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Implications for generalized Koba-Nielsen-Olesen (KNO) scaling, namely KNO scaling at a fixed pseu-
dorapidity interval, are discussed. Predictions can be obtained for semi-inclusive pseudorapidity distribu-
tions and vice versa. These predictions agree very well with the CERN ISR and pp collider data and they
should be tested against e+e, lepton-nucleon, and other hadronic data. A theorem about the relative
magnitudes of the moments for different generalized KNO curves is proven. Consequences and validity of
a "strong scaling hypothesis" are discussed.

It has been known for some time that the multiplicity dis-
tributions for hadron-nucleon collisions at fixed-target en-
ergies obey Koba-Nielsen-Olesen (KNO) scaling. ' More-
over, they are universal in the sense that one KNO curve is
sufficient to describe collisions with all available hadronic
beams. It is even possible that scaling and universality are
valid for all nuclear targets, though there are uncertainties
about the universality aspect. KNO scaling is valid also for
the decay products of diffractively excited clusters, and for
e+e (Ref. 6) and lepton-nucleon' colhsions. These KNO
curves do not have the same shape as the one for hadronic
collisions.

Recent experiments at the ISR (Ref. 8) and the pp collid-
er ' ' at CERN have demonstrated the validity of scaling
and universality perhaps to c.m. energy Js = 540 GeV.
This has aroused renewed theoretical interest in the sub-
ject." But at this time there seems to be no general con-
sensus on the basic underlying dynamical mechanism, so
more tests capable of discriminating various models must be
devised. One such test is now available. The ISR and col-

lider experiments ' showed that KNO scaling is already
valid in a fixed pseudorapidity range IgI ~ qe, at least for
go= 1.5 and 3.5. We will refer to this new phenomenon as
the generalized KNO (GKNO) scaling. The GKNO curve at
F0=1.5 is wider than that at go=3.5, in the sense that all
the y moments' of the former are larger than those of the
latter (see Table I). At ISR energies, almost all the events
fall inside IqI & 3.5; the GKNO curve at go=3.5 agrees
with the universal KNO curve at fixed target energies. At
Js = 540 GeV, the KNO curve for the complete pseudora-
pidity range is not known. It is the GKNO scaling that is
actually verified.

This new phenomenon of GKNO scaling merits consider-
able attention and exploration. It relates multiplicity and ra-
pidity distributions in a definite way and, it is hoped, this
may provide new insights into the dynamical mechanism for
multiparticle productions. Although we wi11 not discuss de-
tailed dynamical models in this Rapid Communication, we
will explore the phenomenological implications of GKNO
scaling. Since data are available only for pp and pp processes

TABLE I. Measured values of y moments and Q~ moments [Eq. (8)]. They are related as follows:
y2=@2 —1, y3=$3 —3/2+2, y4=$4 —4@3+6@2—3 —3y2 .

y2 y4

UA1, Js = 540 GeV
I&I &1.5
ISR, Ws =63 GeV
I&I &1.5
UAI, Js = 540 GeV
Iqf & 3.5

ISR, Js =63 GeV
all v)

0.441
+ 0.017

0.46
+ 0.01

0.296
+ 0.011

0.297
+ 0.010

0.308
+ 0.021

0.28
+ 0.02

0.122
+ 0.007

0.125
+ 0.007

0.216
+ 0.050

0.29
+ 0.05

0.027
+ 0.008

0.051
+ 0.006

1.441

1.46

1.296

1.297

2.631

2.66

2.01

2.016

5.677

5.805

3.554

3.598
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at ~g~ & 3.5, we shall base our following comparisons on
pe=3.5, although discussions could have been carried out
for general intervals and indeed for general processes.

Let N and n be the number of detected particles in

fvp f
~ 3.5 and fq [

~ 71', respectively, and let N (s ) and
n (s, ga) be their averages. Let us assume that for a given
lV, number fluctuations in the interval ~q~ ( qa are unim-
portant for the following purposes. Then in terms of the
KNO variables z =N/% and z'= n/n, the multiplicity distri-
bution is given by the probability density

dP = Q (z )dz = $ (z ', 7i p) dz
'

where Q and @ are the GKNO functions for ~q~ ~3.5 and
[g~ ~ qa, respectively. Since P is also the KNO function at
fixed-target and ISR energies, we will for simplicity refer to
it as the KNO function. By the GKNO function we will
now mean @.

GKNO scaling thus implies that there exists a function f
such that

i( 2.0

1.0

and

z'= f'(z, v)()), z =f '(z', 7lp) (2)
0 1.0 2.0 3.0

Let

@(z', qo) =
q (f '(z', qo))

Oz

d cr~
p(z, q, s) =-

a~ dq
(4)

FIG. 1. Test of scaling with energy. The data points represent
the left-hand side of Eq. (6), with the unintegrated data coming
from Refs. 8 and 10. The solid curve is given by Eq. (7) and the
dashed curve is z'=z.

be the semi-inclusive pseudorapidity distribution function.
Its integral over [q[ ~ 3.5 is N. Its integral over fqf ~ qp is
n. Thus,

fO gp

1(z, v)g, s) = J p(z, g, s)dg = n = nz'= n (s, qz) f'(z, qo)
~p

graphical integrations, errors are hard to estimate but they
are likely to be larger than the dispersion between the vari-
ous points from the smooth curve.

The solid curve in Fig. 1 represents a simple parametriza-
tion of the data points. It is given by

Thus, f (z, 1.5) =
1+Bz

(7)

~~0 1 dog o~ t 0 1 do~
dvj =

&0 o'g 47l ~ rr( ~0 o'Jv

= JI dz q (z) y(z, g()) n (sqp),
p oo

= n (s, qq) J dz'@(z', qp)z'

as expected, and

=n(s, v)p) (5)

~~p 1 du~ I do's 1(z, 'gp, s )d Yp dq=~ -&p o~ dg &0 o ) 4"rl P(s )

= f'(z, v)p)

scales with energy. Moreover, the resulting scaling function
f is the same one that connects the KNO with the GKNO
functions as given by Eq. (3).

To test Eq. (6), we estimate 1(z, 7iq, s ) for qp= 1.5 by per-
forming graphical integrations" from the published curves
of p(z, q, s) in Refs. 8 and 10. After dividing by the values
of n, '' we plot this value of z' against the z value at the
middle of the z range for which data for p(z, q, s ) are
shown. The resulting points are exhibited in Fig. 1. We see
that points corresponding to different energies all seem to
lie on a smooth curve, thus verifying the scaling property
given by Eq. (6). Since the points in Fig. 1 are obtained by

with A =2.88 and B =1.90. The small-z behavior of this
parametrization is determined by the requirement that
@(z', 1.5) is finite at z'=0 and that P(z) = Pz for small z.
This requires f (z, 1.5) =Az', with A determined from Eq.
(3) to be A =P/2@(0, 1.5). Using the Slattery parametriza-
tion'4 where P = 3.79/2, and the experimental value of
P (0, 1.5), the aforementioned value of A was obtained.
The denominator of (7) was put in by the desire (see
below) that f should rise as a linear function of z at large z.
The parameter B is then chosen to enable the solid curve to
go near the data points.

Now we examine the other prediction of Eq. (6), that the
KNO and the GKNO functions are related by the curve in
Figs. 1. Using the Slattery parametrization' for Q(z), the
parametric form (7) for f, and Eq. (3), we can calculate the
GKNO curve for qp=1.5. The result is shown as the solid
curve in Fig. 2, together with the experimental data. Con-
sidering the simplicity of (7), the agreement between theory
and experiment is quite astonishing.

It is possible to understand, even without detailed
parametrization, why the GKNO curve is wider than the
KNO curve. To this end we prove the following theorem.

Theorem. Let j'~(z) and fq(z) be monotonically increas-
ing, continuous, and non-negative functions of z. Suppose
ft ~ fq for z ~zp and f~ ~ fq for z ~zp, for some zq & 0.
Let @~(z') and @z(z') be two GKNO functions related to
the KNO function P(z) by f'~(z) and fz(z), respectively, as
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in (3). Then @q ~ @2 for all positive integers m, where Now
are the moments of @;(z'):

y, = Jl, P;(z')(z') dz' .

Proof Fr.om (1) and (2), we have

42 g p
A(z) dz[[f (z)] [f2(z)] ]

(8) L(ft(z) f2(z)) =— = gf "(z)f ' "(z)ft(z) —f2(z)

is symmetric in f't and fz, and it is a non-negative, continu-
ous, and monotonically increasing function of z. Thus,

@,~ —@,~= J~ y(z)L ( f~(z),f2(z) ) [fq(z) —fz(z)]dz

fOZ
O fO OO~ L ( ft(zp), f2(zp)) —

J [fz(z) —f't(z)]P(z)dz+ Jl [ft(z) f2(z)]g—(z)dz

= L (ft(zp), f2(zp) ) Jt [@y(z') —@z(z') ]z'dz' = 0

Now we see from Fig. I that the solid curve f (z, 7lp) rises
faster in z than the dashed curve z. This is expected be-
cause of the following general features of the semi-inclusive
pseudorapidity distribution. ' For small N, the distribution
has a dip of q=0. As N increases, this dip is gradually
filled up to a plateau and later to a central peak. This
means that n/N, the fraction of particles inside
rises with N. It also means that f(z, rip)/z rises with z. So
if we apply the theorem to f't =f (z, 1.5) and f2 ——z, we will

get the conclusion that

(qp=1.5) ~P (gp=3.5)

This agrees with the experimental moments shown in Table
I. If we now apply the theorem to two GKNO curves, at

1 I & & ~ ] I t t 1 [
I I I I

]
I I

gp= 3.5 and go= ~, respectively, then it is hard to escape
the conclusion that the genuine KNO curve (7lp=~) at
Js = 540 GeV is narrower than the GKNO curve at
go= 3.5, although precisely how much narrower cannot be
estimated without having the knowledge of the full pseu-
dorapidity distribution.

Let us now explore the consequences of the "strong scal-
ing hypothesis" (SSH), namely, the assumption that GKNO
scaling is exactly valid even for z && 1. Present tests of
scaling extend out to z =3 or 4, and not beyond. Thus,
there is no compelling reason for the SSH to be valid.
Nevertheless, it is interesting to see what can be obtained
by making the hypothesis. The fraction of particles x = n/N
inside ~i'~ ~ rip is expected to approach unity for very large
N, because energy conservation forces almost all the parti-
cles in a large-multiplicity event to have small rapidities. In
that case, z'=xz(N/n) z(N/n) for large z. With SSH,
z'= f (z, qp) is independent of s; thus (n/N) =R is a func-
tion of qo only. %e thus arrive at the conclusion that

,

~~o 1 d a IR (rip) = dg
N(s) " ~p o.i dq

(10)

t I I I I I I I I I I I I I l I r

0 1.0 2.0 3.0
/

FIG. 2. Prediction of the GKNO scaling function for go=1.5 is

given by the solid curve. The data points are from Ref. 10.

must be energy independent. This is phenomenologically
incorrect because the UA5 data clearly show that the pseu-
dorapidity distribution at Js = 540 GeV is wider than that at
Js =53 GeV. So SSH is not exactly valid; the truth lies
somewhere between Feynman- Yang scaling and that
predicted by SSH. Nevertheless, SSH may not be too badly
violated because R'(0) is fairly energy independent. From
the data of Refs. 8 and 10, we obtain —R'(0) =0.17, 0.16,
0.1S, 0.1S, 0.15, and 0.16, respectively, for Js =23.6, 30.8,
45.2, 53.8, 62.8, and 540 GeV. The errors in R'(0) are
roughly +0.01 for all of the values given. For comparison,
note that throughout the same energy range, a-I 'da-I/dq
at q = 0 rises from 1.4 to 3.27.

Incidentally, whether SSH is valid or not, the arguments
above Eq. (10) show that f (z, v)p) grows asymptotically like
z/R for large z. This jusitifies the parametrization of Eq.
(7) for large z. The value 2 /B = 1.5 obtained there, howev-
er, is still smaller than R '= 2.0, showing that at z —3 we
are still not yet in the asymptotic region for z.

In summary, we have discussed some of the predictions
of GKNO scaling. It is important at this stage to test the
range of validity of GKNO scaling for all processes. This is
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particularly so for e+e and lepton-nucleon collisions be-
cause of the relative simplicity of their dynamics. Even for
pp and pp collisions we still do not know whether GKNO
scaling is valid only in the central region or for all go. For
that matter we are not certain whether pseudorapidity,
rapidity, or some other variable is the most appropriate one

to use either. We hope that these and many other questions
can be clarified in the near future.
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