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Direct lepton production in high-energy collisions of nuclei
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Direct lepton-pair production is a potentially efficient probe of quark matter formed in high-

energy collisions of nuclei. Pair-production rates in the central rapidity region are estimated by
means of a hydrodynamical model of the expansion of the hadron plasma. The rates are expected to
be independent of rapidity in the central region and exhibit a characteristic enhancement if phase
transition from hadron to quark rnatter takes place.

I. INTRODUCTION

One of the interesting predictions of quantum chromo-
dynamics (QCD) is the existence of a phase transition in
bulk hadronic matter at sufficiently high net baryon densi-
ties and/or temperatures. ' An experimental verification
of this prediction is somewhat difficult due to several cir-
cumstances.

(i) Lack of a satisfactory theoretical understanding of
the nature of the phase transition and its parameters, in
particular at nonvanishing net baryon densities. Earlier,
more-or-less ad hoc calculations of the critical curve con-
tained substantial theoretical uncertainties. Recent pro-
gress made in numerical solutions of non-Abelian gauge
theories at finite temperatures on a lattice removes some
of those uncertainties. In particular, the inclusion of fer-
mion pairs in the SU(3) calculation by Kuti and Polonyi3
removes uncertainties associated with the use of a
quenched approximation to QCD. These results tend to
lower the critical temperature T, at a vanishing net baryon
density; one is not unlikely to find a value as low as
T,=1.5A, where A is the characteristic scale of QCD.
With recent values of A suggested both by lattice calcula-
tions and by scale-breaking effects in high-energy reac-
tions, T, may be as low as 120 to 170 MeV. (At the time
of this writing, uncertainties associated with the effects of
a nonvanishing chemical potential still remain. )

(ii) Difficulties in creating therrnalized bulk hadronic
matter. In a terrestrial environment, probably the best one
can do is to study hadronic matter in the collisions of
heavy nuclei. There exist rather convincing semiquantita-
tive arguments that hadronic matter does indeed (approxi-
mately) thermalize in a large fraction of the time. How-
ever, typical relaxation times, expected (on dimensional
grounds) to be of the order of A ', are comparable to the
lifetime of the typical "fireballs" created in such reactions;
therefore one should be prepared to face rather large fluc-
tuations of the various physical quantities around their
equilibrium values.

(iii) It is problematic to find unambiguous experimental
signatures of the existence of the phase transition. A
number of possible such signatures was suggested (for a
review, cf. Ref. 6). However, due to the fact that several
of the proposed signatures involve details of the final had-
ronic spectrum, they are subject to theoretical uncertain-
ties, due to our lack of understanding of the dynamics of
hot hadronic matter. From a qualitative point of view,

one can argue that, as a consequence of the strong interac-
tions of the constituents [ct,(T/A) &1 in the hadron-
formation epoch of the fireball], any memory of the initial
stages of the evolution tends to be washed out.

In view of this fact it was proposed that leptonic chan-
nels, in particular, direct pair production, carry less ambi-
guous signatures of the hadron-quark phase transition.
Admittedly, lepton-pair production is a rare process com-
pared to hadron production (suppressed by factors of the
order of a ). However, once formed, virtual photons are
less likely to thermalize than hadrons, due to their weaker
interaction with the environment; as a consequence, their
spectrum is more likely to carry information about the
primary (hot) stages of the fireball.

At present, it seems to be unlikely that the phase boun-
dary between the hadron and quark phases is crossed un-
less the colliding nuclei carry a substantial kinetic energy
(perhaps of the order of 10 to 20 GeV/nucleon) in the
center-of-mass systems (c.m.s.) for hadron matter may not
be heated sufficiently at lower energies and/or the energy
of excitation may be rapidly distributed between the de-
grees of freedom available in a "slow" collision. There-
fore, in order to test the ideas outlined above, it is impera-
tive to study pair production in high-energy nuclear in-
teractions.

In this paper I consider a simple model in order to
describe the pair-production process, in the same spirit as
it was discussed in our previous work. The main advan-
tage of the model is its simplicity; in view of the fact that
models of this type give results in qualitative agreement
with the data for hadron production at high energies, one
is encouraged to believe that the predictions are at least
qualitatively (within a factor of 3 or so) correct. Our
present level of understanding of the dynamics of hot had-
ronic matter does not justify the construction of very de-
tailed models: any improvement on the accuracy of the
predictions would be purely illusory in view of the drastic
simplifying assumptions made at the outset. (In the same
spirit, all relevant physical quantities are approximated by
simple analytic expressions, thereby reducing the task of
making numerical estimates to a "pocket-calculator lev-
el.")

The paper is organized as follows. In Sec. II, a simple
model of high-energy nuclear collisions is reviewed; this is
mostly based on a recent work of Bjorken, who revived
the idea of a similarity flow of hadron matter at early
stages of a fireball expansion. ' In Sec. III, simple analyt-
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ic approximations are derived for lepton-pair-production
rates, both from the quark and hadron phases. Observable
pair-production rates are estimated in Sec. IV; the results
are discussed in Sec. V. Geometrical formulas, useful in a
semiclassical treatment of nuclear collisions, are collected
in the Appendix. Throughout this paper, natural units are
used (R=c =1); temperatures are measured in energy
units (Boltzmann's constant, k = 1).

central region is governed by the equations of hydro-
dynamics of an ideal fluid, viz,

T„T"=0, T""=—pg""+wu "u

gpvu~u"= 1,
(2.4)

where p, v=0, 1 and w=e+p is the density of the heat
function. In order to generate a similarity flow, it is con-
venient to introduce curvilinear coordinates with the defi-
nitionII. MODEL OF HIGH-ENERGY

NUCLEAR COLLISIONS
r=(t —x )'i, y=-,' In

t —xThe qualitative picture of high-energy (E, & 20
GeV/nucleon nuclear collisions appears to differ signifi-
cantly from the one valid at lower energies (E, =1—3
GeV/nucleon); this change is probably due to the increase
of nuclear transparency as one goes to higher energies. An
extrapolation from nucleon-nucleon and hadron-nucleus
data suggests the existence of well-distinguishable frag-
mentation and central regions in the longitudinal-rapidity
plot of secondaries, " in contradistinction with low-energy
collisions. (The latter are qualitatiuely consistent with a
one-fireball picture, without very distinct fragmentation
and central regions; for a recent review, cf. Hallman. '

) I
made the standard simplifying assumptions, viz. , (i) had-
ron matter is in thermal equilibrium, and (ii) the initial
temperatures are sufficiently high so that the @CD scale
A plays no significant role in the early dynamics of the
hadron matter.

Bjorken emphasized that the central region carries
negligible net baryon number; consequently, the corre-
sponding chemical potential is zero outside the fragmenta-
tion regions.

This has two important consequences.
(a) The initial flow in the central region is scale free;

hence it is a similarit;y flow. '

(b) The central region is hotter than the fragmentation
regions; therefore it is more likely to be in the quark
phase. Indeed, under our assumptions, the density of the
grand potential is of the form

2
~= —T'f "

T2

(2.5)

In these coordinates, the nonvanishing components of the
metric tensor are g« ——1, g~„=—~, whereas, on setting
u = cosh', u ' = sinhg, the components of the four-
velocity of the flow become

y 1
u = cosh(q —y), u~= —sinh(g —y)

7
(2.6)

and Euler's equations, V„T""=0,read

a,p—+ 'a,(~—u")+a„(wu u~) +ru~'= 0,
7-

(2.7)

~ Gyp+ —B,(nou 'u~)+By(wu~ )+—u 'u~=O .
'T

The similarity solution is obtained by setting u =0 (i.e.,
g =y); in that case one has from (2.7)

1—B,p+ —w+B~ =0,
(2.8)

a,p=o.
Qn using the equation of state @=3p one obtains the solu-
tion

—4/3

e(r) =eo
Tp

(2.9)

where f(x) &0, f '(x) &0. (The fact that co is an even
function of the chemical potential p is a consequence of C
invariance. ) The energy density is given by the well-
known thermodynamical relation

—1/3

(2.10)

(2.1)
from which, using (2.1) with p=O the scaling law for the
temperature,

8E'=co — T +p 6) ~BT Bp
(2.2)

which with (2.1) becomes e= —3'. Thus, given the initial
energy density deposited in the collision, the temperature
is a monotonically decreasing function of the chemical po-
tential or, equivalently, of the net baryon density 8 by us-
ing the relation

follows. In these equations, ~p is roughly the time needed
in order to establish the initial thermal equilibrium in the
collision; on dimensional grounds we expect ~p—A
From their phenomenological analysis, Mueller and Bjork-
en" expect an initial energy density E'p 3
GeV fm =30A . This energy density is probably a slow-
ly (perhaps logarithmically) growing function of the pri-
mary energy, cf. Van Hove. As a tentative fit, I take

(2.3)
1/2

ep-30A ln
7.5 GeV

(2.11)

These relationships also tell us that hadron matter behaves
as an ideal gas, since the pressure is given by p = —co, thus
the speed of sound is u = 1/~3.

The longitudinal expansion of the hadron matter in the

where s' is the c.m.s. energy per nucleon.
Unfortunately, it is difficult to convert the initial energy

density into temperatures, because it is not clear what
equation of state should be used for the hot hadronic
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matter in the central region. However, if T, is of the or-
der of 1.5A, then immediately above the phase transition,
one can approximate the equation of state by an ideal
quark gas with just two quark flavors; this gives
=0—37m. T /30 (see, e.g. , Ref. 8). Using (2.11), one then
finds that T, =1.5A is reached at s' =58 GeV/nucleon.
By contrast, if one assumes that initially the color degrees
of freedom are still frozen in and one approximates
baryonless hadronic matter by an ideal pion gas, one has
(neglecting the pion mass), eo—m. T /10. From this one
finds that T, is reached at a much lower energy s ' =9
GeV/nucleon. Probably, these are extreme estimates and
in reality the phase transition takes place somewhere in be-
tween these energies.

One has to have some information about the initial
transverse size of the hot central region. Lacking any reli-
able theory, I estimate the initial transverse size, Rz from
the geometrical overlap, i.e., I write at a given impact
parameter b

&16

16
20
24
30
40
56
84

108
130
195
238

No solution with
b,„&0

0.18
0.34
0.38
0.58
0.66
0.76
0.82
0.85
0.88
0.90
0.92
1.00

TABLE I. Maximal allowed impact parameters in collisions
A +A ~X. Required central-plasma lifetime ~;„=4A
A=100 MeV; R =(1.12 fm)A'

6 „/2R

erg(b)=mRz. (b), . (2.12)
III. PAIR-PRODUCTION RATES

where o.
g is the geometrical cross section (cf. the Appen-

dix).
In the transverse direction there is a characteristic size,

and thus, on the average, the lateral expansion can be
roughly described in terms of an inward moving rarefac-
tion front, moving with the speed of sound. Given the
crudeness of the model, I assume cylindrical symmetry
and take the equation of the front to be
p=Rr(b) 3' r. B—ehind the rarefaction front, cooling
is very rapid and one expects that matter goes into its had-
ronic phase immediately behind the front. As a conse-
quence, matter can exist in its quark phase for any length
of time if the rarefaction front does not reach p=0 too
soon. Somewhat arbitrarily, I set the minimal required
lifetime to be ~;„=4A '. In order to get a feeling for the
maximal impact parameters allowed, one may consider
identical colliding nuclei and use the standard formula for
nuclear radii R =rQ '~3, ro = 1.12 fm. The resulting max-
imal allowed impact parameters calculated with erg(b)
given by Eq. (A7) in the Appendix are displayed in Table
I. It is clear from this table that in the case of light nuclei
(for instance, He and C), the hot plasma does not live long
enough for thermal equilibrium to get established. For
collisions of unequal nuclei, 3 can be roughly put equal to
the atomic number of the lighter colliding nucleus [cf. Eq.
(A9)j. It is evident that even for intermediate nuclei, one
has to require essentially central collisions in order to have
reasonable central plasma lifetimes, whereas at the end of
the periodic table (for instance, in a collision U+U~X),
the lifetime of the central plasma will be sufficiently long
for almost all collisions.

Theoretical expressions of lepton-pair-production rates
are well known both in the quark (Q) and hadron (H)
phases. ' The theoretical expressions are subject to some
uncertainty due to rescattering corrections which are not
very accurately known. I want to argue, however, that
lowest-order (in a, ) formulas should be reasonably accu-
rate in the quark phase. Indeed, the real danger to any
perturbative expression for a quark-pair annihilation into
leptons arises from "soft" (low-momentum transfer)
scattering of the initial quarks in the environment, for that
is the strong-coupling regime of QCD. However, as long
as the initial momentum of the quark scattered is not too
high, the phase space for the scattered quark is reasonably
well populated. Therefore, soft-rescattering effects tend to
be suppressed by the exclusion principle. This argument is
inapplicable for high-momentum quarks, which after a
soft scattering would go into a sparsely populated region
of phase space. However, the number of quarks with

i

P
i

&~T is of the order of exp( —
i

P
i
/T); therefore

only the tail of the invariant-mass distribution of pairs is
affected. The situation is less clear in the hadron phase,
where the dominant source of pairs is the annihilation of
charged pions. Some rescattering effects are obviously
taken into account by the pion form factor. In order to
account for all rescattering effects, one obviously would
have to study the detailed kinetics of an interacting had-
ron (quark-gluon) gas, respectively; I believe that at the
present level of our understanding of the phenomena in-
volved, this is not justified.

Without further apologies, I quote therefore the lowest-
order expressions for the pair-production rates in both
phases (Q,H):

de o.' 5 2m I1+dMdx n 18 M. Q

(two flavors);

4m
1/2

M
M + T

(3.1)

ca
2 ]. 2m1+-

dM dx ~ n 24 M

1/2
4mj

1 —— T2
M

1/2
4m1—
M

iF(M )i F (3.2)
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In these equations, mI and m„stand for the lepton and
pion masses, respectively; M is the invariant mass of the
pair, and F (q ) is the pion form factor. The quantities
F+(u) are integrals over Fermi and Bose distributions,
respectively; their expressions were given in Ref. 8. These
functions are approximated as follows. First, all masses
are neglected where this generates no divergences in the
integrals; this is a reasonably good approximation, for say,
T & m . Then both functions F+(u) are of the same form,
viz. p

6(4xy —u )

"+ (e "+l)(e~+ I)
(3.3)

with p =m /T, p+ ——0. Gn introducing new integra-
tion variables by the substitution x =A,g, y =A, (l —g)
(0 & g & 1), one gets

or, on noting the rapid decrease of the integrand of the
second term,

( ) 4 (u/2)e " u I dteF+u-4 + 1 ——
~Q/2+ 1 g/2 ~f+ ]

The remaining integral is elementary. 'The final result is

F~(u)=4
(u/2)e-"/2

u/2+ 1

1 ——[+e "/ —ln(1+e "/2)] . (3.4)
2

On substituting (3.4) into (3.1) and (3.2), one obtains ap-
proximate expressions for dN(d x dM )

' in the hadron
and quark phases, respectively. The pion form factor can
be reasonably well approximated by a Breit-signer for-
mula centered at the mass of the p meson,

F„(M ) =
2IPI —M —tm I2 2

P P

(3.5}

F~(u)= J A, dA, I dg-
P+ P ( Rg+ 1)( A(1 —g)+ 1)

It is easily seen that the integrand is a sharply peaked
function' around g= —,; using this,

8(A, g'(1 —g) —u /4) B(A,—u)
Jo ( kg+ 1)( x(1 —g)+ 1) ( A/2+ 1)2j dg

One can now safely set p+ =0; this causes a spurious (log-
arithmic) increase of F (u) for u «1 (low invariant
masses); that is adequately suppressed by the factor
(1—4m /M )'/ in the production rate. The resulting
one-dimensional integral is

A, GA,
F+(Q) = g/ 2

0

(~ '+1)
In view of the elementary identity1,d 1= —8

( '+1}'
this integral can be brought to the form

(u /2)e "/ ~ dt (1—t)++(u) =4 +
e ll/2+ 1 u/2

with mP —780 MeV, I =155 MeV (cf. Ref. 8). The cru-
cial point is that, in order to obtain the observable pair-
production rates, one has to integrate (3.1) and (3.2) over
the space-time history of the central region. In this
respect, high-energy collisions differ significantly from
ones, say, at typical Bevelac energies: this is the subject of
Sec. IV.

IV. INTEGRATION OF PAIR-PRODUCTION
RATES OVER THE HISTORY
OF THE CENTRAL PLASMA

The observable pair-production rates are obtained from
Eqs. (3.1) and (3.2) by integrating those equations over the
space-time volume of the central plasma. Cooling is rapid
behind the transverse rarefaction front; therefore one ex-
pects a negligible amount of pair production from that re-
gion. Consequently, it is sufficient to integrate over the
space-time region of the plasma which has not been
reached yet by the transverse front. The computation is
further simplified by the observation that in the relevant
region, the temperature decreases rather slowly, cf. Eq.
(2.10}. As a consequence,

dX f 4 dX(T) & dX(T)
y~ 2 ~ (plasma) 8~ 284X l~ 2y4&

(4.1)

where 0 is the volume of the relevant space-time region
and T is the average temperature in that region.

One can now envisage two types of situations. Suppose
that the initial temperature T0 is sufficiently high, so that
the central plasma is in the quark phase. As the plasma
cools according to Eq. (2.10), it may reach T„ the critical
temperature before it is swept out by the transverse rare-
faction front. In that case, one expects a mixed pair pro-
duction, coming both from the quark and hadron phases.
If, however, the cooling is sufficiently slow, so that the in-
terior of the plasma remains in the quark phase until it is
reached by the transverse rarefaction front, pair produc-
tion from the quark phase is predominant, with a small
amount of pairs produced from the hadronic phase behind
the rarefaction front.

The proper time at which the plasma reaches the criti-
cal temperature is given by Eq. (2.10):

3 3
TO l T0

~, =~0 -0.3A
T, A

(4.2)

TO 3—o. AT-
C

(4.3)

For near-central collisions this gives (cf. the Appendix)

1/9

C

(4.3')

with T,=1.5A. This proper time is to be compared with
the proper time at which the front reaches a given portion
of the plasma; at a distance p from the axis, this is given
by rF =V 3(RT —p) (cf. Sec. II). Clearly, the central re-
gion (p=0) is most likely to undergo a phase transition be-
fore it is reached by the front. Therefore, comparing (4.2)
with ~F at p=0, one finds that a phase transition takes
place before the front reaches the central region if

1/6
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dQ=du 2' J dt pdpdx B(r r)8———v

X B(Rz —~3 —p), (4.4)

where v = tanhy is the flow velocity. On using
t=~(1 —U ) ', this integral is easily evaluated; at a
negligible loss of accuracy one can integrate over ~ from
7 =0 instead of 7 = 'Tp. In this way one finds the simple
expression

dQ ~ 2 (4.5)

31 being the atomic number of the smaller nucleus. I con-
clude that the contamination coming from phase transi-
tion inside the plasma is negligibly small except perhaps
for central collisions of very heavy nuclei, such as UU,
UPb. In estimating the pair-production rates, one need
not worry very much about interior phase transitions; in-
terestingly, collisions such as OPb, FePb, appear to pro-
vide a cleaner laboratory for the study of the quark-
hadron phase transition than UU, UPb, etc., collisions.

The calculation of the space-time volume is straightfor-
ward. It is convenient to compute 0 per unit rapidity.
Using the scaling solution to the equations of hydro-
dynamics, we have in cylindrical coordinates

In order to find T, one has to average both over the cross
section of the plasma and over its history. One has

R~ 1 rF(P)
T= pdp dT

R 7 g(p) —vp ~0 +p

—1/3

(4.6)

with again, rF(p)=v 3(Rz.—p). In principle, this is a
function of the impact parameter; however, we saw in Sec.
II that (with the possible exception of the heaviest nuclei)
pair production is expected to be small in peripheral col-
lisions; therefore one can Put Rz-rpA1' . Moreover, one
finds that T is not very sensitive to the precise choice of
the value of R z- /~p, ' thus one approximates
R z /Tp f'p AA ~ 1 . The integration over ~ can be
performed analytically; that over p was done numerically.
The resulting average temperature is a slowly varying
function over the periodic table of elements; one finds a
variation of T /To between 0.99 (light nuclei) and 0.85
(heavy nuclei). As a reasonable estimate, one can take
T 0.9Tp irrespective of the atomic numbers of the collid-
ing nuclei.

Putting these results together, one gets the following es-
timates for the pair-production rates:

dX
dM dy

(a) Assuming phase transition into the quark phase,

2 2

=5.8&&10 e Tp o 1+ 1
M

' 1/2

+ 09T,
(4.7)

(b) Assuming no phase transition,

dX
dM dy

1/2
1/2

4 2

=8.6&&10 a T cr 1+ 1 —
~

F (M )
~

(1—
M M M

M
0.9Tp

(4.8)

In these equations, F and F+ are given by Eqs. (3.5) and
(3.4), respectively; y stands for the total rapidity of the
pair (i.e., for the rapidity of the virtual photon). Not
surprisingly, the distribution is independent of y: this is a
consequence of the fact that the temperature, as measured
in the comoving frame of a fluid element, is independent
of y (similarity flow). Consequently, the total number of
pairs produced is proportional to the length of the rapidity
interval available. The averaging over impact parameters
can be carried out numerically, using the geometrical for-
mulas given in the Appendix. Only those impact parame-
ters have to be taken into account for which pair produc-
tion is significant (cf. Table I). Typically, one finds
(o'z )=7.8ro A,",A~ being, as usual, the atomic num-
ber of the smaller colliding nucleus.

many complicating factors present at lower energies,
disappear. If a phase transition indeed takes place, the
change in the spectrum of pairs produced should be quite
dramatic. The relevant quantity is the ratio of theoretical
pair-production rates from the quark and hadron phases
P(M, To)=dX~ /AH. This quantity contains informa-
tion about the invariant-mass region where signatures of a
phase transition can be best observed. Table II gives

P(M, Tp) as a function of M at an initial temperature

TABLE II. Sample values of P(M, 7p) =(dN)g l(d&)~ as a
function of the invariant mass M of lepton pairs. Initial tem-
perature Tp ——200 MeV; A=100 MeV. Pure quark phase is as-
sumed at T=Tp.

V. DISCUSSION

High-energy nuclear collisions are well suited for a
study of the phase transition to quark matter. This is

mainly due to the fact that one can clearly distinguish a
central region in the rapidity plot. In that region the
physical properties of matter are relatively simple (small
net baryon number, similarity flow); as a consequence,

M /A

10
20
30
37
50
60

P(M, Tp)

5.85
2.27
1.45
1.00
0.40
0.25
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TD ——200 MeV, which is, one hopes, somewhat above the
critical temperature (cf. Sec. I). Such temperatures of the
central region should be within the reach of the next gen-
eration of colliding beam accelerators or perhaps, of suit-
able designed cosmic-ray experiments. It is worth em-
phasizing that cosmic-ray experiments may be quite com-
petitive as a laboratory in which a phase transition be-
tween the hadron and quark phases of matter can be stud-
ied. This is due to two facts: (i) The pair-production rate
is a slowly varying function of the primary energy [cf.
Eqs. (2.11), (4.7), and (4.8)]; hence, a very accurate deter-
mination of the primary energy is not necessary. (ii) The
critical temperature of the phase transition is expected to
be quite low (T, & 200 MeV), thus one does not need ex-
tremely energetic nuclei; the luminosity of the primary
cosmic radiation in the region of atomic numbers A =56
and E & 2 TeV/nucleon (corresponding to s '

& 60
GeV/nucleon in the collision of an incident Fe with an
average emulsion nucleus) is substantial.

One of the mildly surprising results of our analysis
worth reiterating is that (contrary to widespread folklore)
the collisions of very heavy nuclei may not provide the
cleanest laboratory for the study of a hadron-quark phase
transition: given T0, P(M, T0) contains too much con-
tamination from a late hadronic phase of the central plas-
ma [cf. Eq. (4.3)]. Presumably, colliding beams of
moderately heavy nuclei (O, Ar, Fe) or those incident on
heavy targets will provide cleaner results.
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APPENDIX: GEOMETRICAL ASPECTS
OF FAST NUCLEAR COLLISIONS

This is an old subject: High-energy collisions of nuclei
can be treated classically with small quantum corrections.
Authors of various "fireball, " "firestreak, " etc., models'
give more-or-less explicit formulas for nuclear overlap
volumes, geometrical cross sections, etc. The purpose of
this appendix is, partly, to summarize known results, part-
ly to make them as explicit as possible: As long as a clas-
sical approximation is valid, the computation of overlap
volumes and geometrical cross sections is an elementary,
albeit somewhat tedious, exercise in solid geometry.

Consider two nuclei, of radii R~ and Rz (for the sake of
definiteness, R ~ (R2) in their rest frames, colliding with a
Lorentz factor y in their overall center-of-mass frame, at
impact parameter b. With an obvious choice of a coordi-
nate frame, the nuclear surfaces are giv'en by the equations

V=O for b ~R&+R2,

V= [R, (1—u)[1 —B(u)u ]+R2 (1—U)(1 —v )I3y
for R2 —R~ &b (Rz+R, , (A6)

V= R, for 0&b &R,—R, .
4m.

3y
(3) Collisions of identical nuclei R~ ——R2 ——R. Equa-

tions (A5) and (A6) are simplified. One gets the following
expressions:

og ——2R 1 — cos
b ] b

(A7)

4' b

8R
1—b

2R
(A8)

(4) Analytical interpolation formulas. The following
formulas are obtained by comparing Eqs. (A5) and (A6)
with (A7} and (A8), respectively. Useful interpolation for-
mulas can be obtained for nuclei of comparable size
(R2 —R])&(R]+R2) /2. We have

'2
b

R)+R2
b

cos
R]+R2

og-2R) 1—

Clearly, the plane of smallest intersecting area is given by
the equation

R2 —R]2 2

3'0 = (A3)

Overlap volumes and geometrical cross sections are deter-
mined, in essence, by the quantity g=blya: g&1 and
g & 1 lead to different-looking analytical expressions; how-
ever, the resulting formulas are continuous functions of
the impact parameter. The method to be used in comput-
ing overlap volumes and cross sections is trivial; the main
step is to introduce separate spherical polar coordinates
for each colliding nucleus and compute the respective por-
tions of overlap volumes and cross-sectional areas of in-
terest. The result of such a calculation is summarized as
follows. We define the variables

2bR ]
(A4)

b2+R22 R )2

2bR2

(1) Geometrical cross section of overlap, og is given by

o-g ——0 for b )R]+R2,
crs=R& [1—e(u)u ]cos 'u+R2 (1—U )cos 'u

for R z
—R, & b & R, +R» (A5)

o- =~R, ' for 0&b&R2 —R& ~

(2) Overlap volume Vis given by

2

x + p — +y z =R)
2

2

~2+ y+ +y&~2=R, '.
2

(A 1}

(A2)

34vrR, '
I

V= 1 — — — 1—
R]+R2 R]+R2

These formulas have the correct limits at b~0 and
b~R ~+R2, Eqs. (A9) underestimate erg and V for central
collisions 0&b &R2 —R&.
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