of time 5p„,(t). Equivalently, one can think
in terms of the fluctuations of pz due to the fluctuating
cosmological constant 5A(t) Negle. cting the contributions
arising from the p and p terms in Eq. (6), we thus write
the spatial components of Eq. (4) in the form

+kl 5A(r)Ski (22)
—9.0

0.0
I

20.0
FREQUENCY

FIG. 3. Power spectrum, defined as the square of the absolute
value of the temporal Fourier transform of a (~), for (a) free ini-
tial conditions and (b) initial conditions satisfying the first in-
tegral.

In Eq. (20),
~

0) denotes the true vacuum state and Po, the
classical field, is the value of P for which V(P) attains an
extremum.

The present small value of the apparent cosmological
constant can be thought of as a result of cancellation of
the vacuum induced energy po and the effective vacuum
energy p& ——A/8~6. In other words, to avoid contradic-
tion with observation, one demands

pt.t=pa+ p~ =—1o g cm—29 —3 (21)

Classically, the Higgs field will fluctuate about the value
/=$0 leading, by virtue of Eq. (20), to a fluctuating value
of po. Assuming that in the absence of fluctuations p, ,

smallness of the apparent cosmological constant. In terms
of the Planck mass mz ——G ', one can place an upper
limit' of about 10 on

~
A/m~

~

'~ .
When matter is described by a field theory with a scalar

Higgs field P responsible for the spontaneous symmetry
breaking, the energy-momentum tensor will contain an ad-
ditional term due to energy density of the vacuum. If
V(P) denotes the effective potential, the classical expecta-
tion value of the energy-momentum tensor is

(20)

Equation (22) is a Langevin stochastic equation, which
can be converted into equations for three expansion fac-
tors. They read

(lna )"=(pb vc ) , A—a+a—b .c 5A, (r),
(lnb )"=(vc Aa ) p—b +a —b c 5Ab(r),

(Inc )"=(Aa pb ) vc —)-a b c —5A, (r-) .

(23a)

(23b)

(23c)

That the average value of p„, now is small or zero does
not imply that it was vanishing once the Universe was
hotter than T, —10' GeV, when the cosmological phase
transition took place. In fact, according to the inflation-
ary scenario, ' ' the era of p,0,=0 was preceded by two
earlier eras. First, when T» T„ the hot big-bang
scenario was characterized by p »p„,=pA. At this stage
p =p/3. Second, as the process of supercooling was ini-
tiated, p„,=p~&&p and the equation of state became
I' = —pz. (Actually, these conditions are usually written
by introducing the false vacuum energy in place of pz. )
Therefore, Eqs. (23) describing the fluctuations of the
scale factors in the absence of matter can only apply once
the de Sitter phase of uniform expansion is terminated.
We stress that the cosmological constant terms have, in
general, a negligible effect on Mixmaster as t~O. If Mix-
master dynamics exists at temperatures when the grand-
unified-gauge-theories phase transition occurs, the infla-
tionary phase can be prevented.

The balance of the symmetry breaking and cosmological
contributions implied by Eq. (21) is unsatisfactory, chiefly
because of the required accuracy of cancellations having
such different origins. To resolve this puzzle, Hawking'
assumed that the quantum state of the Universe is not
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V. NOISE-INDUCED SUPPRESSION OF CHAOS

In th'this section, we assume 1' 1

in Eqs. (23) are 6-correlated Gaussian r
e exp icitly that the 5A terms

with zero mean:
aussian random processes

(nA. ) = (~A, ) = (nA, ) =0,
(SA.(r, yA. (r, )) =Q.S(r, r,)—2

(5Ab(ri)6Ab(rp) ) =Qb5(ri —rp),

(25a)

(25b)

(SA, (r, )|A,(r, ))=Q S(r-
The „b, an in E

e 2 c +1 +2 (25c)

s orm a white-noise process, as expressed b E

tic equivalent as
ion, we write its stochas-

chosen at random , but contains only states with
Euclidean four-volume, V . On

es wit a large
length scales, I., such th t« Vp, there are the solution

equations that a
o utions of Einstein's

Vp ~ (x), the observed cosmolo ical
e imit that

ne can t us consider lar e bu
values of V

ge but finite fluctuating
p as a possible source of fluctua

'

cosmological constant.
uctuations of the

tuations what counts then are theen are the products q, =(Q A~)'
tial condi

u o numerical integration of E s.u o num
' ' 'on o qs. (25) with

e process (a (r),b (r) c(r
as questions about ensem

ensemble averagineraging over 10 and 200 tra'ect
averaging is performed b

'
w

conditions f h
y startin wit

s or eac sample trajector . A
g wit the same initial

j
o ig. , the chaotic osci 1

Figs. 2 and 5 tend
ci lations present in

ten to disappear as the loog
an more negative. ig

ig. or the initial conditions (a) an
enc in h as being dueenc ing o chaotic behavior a

e sca e- actor oscillation
Mi t Th d

' o.se te~ms shrift the lengt
sci ations however sli htl av

cillations wh th
ig y, averaging out the os-

en e ensemble of random
structed.

ndom trajectories is con-

VI. CONCI. USIONS

The numnumerical analysis of the chaotice c aotic beha ior o t e
universe is ormulated within a ff' '

su iciently

x '=F(x, k,p, v)+Fi(x)g(r)X 7 (26)

where &(~) is a white-noise-type random
a e ran om trajectories at the oint

n en be obtained according to the formu-

x rj+i x(rJ)+DEAF(——x, g, ,p v)+F ( )Vb,, x~ rg), (27)

where h~ is the time step and are in
c ors with zero mean and

= Q, , , determining the strength of the fluc-
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FIG. 7. Ensemble average over 200 random trajectories for
(a) free and (b) Kasner initial conditions.

general framework to allow extensions for models with Bi-
anchi types different from IX or VIII. We hope that this
investigation constitutes the first step towards the pro-
gram of gravitational turbulence as formulated by Bar-
row. 9 This consists in examining the behavior of Eqs. (11)

as the parameters I A, ,p, v) vary in the range ( —ao, ce). A
physical interpretation of such a procedure is in imagining
that the cases I A, ,)M, v) =(1,1,+1) represent a spatial varia-
tion in the best-fit homogeneous model as one moves
about the Universe. As the parameter v decreases from
the value v= 1 to v=0, we have found the solutions to be-
come less and less chaotic. The full implementation of the
Barrow program remains yet to be accomplished. The
main difficulty of such an undertaking lies in the runaway
solutions, closely related to the open potential walls in the
Hamiltonian formulation of the Einstein equations. What
we have found in our numerical simulation is that the
solutions depend strongly both on A, , p, v, and on the ini-
tial conditions. A sweep through the nine-dimensional pa-
rameter space to find out stable solutions of Eqs. (11) is a
formidable task. By the same token, we are prevented
from investigating the effect of the "noise" created by a
whole ensemble of different Mixmasters on a single Mix-
master model.

The main result of this paper is the suppression of
chaotic behavior for Bianchi type IX when an ensemble
average over trajectories driven by random-noise terms is
taken. As is evident from Figs. 5—7, the cosmic scale fac-
tors attain constant values for sufficiently large negative
times. The problems of quantum gravity and cosmologi-
cal phase transition aside, the time for which the scale-
factor functional dependence is flat could conveniently be
taken as the time to defining the initial-value problem for
the Einstein equations. Guth has suggested to begin the
hot big-bang scenario at some temperature To-10' GeV,
which corresponds to to-10 ' em=3. 3~10 ' sec. De-
pending on the initial conditions, the origin ~0 of the loga-
rithmic time scale satisfies —20 & ro & —10. This would
correspond to 10 '&to &10 ' cm (3.3 &&10 ' &to
&3.3 0&10 sec).
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