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The magnetic moments of the baryon octet and the X ~A transition moment are calculated for
the most general form of wave function describing an essentially nonrelativistic constitutent quark
model. For definiteness the quarks are taken to have Dirac moments. Flavor symmetry is assumed,
that is, the Lande g factor is taken to be the same for all the baryons, an assumption that is justified
by the small probabilities ( P), ( P), and ( D) suggested by our final results. All of the measured
moments can be fitted by this model. Results of making the fit are the following: (1) the ratios of
intrinsic quark moments are p„/pd ———1.93+0.09, p, /pd ——0.79+0. 12, (2) the total admixture of
decimet and singlet states with the octet amounts to 10+14%, (3) if

~ pq ~

is assumed to be 1 nuclear
magneton (p~), the probabilities of admixed angular momentum states satisfy the condition

3 ( P) —
3 ( P) +( D) =0.05+0.09, and (4) within the context of the model there is an upper

bound on the absolute value of the X ~A transition moment equal to (1.97+0.14)p~ and depend-

ing only on the measured values of the seven magnetic moments. A more precise measurement of
the transition moment is needed to confirm that it does not exceed this bound. Numerical values are
also specified for two matrix elements that may be useful for determining more detailed properties of
the wave function in specific models but they will be very model dependent. At present, all of the
qualitative features of these results would appear to be consistent with a dynamical model based on
simple potentials between constituent quarks augmented by spin-orbit couplings and SU(3)-breaking
interactions of the order of magnitude of the "hyperfine'* interaction of De Rujula, Cxeorgi, and
Glashow.

I. INTRODUCTION

The recently measured magnetic moments of members
of the baryon octet appear to be in surprisingly good
agreement with the sum rule

p(X+)+p(:- ) —p(X ) —p(:- ) =2.640ptt (la)

(ptt ——nuclear magneton), which was predicted' on the
basis of the constituent quark model by making use of the
assumption of flavor symmetry. The experimental values
of the moments given in Table I yield

p,„p(&+)+p,„p(:- ) —p.,p(& ) —p.,p(:- )

= (2.78+0.18)p~ . (lb)

This good agreement suggests that an attempt be made to
extend the concept of flavor symmetry to include the oth-
er two baryons of the octet, the A and X, and to deter-
mine whether this extended model is capable of account-
ing for each of the observed moments.

The purpose of this paper is to show that not only is the
model capable of accounting for the seven measured mag-
netic rnornents and the X ~A transition moment but
also there are interesting restrictions placed on the wave
functions of the model by fitting it to the data. The re-
strictions are as follows.

(I) The amount by which symmetry breaking mixes the
decimet and singlet representations of SU(3) with the octet
totals (10+14) %.

(II) If the intrinsic moment of the d quark is assumed to

have the magnitude of 1 nuclear magneton (p&), the prob-
abilities of the mixing of P, P, and D states with the
basic S state are restricted by the condition

—, ( P) ——,( P) +( D) =0.05+0.09, (2)

where the term symbols represent the amplitudes of the
state, which are real.

(III) There is a large contribution to the moment from a
cross term between the octet and decimet, providing in-
dependent evidence for mixing of the P, P, or D states if
the S state is assumed' to be dominated by the usual 56
representation of SU(6).

The only assumptions made in order to obtain these re-
sults are the following.

(A) The state of each baryon is described by an essen-
tially nonrelativistic constituent quark model.

(B) The g factor for the spin of a quark is twice the or-
bital g factor and there are no exchange moments.

(C) The wave functions are eigenfunctions of isotopic
spin.

(D) The Lande g factors, which depend only on the dis-
tribution of total spin and total orbital angular momen-
tum, are approximately the same for the octet, decimet,
and singlet SV(3) states. This condition defines "flavor
symmetry.

"
Because the assumptions are so general, the essential

qualitative features of the constraints I—III would appear
to be incontrovertible within the meaning of three-particle
constituent quark models which treat the S, SU(6) state as
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TABLE I. Measured magnetic moments and transition moment for the octet of baryons.

Baryon

P
n

A
g+
X
~o

~

Xo-Ao
~

Measured moment

2.793 ~ ~ ~ +0.000
—1.913 . +0.000
—0.613+0.005
2.33+0.13
—1.01+0.12
—1.250+0.014
—0.69+0.04

82+0.25

Source

Particle Data Group'
Particle Data Group'
Schachin ger, Cox'
Particle Data Group'
World average
Bunce, ' Cox'
Handler
Dydakg

'Particle Data Group, Phys. Lett. 1118, 1 (1982).
"L. Schachinger et al. , Phys. Rev. Lett. 41, 1348 (1978).
'P. T. Cox et al. , Phys. Rev. Lett. 46, 877 (1981).
L. Deck et al. , Phys. Rev. D 28, 1 (1983).

'G. Bunce et al. , Phys. Lett. 86B, 386 (1979).
R. Handler et al. , in High Energy Spin Physics —1982, proceeding of the 5th International Symposium,

Brookhaven National Laboratory, edited by G. Bunce (AIP, New York, 1983).
F. Dydak et al. , Nucl. Phys. 8118, 1 (1977).

p„ /pd ———1.93+0.09,

p, /pd ——0.79+0.12 .

(3a)

(3b)

dominant. Although the use of anomalous quark mo-
ments would introduce additional parameters, the qualita-
tive features of the constraints would not be changed, nor
would they be changed by relaxing the condition

~ pd ~
=@~ within the range of values permitted by S

dominance.
Despite the small probability of mixing, individual mo-

ments may deviate sharply from the values predicated on
simple SU(6) symmetry because the cross terms between
the dominant and mixed states are proportional to the am-
plitudes of mixing, which, of course, may be appreciable
even when the probabilities are small. The cross terms are
also sensitive to details of the wave functions but, unfor-
tunately, these details cannot be pinpointed by use of the
measured moments because there are so many ways in
which the imposed constraints can be realized.

In general, then, it is a qualitative picture that emerges.
However, the mirror properties' will be shown to be corn-
pletely independent of the cross terms and the consequent
sum rule Eq. (la) depends only on the smallness of the
mixing probabilities. Thus, the values of the ratios of
quark moments, which are obtained by applying these re-
lationships to the data, have a reasonably high degree of
reliability within the broadest context of the model. On
the basis of the results presented in Table I, these ratios
are

tions.
Since flavor symmetry is based on the permutation

properties of the wave functions, we specify the choice of
the bases for the two 8 representations by their properties
under permutation of the particle labels 1,2,3 (Ref. 4)

~120s Ps ~

I'i24s=fs

P13 Ps 2 (es+~~ Ps)

~130s 2 (~3es t('s)

»34s= 2 (0s —v 3fs)

~234s z (~Vs+ps) ~

(4a)

(4b)

(4c)

(4e)

(4

Functions belonging to the 10 representations are totally
symmetric:

Pij 510 410 ~

and those belonging to 1 are antisymmetric,

~ijWi= —4 .

In order to determine which functions are to be associ-
ated with which hadrons, it is convenient to specify the
flavors associated with the particle indices. When there
are two like quarks, they are taken to be quarks 1 and 2,
when all the quarks are different, 1—=u, 2=d. Then the
sextet of hadrons having two like quarks (flavor a) and
one unlike (flavor P) may be represented as a linear com-
bination of functions symmetric in 1 and 2:

II. DESCRIPTION OF THE STATES 'p«' p)=as4s+aio4io (7a)
The wave functions of the three-body system may be

classified in general by the associated representations of
SU(3). In terms of functions of the flavor variable the ir-
reducible representations are 8, 8, 10, and 1. Because the
Pauli principle requires that the space-spin-flavor function
be totally symmetric (the color function is antisymmetric)
under permutations, the space-spin functions itis, itis, bio,
and Pi associated with these flavor functions have the
same permutation properties as those of the flavor func-

with
—2 2
Qs +Q)o = 1 (7b)

It is to be noted that the only nonstrange component of
idio belongs to I = —', ; therefore aio ——0 for the nucleon.
The coefficient aio measures the deviation from flavor
SU(3) and it is assumed that that is due to the difference
between the masses of the s quark and the other two. The
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isotopic-spin assignments of I =1 for the X—+ and I = —,
'

for the ='s are met by both gz and f&o.
The wave function of the X is given by the I3 ——0 com-

ponent associated with %(X+—):

a 8 P8 +a 10410 (8)

4(A )=asgs+aigi, (9a)

with quark indices 1—=u, 2:—d, as prescribed.
On the other hand, the I=0 A state is antisymmetric

in u and d, that is in 1 and 2, and can include only those
functions that are antisymmetric under Pi&..

B(8,8)+B(8,8)= —', A (8),

C(8, 8)= [B(8,8) —B(8,8)]

=v 3[—,'A (8)—B(8,8)],

B(1,1)= 3A(1),

C(l, l) = —v 3B(1,8),
c(s, lo) =W3B(l, lo),
C(N, N) =C(1,8) = C(1,10)=0 .

(13c)

(13d)

(13e)

(13f)

(13g)

(1311)
where

a8 +ai ——1.2 2 (9b)

The coefficient a i is also a measure of deviations from fla-
vor SU(3) but there is no simple connection between ai
and aio. We treat them as independent parameters to be
determined by experiments.

III. MAGNETIC MGMENTS

Under our assumption B the magnetic-moment operator
for the baryons is

M=pi(o i+ l i)+pp(o2+. l ~)+p3(o3+ 1 i), (10)

where o.
&

and I
&

are the Pauli spin operator and orbital-
angular-momentum operator for the ith quark and p; is its
intrinsic moment. Equation (10) can be rewritten in the
form

p(p) =p„A (8)+(pd —p„)B(8,8),
p(n) =pdA (8)+(p„—pd)B(8, 8),
p(X+ ) =p„A +(p, —p„)B,
P(~ ) 2 (Pu+Pd)A + 2 (2PS Ptl Pd)B i

p(& )=pdA+(p, —pd)B,
p(:- ) =p,A +(p„—p, )B,
p(:- ) =p,A +(pd —p, )B,
P(A )= —,(P„+Pd)A'+ —,'(2P~ P~ Pd)B

(14a)

(14b)

(14c)

(14d)

(14e)

(14g)

(1411)

When the flavors are assigned as specified earlier, the
magnetic moments of the baryons and the transition mo-
ment are found from Eqs. (7)—(9) and (11)—(13) to be

M= —,(pi+pp)(2S+L)

+ z (Pl P2)[oi+ I i
—(o2+ I 2)]

1+ —,(2P3 —Pl —P2)(o3+ I 3) .

p(X ~A )= (p„—pd)B",v3
2

where

(14i)

The magnetic moment of a baryon in state 4 (with
magnetic quantum number —,

'
) is given by the expectation

value of M, in that state and the X ~A transition mo-
ment is the X,A matrix element of M, . Therefore, the
moments are linear combinations of the matrix elements

A =as A (8)+aio A (10)

A'=a8'A (8)+a i'A (1),
(15a)

(15b)

B=as B(8,8)+2a8aioB(8, 10)+—,a&0 A(10), (15c)

B'=as [—,A (8)—B(8,8)]+2asaiB(1,8)+ —,'ai A (1),
(N

I
2S, +L,

I
N') =A (N)D (N, N'),

(N
I o3.+I3. I

N') =B(N.N') .
(N

I
oi, +li, —(a~+i&, )

I

N') =C(N, N') .

(12a)

(12b)

(12c) B"=a8as[ —,A (8)—B(8,8)]

(15d)

D(N, N') =5~~,
A (8)=A (8), (13b)

Here, N and N' take on the values 8, 8, 10, and 1 corre-
sponding to Ps, gs, Pio, and gi. By making use of their
time-reversal properties it can easily be shown that these
Hermitian matrices are symmetric if the phases are chosen
in accordance with the Wigner convention.

Because the quark indices label dummy variables, the
matrix elements are invariant under permutations of the
indices and the following useful relationships among them
may be derived by use of the permutation properties of the
wave functions, Eqs. (4)—(6):

—a8a&B(1 8)+asaipB(8, 10) . (15e)

The matrix elements A (N) given by Eq. (12a) are diago-
nal in total spin and total orbital angular momentum and
are therefore a linear combination of the probabilities of
the allowed terms in the state Pz, the coefficients being

The appearance of the common coefficient B in Eqs.
(14c) and (14e)—(14g) implies that there is a consistency
condition among the equations relating p(X+) —p(X )
with p(= ) —p(:- ). This condition takes the form of a
sum rule,

p(X+) —p(X )+P(:- ) p(:- ) =(p„—pd)A—. (16)
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the well-known Lande g factors:

A(N)=[1 ——,( P) + —,( P) —( D) ]~ (17a)

The amplitudes of the four allowed terms are subject to
the normalization condition:

(2S)2+ (2p)2+(4p)2+ (4D)2 (17b)

p(a', P)+IJ(13',a) =(p, +@&)A (a,P), (18)

which follows immediately, and in general, for the sextet
of baryons from Eqs. (14a)—(14c) and (14e)—(14g) with
A (a,P) =A (8) for the nucleons and A (a,P) =A for the
other baryons. For the X's and:-'s it is another conse-
quence of the appearance of the common coefficient B in
Eqs. (14).

The fact that this result is independent of SU(3) symme-
try breaking may appear to be surprising for a mirror pair
such as the X+ and:- which have different numbers of s
quarks. The reason for the generality of the result is that
the symmetry breaking can mix only the state Pio with fs
because of the constraints imposed on the colored quarks
by the Pauli principle. This guarantees that there is only
the one admixed state, itjio, in the sextet of baryons with
two like quarks.

The second assumption underlying the original notion
of flavor symmetry is that the Lande g factors, Eq. (17a),
which depend only on the probability distribution of total
spin and total orbital angular momentum, are approxi-
mately the same for all members of the sextet; the distri-
bution is independent of the symmetry breaking. The jus-
tification for this assumption is that symmetry breaking
due to the difference in mass between the s quark and the
u and d quarks, while causing energy (mass) splitting,
would not be expected to change the angular momentum
characteristics of a wave function in first order. In fact,
the mixing of states of different flavor representations
with the octet would be expected to be of the same order
as the mixing of the different angular momentum terms
with the S, if the spin-orbit couplings and SU(3)-breaking
interactions are of the same order of magnitude as sug-
gested by the relativistic "hyperfine" interaction of De
Rujula, Georgi, and Glashow. We shall find that they are
indeed of the same order.

Since the A (N) are given by Eq. (17a), which may be
written as A (N) =1 b, (N), dominance of the S—state
means that b, (N) is small, of order 10% as it turns out.
Then Eqs. (15a) and (7b) show that A differs from A (8) by
a term aio [6(10)—b(8)]. The doininance of the octet
implies that a~o is also small, of the same order as 6 and
the difference between A and A (8) is of the order of 1%,
thereby justifying the second assumption, which may be
written as

which has been used to eliminate the amplitude of the
(dominant) S state from the expression for A (N).

IV. EXTENDED FI.AVOR SYMMETRY

The notion of flavor symmetry' is based on two as-
sumptions. The first is an extension of charge symmetry,
the "mirror" property of baryons made up of two like
quarks and one unlike quark:

Iju/Pd = (20)

and Eq. (3b) may be interpreted as the ratio of the constit-
uent quark masses md /m, .

Again by making use of Eqs. (18) and (19) it is possible
to express A directly in terms of the very well-known value
of p(p)+p(n) and the ratio p„/pd. Insertion of the
values of A obtained when p„/pd = —2 into the consisten-
cy condition Eq. (16) leads immediately to the sum rule
Eq. (la). The fact that this sum rule is satisfied by the
measured moments indicates not only that the consistency
condition is satisfied but that it is satisfied under the as-
sumption of flavor symmetry.

The straightforward extension of the notion of flavor
symmetry is to assume that the Lande g factor of the A is
about the same as that of the other baryons. Since Eq.
(13b) guarantees this equality for the octet component of
the state, the only new assumption is

A (1)=A (10}=A . (21}

Although these equalities are broken to first order in
h(N), the coefficients A (1) and A (10) always appear with
the small factors a, and aio, making the corrections to
the moments negligible.

The extended flavor symmetry reduces the number of
independent parameters that can be fixed by comparing
Eqs. (14) with the measured moments. There are exactly
eight independent parameters and we choose them to be

Pu/Pd~ Ps/I d~ PdA~ PdB(8~8} ~

aiopdB(8, 10), aipdB(1, 8), as, as .
(22)

There are also just eight measured quantities because
p(X ) is not directly measurable with existing techniques.
If p(X ) were measurable, the relationship

p(X ) = —,
' [p(X+ )+p(X )]

that follows from Eqs. (14) would be a test of conservation
of isotopic spin which, if confirmed, would provide no
new information about the eight parameters, Eq. (22).

The eight equations obtained by inserting experimental
moments on the left side of Eqs. (14) are not a complete
set of equations for the eight parameters because two of
the undetermined parameters, as and aiop+(8, 10), ap-
pear in the coefficient 8 which is common to four of the
equations. The consistency of these relationships ex-
pressed by Eq. (16) does not involve the undetermined pa-
rameters and it therefore eliminates one of the eight equa-
tions. Thus, the data yield only seven independent equa-
tions for the eight parameters.

A(8)=A .

Therefore, A (a,P) =A in the three equations represent-
ed by the mirror relation Eq. (18) and A can be eliminated
by taking the two ratios of the three mirror equations. '

Then the ratios of the intrinsic quark moments can be
determined from the six observed moments with the re-
sults given in Eqs. (3).

Equation (3a) is consistent with the assumption that p„
and p~ are in the ratio of the electric charges,
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V. INTERPRETATION OF MEASURED MOMENTS

The values of the measured moments given in Table I
have already been used to determine two of the eight pa-
rameters, namely the ratios of intrinsic quark moments,
Eqs. (3). Of the remaining five independent equations, Eq.
(18) for the sum of proton and neutron moments yields

pgA = —(0.95+0.09)p~, (24a)

where p~ is the nuclear magneton. The difference of the
proton and neutron moments given by Eqs. (14a) and (14b)
yields

pdB (8,8)= (0.33+0.02)p~ (24b)

and the difference of the = moments or the X moments
gives

pdB =(0.191+0 014.)p~ . (24c)

and
+ (0.254+0.012)a s

a ~pdB (1,8) =(0.323+0.005)as

(25a)

—(0.262+ 0.042)a s (25b)

It is convenient to simplify the third equation by making
use of the assumption that deviations from the octet repre-
sentation are small, that is,

a8 ——1 —e, a8 ——1 —e,
with

(26a)

0&@«1, 0&@«1 . (26b)

Then Eqs. (15e) and (25) combine to give the final equa-
tion in the approximate form

e+e=O.OS+0.07 . (26c)

Although e and e cannot be determined independently,
it is clear from Eqs. (25a) and (25b) that neither of them
can vanish:

@&0, e&0 . (27)

From the normalization conditions, Eqs. (7b) and (9b), it
follows that

a(p =2E, a) =26 . (28)

Therefore, the total probability for an admixture of states
other than the octet is

a)p +a) ——0.10+0.14 . (29)

We conclude that the observed moments show that
SU(3) is broken by inclusion of both g&o and g& in the oc-
tet but that the amount of either may be quite small (how-
ever, probably & l%%uo) and the total is of order 10%.

Another important result may be obtained by combin-
ing Eqs. (25a) and (25b) with the independent Eq. (15e) to

The four remaining parameters are related by three
equations, two of them following from Eqs. (15c) and
(15d):

a ~opdB (8, 10)= ( —0.323+0.005)as

show that
~
p(X ~A )

~

is a monotone decreasing func-
tion of e and e such that

p(& ~A )
~

(1.97+0.14, (30)

where the numerical value of the bound is based on the
measured values of the seven magnetic moments. Al-
though the value of p(X ~A ) given in Table I falls well
within this limit, the estimated errors are large enough to
permit a violation. Therefore, a more precise measure-
ment of p(X ~A ) is of particular interest as a test of the
model.

Additional information to be obtained concerning the
distribution of angular momentum in the baryons depends
on the magnitude of pd. If the value

~ pd ~
=p& is used

to provide an estimate of absolute values of the amplitudes
and matrix elements, Eqs. (24a) and (17a) yield a relation-
ship among the probabilities of states admixed with the S:

—,
' ('P)' ——,('P)'+('D)'=0. 05+0.09 . (31)

Thus, the magnitude of the mixing of states of higher or-
bital angular momentum with the S state is of the same
order as that of the symmetry breaking, in agreement with
our surmise based on the De Rujula —Georgi —Glashow
spin-orbit coupling.

The introduction of this same value of pd into Eqs. (25)
leads to values of the coefficients ranging from

B(8,10)=-+0.45, B (1,8) =-+0.13 (32a)
for the one extreme (e=0.01, e =0.04) to

B(8,10)=+0.16, B(1,8)=+0.49 (32b)
at the other extreme (K=0.04, @=0.01).

In order to extract further information from these
values of B(8,10) and B(1,8), it is necessary to be more
specific about the wave functions. The general structure
of the possible functions can be formulated by the
methods used for the nuclear three-body problem. The
calculation of the matrix elements of (cr3, +l3,) in terms of
integrals over the (unknown) radial functions is straight-
forward.

Since the S state is dominant, we remark that there are
three allowed forms that may be combined linearly to con-
struct a S state in the octet, one of them being the usual
state belonging to the 56 representation associated with
SU(6) symmetry. The other two belong to the 70 and 20
representations of SU(6). There is only one form of S for
the decimet and one for the singlet, both of these belong-
ing to the 70 representation of SU(6).

The contributions of these dominant S states to
B(8,10) and B(1,8) arise only from the overlap of func-
tions belonging to the 70 representations. Therefore, if the
S state alone is to account for the rather large value of

B(8,10), a large breaking of SU(6) symmetry would be im-
plied. However, that situation is not nearly as serious as it
might seem because the contributions of the P, P, and D
states to these matrix elements are proportional to their
amp/itudes which may be quite large despite the limita-
tion, Eq. (31), on their probabilities. In particular, these
contributions depend on the overlap between pairs of radi-
al functions and on derivatives of the radial functions,
and they are therefore sensitive to the structure of these
functions. To determine the radial functions would re-
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quire a detailed dynamical model but there is no obvious
reason for excluding radial functions that are capable of
accounting for the data. However, one can argue that the
large value of B(8,10) provides additional and indepen-
dent evidence that the contribution of the I', I', or D
terms to the wave function must be at least of the order of
10%, if it is assumed that the S state is dominated by
SU(6) symmetry.

VI. CONCLUSION

That the eight measured moments can be fitted by a
model involving the eight undetermined parameters Eq.
(22) is not surprising but the significance of this fit should
be emphasized. We have shown by Eqs. (14) that in fact
ten parameters are implicit in any use of the constituent
quark model. In all previous attempts to calculate the
moments in this model' one or another of these parame-
ters has been set equal to zero and that is the reason those
attempts have not been generally successful. While the
probabilities for selected states may be close to zero, in
agreement with intuition, the amplitudes may not be as-
sumed to vanish because they enter into the calculation of
moments with factors B(N,N') that are very sensitive to
completely unknown details of the wave functions, such as
overlap integrals of nonorthogonal functions, and can be
quite large.

We have reduced the number of parameters from ten to
eight, not by setting any of them equal to zero but by im-
posing the reasonable physical constraint of flavor symme-
try, a step that clearly does not introduce a disagreement
with experiment.

As we have already remarked, a distinction should be
made between the quantitative results Eqs. (3) obtained
here for the ratios of the quark moments and the more
qualitative conclusions concerning the constraints on the

wave functions imposed by the measured moments. The
first of these may be adjusted as the result of new mea-
surements, but the fact that only a modest amount of
SU(3) symmetry breaking and only a modest deviation
from the S state belonging to the 56 representation of
SU(6) are required to account for the moments is not like-
ly to change.

Most remarkable in our view is the fact that these quali-
tative conditions can clearly be easily satisfied. It should
be kept in mind that the opposite conclusion was not a
priori unlikely. The model is subject to severe constraints,
such as the mirror property Eq. (18), the consistency con-
dition Eq. (16), and flavor symmetry. Had the data violat-
ed these constraints, or had the derived numerical values
of the parameters stretched credulity based on physical in-
tuition, the results could have been interpreted as evidence
for exchange currents between quarks, " for contributions
from the quark sea, ' or for the total failure of the model.
Instead the results suggest that an essentially nonrelativis-
tic dynamical model corrected by interactions of the order
of the "hyperfine" coupling of De Rujula, Georgi, and
Glashow is fully capable of accounting for all of the mea-
sured moments. However, these happy conclusions might
be invalidated by more precise measurements of the mo-
ments, especially if the transition moment should violate
the condition Eq. (30).
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