
PHYSICAL REVIEW D VOLUME 28, NUMBER 5 1 SEPTEMBER 1983
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The large-distance-dominated hadronic decays of the E*,P, and co mesons of the lowest-

lying vector-meson nonet of ordinary flavor SU(3) symmetry are discussed from the point of
view of the SLAC lattice Hamiltonian QCD theory. The agreement between our theoretical
results and observation is reasonable. This agreement we take as further evidence for the
applicability of the two key ingredients in our calculational procedure to large-distance had-

ron dynamics. Here, we have reference to (a) the vacuum-insertion technique of Lee, Pri-
mack, and Treiman for the evaluation of light-hadron matrix elements of effective low-

energy interacting densities and (b) the identification of the SLAC lattice currents with the
physical hadron currents to leading order in the SLAC order-1/g effective Hamiltonian for
the fluxless light-hadron sector—in the spirit of Gell-Mann s work in current algebra.
Indeed, when the results of the present paper are combined with our result for the decay
p~m. m. in the same theoretical framework, we may say that the SLAC lattice QCD theory,
taken together with these two techniques, represents a viable scheme for understanding the
large-distance aspects of the hadronic decays of the entire vector-meson nonet of the ordi-
nary SU(3) flavor symmetry.

I. INTRODUCTION

This paper represents a continuation of a previous
paper, ' hereafter referred to as I, in which we used
the SLAC lattice Hamiltonian QCD theory to dis-
cuss the decay

Our result in I clearly indicated that the SLAC
QCD theory, when combined with appropriate
theoretical techniques already well tested in other
areas of theoretical particle physics, may very well
provide a viable scheme for calculating large-
distance light-hadron dynamics. Here, the theoreti-
cal techniques which we have in mind are (a) the
vacuum-insertion technique of Lee, Primack, and
Treiman, and (b) the abstraction to the physical
hadron currents of the properties of the currents of
quasirealistic model field theories (such as the
SLAC theory) —after the fashion of Cabell-Mann in
his work in current algebra. What we want to do in
the present paper is to provide further evidence for
the applicability of the calculational scheme under
discussion to light-hadron decay systematics. This
we want to do by applying the scheme to the large-
distance aspects of the (Zweig-rule-allowed) hadron-
ic decays of the remaining mesons in the lowest-
lying vector-meson nonet of the ordinary SU(3) fla-
vor symmetry. In this way, we may hope to deter-

mine the extent to which the success of our calcula-
tion in I was fortuitous. We shall begin by briefly
reviewing the result which we obtained in I, in the
interest of continuity and completeness.

What we accomplished in I was the following.
Using the SLAC order-1/g effective Hamiltonian
for the fluxless light-hadron sector, together with
the vacuum-insertion technique and the identifica-
tion (in the spirit of Cabell-Mann) of the SLAC lattice
currents with the physical hadron currents to lead-
ing order in this effective Hamiltonian, we were able
to express the decay width for the process in (1) in
teriiis of the QCD coupling constant g(rnid ), the
lattice constant a, the pion forrli factor F (m ), the
p-meson decay constant fz, the value of the quadrat-
ic Casimir operator of the fundamental representa-
tion of the color SU(3) group, and, of course, the
masses of the p and ~ mesons. Thus, our expression
in I for the decay width I (p~~~), which we shall
effectively rederive in the ensuing sections, required
for its evaluation a value of the lattice spacing a, for
all of the remaining parameters in our result are
known either theoretically or phenomenologically,
although there is considerable uncertainty in the
value of g(rnid ) because of the uncertainty in the
QCD & p~~a~eter &QcD ~ We determined the value
of the lattice constant a from a latticed pCAC (par-
tial conservation of axial-vector current) condition, 6

as we shall again illustrate in the sections which fol-
low. The result for a was
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a =5.74 GeV

The corresponding result for I (p+ ~~+~0), for

g (mp )/4m =12m/231n[mp~/(0. 34 GeV)2],

(2)

(3)

r (p+ ~n.+m ) =- 162 MeV,

to be compared with the experimental value of 158
MeV. Obviously, this is an encouraging state of af-
fairs.

The question naturally arises as to why this
SLAC lattice QCD-based approach to light-hadron
large-distance dynamics should work as well as im-
plied by (4). We feel that, a posteriori, the fact that
the approach works reasoriably well for p~mm sug-
gests that, whenever a light-hadron decay process is
dominated by large-distance effects, the approach
should be applicable. Indeed, if one looks at (3) one
sees that the momentum transfers in the process
should be large enough that g is reasonably well ap-
proximated by perturbation theory and yet these
momentum transfers should be small enough that
the lattice cutoff ~/a does not significantly affect
the dominant physical effects.

The value of g can be obtained from perturbation
theory whenever

II. THE SLAC LATTICE QCD THEORY

In this section we wish to review the relevant as-
pects of the SLAC lattice QCD theory insofar as
our calculation of large-distance hadron dynamics is
concerned, for we feel that the present discussion
should be self-contained.

The SLAC lattice Hamiltonian QCD theory con-
sists of the Hamiltonian

H(g, a)= — g —,g E- - —g . tr1 1

links loops g J sP
around

loop

n)0

present the basic aspects of our approach to large-
distance hadron dynamics. In this section we recap-
itulate the relevant aspects of the SLAC lattice
QCD theory and of our use of this theory. In Sec.
III, we apply the SLAC theory to the process
K'+~Kn. In Sec. IV, we apply the SLAC theory
to the Zweig-rule-allowed process Q~KK. In Sec.
V, we consider the decay co—&~~a.. Section VI con-
tains some concluding remarks. The Appendix con-
tains the evaluation of the lattice constant appropri-
ate for purely kaonic transitions.

is significantly less than 1, where
I

a, —=g /4m. .

From (3) we have, at mp,

(5) + H. c.

] +my, ,p

(8)

a, /m. —=0.317,
so that g (mp ) can be reliably computed in pertur-
bation theory. Also,

2m. /a =2m. /(5. 74 GeV ') =2(0.547 GeV) (7)

exceeds m&
——0.776 GeV. Hence, it is not surprising

that our approach works for p~m. m.

Clearly, these arguments suggest that the large-
distance strong-interaction decays of the K* (which
has mass m, =0.8918 GeV), of the P (which has

mass 1.0196 GeV), and of the ~o (which has mass
0.7824 GeV) should all be amenable to our ap-
proach. We have in mind the (Zweig-rule-allowed)
large-distance strong-interaction decays K*~Km,
P~KK, and co~a.m.m. It will be our sole purpose in
the following discussion to determine precisely to
what extent the latter decays are indeed amenable to
our approach.

Our work is organized as follows. In Sec. II we

where we have used the notation of Ref. 2. In this
notation, the spinor field g f at site j carries color
index o. and flavor index f. The operators E-. -
measure the units of color flux created by the oper-
ator U-. - on the link joining site j to site j +p.)sP
The a„are Dirac's matrices, which we always
represent in the convention of Bjorken and Drell. 7

To repeat, the parameter a is the lattice spacing and
the parameter g is the QCD gauge coupling con-
stant. And, finally we note that the quantity 5'(n),
which is the truly defining characteristic of the
SLAC theory, is constructed so that

8 P-. =—g 5'(n)g-.1

) +nI".
n

is the SLAC derivative on a lattice. In the infinite-
volume limit in which we will always be interested,
we have

(10)
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This completes the definition of the SLAC theory to
the extent that we shall use it.

For the purpose of our calculations, we need to
note the following key result of Ref. 2. Namely, to
order 1/g, the SLAC group has derived from (8)
the effective second-order Hamiltonian

1 5'(n)5'( —n)
eff

j,np 2g

ad% -0 -apt1~f — ~af ~Pf' ~f'
I'&)~nI- „~nI-, ~ j

FIG. 1. The decay E*+~/+~0.

using the standard degenerate-state perturbative
techniques. The parameter CF is the value of the
quadratic Casimir operator in the fundamental rep-
resentation of the color group SU(N, ) so that

(12)

We will always take N, =3. For completeness, we
note that the matrix a& in (11) is, in the notation of
Ref. 7, given by

a, =r l0

The interaction (11) forms the basis of our ap-
proach to large-distance strong-interaction decay
processes for light hadrons. We will now apply our
approach to the decays of interest, K*+~K~,
/~K+K, and co~vr+rr n. , in turn in the next
three sections.

III. THE DECAY E +~kg

In this section, we will compute the decay process
K +~K+m; isospin considerations will then be
used to obtain the rate for K'+ ~Km. We may
proceed to do this in complete analogy with our cal-
culation of p~nm in I. We shall so proceed.

More precisely, the amplitude of interest is

~(~"+ ~+~ )=(tc ~
~

—i I g d'gH~K" )

The relevant kinematics is summarized in Fig. 1.
As in I, we work in the vector-meson rest frame so
that q &

——(mz~, 0 ). The polarization of this meson is

described by e&. The vacuum-insertion technique
then leads us to consider the following expressions:

(K+~'~y'-Ia P' ~0&(O~q". I a q' ~K*+&,j p j enl" j+nI" P j

—(K+rr
( g-, ~(a„)„,„,g-~

~

0)(0
~

g-~~ (a„),P~
~

K*+),12

(K+~'~y' '
a q.. '~0&(O~y'- a P ~K*+&,j+nI" P j j J" j +nE"

j +nba&

(15)

(18)

As in I, we note that matrix elements such as (15) and (17) vanish by the Wigner-Eckart theorem in the flavor
space of f,f'. Thus, we only have to consider (16) and (18).

For the evaluation of (16) and (18), we may repeat the key steps used in the evaluation of the corresponding
matrix elements in our computation of p~m. m. in I. In this way, we have (see I) the result that the sum of (16)
and (18) is

1 5, —1——Iexp[i(q2+q3 —q~) x-. ]+exp[i((q2+q3) x-. - —
q& x-, )]I(—1) '

)&(K+
~ f (0)y'Q (0) ~0)(0~ P (0)y'P (0) ~K*+) . (19)

In writing (19), we have defined x-. =(t, j a) and have reimplemented the Lorentz group in the spirit of Gell-
Mann as we explained in I, so that f ~(0) is now the fully interacting Heisenberg QCD quark quantum field
at the origin of Minkowski space. Further, 5;& is the Kronecker 5 function, and we are summing on i in (19).

The result (19) may thus be expressed in terins of the corresponding matrix elements for p~mm using the
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flavor SU(3) symmetry: In (19) the K*+ selects, in f,f' space, the V-spin lowering operator

V =A4 . —i Ag,

in the notation of Crell-Mann, so that we may write

o&&old (0)r'8 (o) IK*+&

(20)

= &K+~'I y (0)y'v+q (o)
I
0& &0

I
d(0)y'v q~(0)

I

K*+
&

(1/~2)F (m, )(q3 —qz)'V 2f8&'m
(21)

(2q', 2q', 2q', )'"SU(3)

where in the last line of (21) we have used SU(3) together with the result of Ref. 8 to identify the SU(3) vector-
meson decay constant fs with due account for the breaking of SU(3) in the value of this particular decay con-
stant for the K*. Note also that the pion forint factor is evaluated at m, . Clearly, (21) allows us to write (19)

1 5,- —1——,Iexp[i(qz+q3 —q, ) x-. ]+exp[i((qz+q3) x-. „-—q, .x-. )]I(—1) '"

)&F„(m „)(q3—qz)'fse'm, /(2qz2q32q ) )'

On introducing (22) into (14), we have

~(K* ~K ~ ) = i —dt a g, F„(m )(q3 qz) fse'4+ + 0 5'( n )5'( n)— ~ ~

-, „„a(—, )gz
I

n
I Cp

(22)

X( ——„)Iexp[i(qz+q3 —q~) x-. ]+exp[i((qz+q3) x-. „-—q~ x-. )]I

5,. —1

X( —1) '" a /(2q~2qz2q3)'

g QO ( —1)"+'(—1) F (m, )f8a e'(q3 —qz)'mz,
2 — -. n ( n)

I

n
I
ag —C~j,lt, p

Q I exp[i(qz+q3 —
q& ).x-,. ] +exp[i((qz+q3) x-, +„„-—q~ x-, )] I

&&( —1) '"/(2q ~2qz2q3)

(2~)~5 (qr qz —q3—)i[2/(3)]F (m ~ )fsmz~e (q3 —qz)a
(23)

In arriving at the last line of (23), we have passed to the limit of the infinite volume and identified

g exp[ —i(qz+q3 —qi). j a]=(2m) 5 (qz+ q3 —qi) .

The neglect of umklapps. is justified by conservation of energy. Further, we have identified in (23) the
Riemann function g of argument 3:

2g(3) = g.&0 I
n

I

' (25)

Its value is
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g(3) =1.202 . (26)
Finally, let us note that in writing (23) we have restored the powers of a which had been scaled2 out of the
fields in (11).

The amplitude (23), by the standard methods, corresponds to the decay width

I (K'+~K+m )=
6ir

[2$(3)] l
E (m „2)

l

2
l fs l

2a ~

g4C 2

3/2
m~, —2m, (m + +m 0 )+(m + —m, )

4m 2

Using" —"

m, =0.8918 GeV,

mz+ ——0.493 669 GeV,

m 0 ——0. 134962 6 GeV,

lE (m „)l
=0.611

l
F (mz )

l
-=3.67,

a =5.74 GeV

f8-=0. 175 GeV,

and

2 —2 2 = 48m. 2

g =g(m, )=
231n[m ~ /(0. 34 GeV) ]

= 10.68
we find

1 (K'+ ~K+rr )= 16.44 Me—V .

Thus, from isospin considerations, we have

I (K*+~Km.) =49.3 MeV,

to be compared with the experimental value of

I (K"+~Km. ) =50.3 MeV .

(28)

(29)

(30)

(31)

(32)

(27)

SU(3), the P(1019.6) and the co(782.4). We turn first
to the P in the next section.

IV. THE DECAY f~KK
In this section, we wish to apply our calculational

methods to the decay P~KK as realized by

K+K
The analogous discussion for Q~K+KL will be ap-
parent from our discussion of (33), so we will
analyze (33) and obtain the rate I (/~K&KL ) from
the standard simple isospin and phase-space con-
siderations. We should emphasize that, in our cal-
culation of (33), for the first time in our analysis' of
the vector-meson decays, the full U(3) symmetry of
the hadronic currents will be used. Since this sym-
metry is broken to a larger extent than is SU(3),
most naively, we do not expect our methods to work
as well as they did for the p and K*. But, we may
be in for a surprise.

Indeed, it is expected that, in the Bjorken-scaling
region, ' the hadronic currents would in fact reflect
the entire U(3) symmetry. And, m~ ——1.0396 GeV
is very close to the boundary of this scaling region.
Thus, there is reason for optimism here.

Turning now to the computation of (33) we have
the amplitude

Evidently, our theoretical result is in reasonable
agreement with observation. We are therefore en-
couraged to analyze the two remaining vector
mesons in the lowest-lying vector-meson nonet of

I

M(p K K l=(K K
~

—i f chH"'
~ y)
(34)

with H,'g given by (11). The vacuum-insertion tech-
nique then allows us to write

K+K-)=

+&K+K-
l

y'I' ~„@~ lo&&0l@'-„a„p, .

—&K+K- l@'~~ (a„)„,„,P~ lo&&olq'-„~(a„).,q ~
l y&].

(35)
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To proceed, we need to specify the flavor-SU(3) properties of the P.
For the purposes of our work, we will treat the P as the ideally mixed state

ss .

Thus, denoting by Po and Ps the SU(3)-singlet and -octet states with I =0 and F =0, we have

4 = —( 3 )'"4s+ ~ 4o

so that the co will be identified subsequently, in Sec. V, as

1~Ps.

(36)

(37)

(3S)

From (37), it follows that the nonlocal terms in (35), diagonal in f,f, cannot contribute. The Ps part of P gives
zero by the Wigner-Eckart theorem in f,f' space whereas the Po part of P gives zero by SU(3) parity (the ana-
log of 6 parity for pions). Thus, we need only consider the ff local teriris in (35).

Considering these local terins, we may proceed in complete analogy with our discussion in I and the preced-
ing section. In this way, we arrive at (the kinematics is summarized in Fig. 2)

~(y-z+~-)= ' f ai "y
-;„„—,g ln ICF

1

X ( —4 ) j exp[i(q2+ q3 —q & ) x-. ]

5, —1+e"Pl.'((q2+'q3) x- „-—q~ x-)]J( —I) '"

x &re+ac
I y f(o) 'y f (o)

I
o&&o

I 8 (0)r'~p (o)
I && .

Hence, we need to evaluate the current matrix elements in this last expression (39).
In evaluating the current matrix elements in (39), we note that, by the rule of Zweig, only the term

f'=s, f=s,
will contribute to (39), in an obvious notation. For this choice off and f, we have

1/2

(0) lo&&OIP' (0)r'4~(0) IW&= &&+J: IW (0)r' — ~s+
3

' 1/2

(39)

(40)

f (0) lo&

x&ol p(0)r'— A, 8 + 3
~o @ (o)I 4 &

( I)
where A,o and A, s are Gell-Mann's matrices. Using the full U(3) symmetry we have (here e& is the P polariza-
tion vector)

1/2

+8 &o f (0)
I
$&=~2f', e'mp/(2q, )' ' (42)

and, from SU(3),

v3 ' 3

1/2

4 0 (0)
I
0& = «+&

I g (o)r'—

IJEM(0)Io&

= —2'(my )(q3 —q', )/(2q22q3)' ', (43)
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count for the size of P, we need to relate the state
~
P) at a=1.81 GeV ' to the state

~
P) at 5.74

GeV '. Let
~ P,a) denote the P state at rest at lat-

tice spacing a. (We continue to suppress polariza-
tion vectors. ) Then, since the expression (39) already
contains the leading strong-interaction effects to the
order to which we are working, we may treat the re-
normalization Z factor for the state

~
P,a ) as trivi-

al. Thus, the renormalization-group equation' for
the state

~ P,a ) is clearly

FIG. 2. The decay /~K+K
AQCD

~ p a ) =0
BAQ( D

(46)

where JEM is the electromagnetic current and Fz is
the familiar isoscalar kaon electromagnetic form
factor. In writing (42) and (43), we have taken the
view in Ref. 1 in which we may use a latticed PCAC
condition for kaons in conjunction with MIT bag
ideas' to determine the effective lattice spacing in
(39). This is done in the Appendix, where we find

—a +AQCDa AQCD
~
P,a) = ——,

~ P,a) .

(47)

The solution of (46) and (47) is, for a =A,ao, A, & 0,

Using naive dimensional scaling (the violations' of
this naive scaling are suppressed to the order that we
are working), we have

a =1.81 GeV (44)
, a, ='",a,

for kaonic lattice transitions. This result (44) is sub-
stantially smaller than the radius of the vector
mesons Ip, co, P,%*

I in the MIT bag model, ' for ex-
ample, where it was found that these SU(3) nonet
mesons all have radii in the range 4.61—5.47
GeV '. Continuing with the strategy in Ref. 1, we
argue that the physical decay constants for the
SU(3)-nonet vector mesons, such as f8 in (21), are
adequately represented by the Lorentz-group-
reimplemented Heisenberg current and latticed
vector-meson states for the lattice spacing found in
Ref. 1, namely,

a =5.74 GeV (45)

Our position here, of course, is also supported by
our results for the X* in Sec. III. On this view, the
constant f8 in (42), which refers to the respective
SU(3) decay constant of lattice spacing a =1.81
GeV ', must be corrected for the difference in
physics between the scales (44) and (45), in order to
express it in terms of a parameter such as f8 in (21).
Fortunately, since we are working only to leading
order in the SLAC order-1/g effective Hamiltonian
(11), this latter correction is straightforward.

Indeed, in this order of the interaction (11), we
have reimplernented, in the spirit of Gell-Mann, the
Lorentz group so that the current in (42) is the fully
Lorentz-co variant Heisenberg operator current.
This current acts on the state

~
P), which, due to

(44), is the SLAC lattice P state at lattice spacing
1.81 GeV '. As we found in Ref. 1, in order to ac-

Combining (42) and (49), we find

(50)

as an approximation consistent with our general
framework.

At this point it is appropriate to note the follow-
ing. From Refs. 1 and 13, one can easily derive
three different values for fs. fs ——0. 161 GeV from
e +e ~P ~hadrons, f8

——0. 154 GeV from e +e
~co~hadrons, and f8 fz 0. 14 Ge——V ——froin
r~p++v, . On averaging these values of fs we
find

fs -—0. 15 Gev . (51)

Henceforward, we will use this average value of f8
in an effort to compensate for the SU(3) breaking ef-
fects that are self-evident in these differing values of
fs. We emphasize that (51) can only be an estimate.
In (28), we have used the value fs ——0. 175 GeV. As
we explain in Ref. 9, the use of fs ——0. 175 GeV in
(28) is justified on the basis that the L" is expected
to have much smaller finite-width effects compared
to the P. Thus, these P finite-width effects, as es-

Using a=1.81 GeV ', we have A, =5.74/1. 81 so
that the desired state is

5 74 GeV ) ( I'Ii )
i P 1 8 1 GeV )
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timated in Ref. 13, have been removed from fs in
(28), where we use e+e ~P~hadrons to deter-
mine the non-finite-width corrected value of f8 O.ur
reason for using the process e+e ~P—+hadrons is

I

~(~ «~» )
—i ) d, ~ P(n)5'( —n)

explained in Ref. 9. We may now proceed with the
computation of P~KK.

Returning to this general development, we have,
on introducing (42) and (43) into (39), the amplitude

1

X( ——, ) I exp[~(qz+q3 —q)).&-]

+exp[i((qz+q3). x-,. „„-—q~ x —,. )] I

, (q3 —qz)a'
X( —1) '" ~2f8 o, ( 2)F~(m—~ )

(2q i )'

(2~)'&'(q i
—qz —q3) [2P3) l . e (q3 —qz)a

iV 2fsmp( —2)Fx(mp )
(2q', 2q', 2q', )'" ' (52)

(53)

where, here, a =-1.81 GeV, the lattice constant for kaonic transitions as computed in the Appendix using the
kaonic PCAC condition and MIT bag ideas, to repeat. The standard methods then give, using (50),

r(y K+K-)= 4 [203)]'IFx(m ') I'Ifs I'a'(m '/4 —m~')'" 1.81
3m. 2 4 5.74

For the evaluation of (53), we need experimental
and/or theoretical values for Fx(m~z) and gz(m&z).
The parameter g (m~ ) is easily determined from
our formula (3) to be

g (m~ )=9.38 .

Thus, there remains only the determination of the
value of F&(m~ ) for the evaluation of (53).

Turning now to the evaluation of FI;(m~ ), we
note that, from Refs. 18 and 19, the cross section for
e+e —+K+K at the P resonance is, approximate-
ly,

(~) =2.3 Zb .

I

find

I (P K+K )—= 1.73 MeV .

This result should be compared to the experimental
result'

I (/~K+K )=-1.99 MeV . (59)

Further, using the standard isospin considerations
and correcting the momentum magnitude of the
kaons in (53) for the mass difference between
charged and neutral kaons (we ignore mx —mx ),L S
we find the theoretical result

The formula (here a is the fine-structure constant)
2

(o')~+~ = z- ~Fx(mp )
~

(1 4m' /m—
p

)'
3m'

I ( P ~KsKL ) =- 1.14 MeV

to be compared to the experimental result

I (P KsKL ) —= 1.44 MeV .

(60)

then allows us to identify

~
F~(mp )

~

=84. 16 .

(56)

(57)

Again, our lattice estimates are reasonable esti-
mates. Encouraged by this, we turn to the decay
co~~~m. in the next section.

V. THE DECAY co~mmm
We will suppress the finite-width correction
here, "' for we feel the effective large-distance
currents should include the full effects of the strong
interactions. This completes the determination of
the parameters required to evaluate (53).

On introducing (51), (54), and (57) into (53) we

In view of our general success in computing the p,
K*, and P hadronic decays, we now turn naturally to
the remaining member of the lowest flavor-SU(3)
vector-meson nonet —the co meson. We will treat
specifically the decay
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CO~7T 7T' (62)

We will do this in the by now familiar way —that is,
by combining the SLAC-lattice-theory interaction

(11) with the vacuum-insertion technique and our
variant of Gell-Mann's current-algebra methods.

More specifically, for the decay (62), we require
the amplitude

W(~ w+~ —~') = i —f 1 ~ 5'(n)5'( n)—
J,ll, p 2g In ICF

x[ (~+~-~'( q'-, a„P (
0&(0

)
y'

+(m'+7r rr (tP „rr @ ~0&(0(g cr P.

g +npcr&

(63)

where the kinematics is summarized in Fig. 3. We would emphasize here that, contrary to the analyses of the
p, K', and P, the nonlocal terms in (63) do not vanish by SU(3) symmetry arguments. We may argue presently,
however, that in the framework of the SLAC lattice QCD theory, these nonlocal teinJs again vanish due to the
space-time structure of the co-meson state in this theory.

More precisely, in the SLAC theory, the light hadrons such as the co are represented as the action of the ap-
propriate spin projections of a quark field and its adjoint on a single site j . Thus, due to the quark field com-
mutation relations on the SLAC lattice, all of the nonlocal vacuum to

~

co & matrix elements in (63) vanish. We
are left with only the local terms in (63) to analyze.

Turning to these local teriiis, we recall that, since the co is the combination of the Po and Ps states which is
orthogonal to the P, we may write the contribution of the local terms in (63) to complete analogy with (39). En

this way, we find

M(m w+~ m )= f dt
g 00 5'(n)5'( n)—

-;„„—,g2fn JCF

1

X( ——, ) I exp[i(q2+q3+q4 —qi ).x-„. ]

5; —1

+exp[i((q, +q, +q4) x-. —q, x-. )]J( 1) '

x(~+~ ~'I 0 f(0)r'0 (o) Io&&o

We must now evaluate the various matrix elements on the right-hand side of (64).
Toward this evaluation, we use the standard flavor matrix manipulations to write

(64)

26 Pl~
o)1/2 fS

(~'~ ~'I 0 (0)r'0 '(o)
I
o&(o

I
Pf'(o)r'pf(o)

I

~&=2(~+~-~
I 0 (0)r'~.P (o)

I
o&(o

I
p(0)r'~. W~(0

1/2

(~+~-~0
~ y (0)r'x,q (o)

~

o &
3

(~+~ ~')q (0)r'x,q (o) ~o&

(~+~-~o;8
~ y (0)r'x, @ (o)

~

o&
(2q i

)'/ 3

2e'm fs (m. +m. ~;8
i
J'EM(0)

i
0 &,

(2 0)1/2 (65)
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where e is the polarization vector of the t0. A few comments about (65) are in order. We have used the U(3)
result fs f——o (Zweig s rule) and the standard nofrrlalization for the SU(3) flavor matrices

tr(A, ,A,b)= —,5,b . (66)

The notation f, , a =0,8, simply emphasizes that the decay constants are deteiixiined in our latticed co state.
Further, we use the notation (m.+m. m. ;8

~

to denote that we have presumed octet dominance for the to decay
so that the final m. +n. n. state is an octet state. On this octet-dominance view, the singlet teria in (65) van-
ishes, as we have indicated. The result (65) allows us to continue with our evaluation of co~m+m m .

Indeed, on introducing (65) into (64), we find

g 2 E'm„
W(co ~+a. m. )=(2m) 5 (q2+q3+q4 —qi)2i[2$(3)] fs 0, (m+m. n.

~
JEM(0) ~0) . (67)

The rate for co~n+n n is now readily seen to be

where

g m~
(68)

d q2d q3dH""—= ~ g1 —g2 —q3 —g4 ~ 7T ~ M EM(2~)'

=(q~iq i
—m„g"")F(m ) . (69)

On introducing (69) into (68), we find the result

2[2/(3)]
~ f8 ~

m„3F(m 2)a~
I (co~m+m. m )=

4C 2
F

I

we use (71) for a in (70) and follow (50) and take

fQP

(
5 74

) 3/2f

where fs is determined now from (51).
Further, at m~ =0.612 15 GeV, we have

(72)

a =5.74 GeV (71)

However, from our discussion of P~KK, which
also proceeded through the Ps state, we found that
the strange quarks in P& required an a of 1.81
GeV ' for their transfornIation to light hadrons.
Thus, while the final state would dictate (71), the in-
itial state Ps would require a=1.81 GeV '. Here,

To make contact with observation, we note that
the appropriate value of a in (70) is, according to the
final pion state, the pionic value found in Ref. 1

g (m )-=12.36 . (73)

Thus, the lone remaining parameter required for the
evaluation of (70) is the parameter F(m„). We now
turn to the evaluation of this parameter.

More specifically, by the standard methods, we
have the cross section (s is the squared center of
momentum energy)

o(e+e ~n+m n)~ .
~
——.

2 F(m ),0 8m a
~CO

(74)

where a-=», is the fine-structure constant. Experi-
mentally, z' we have

o(e+e ~+~ n)j 2=1..8 pb . (75)

This allows us to compute

F(m„)=0.673 . (76)

FIG. 3. The decay co~m+m m .

(77)

to be compared with the experimental value

On introducing (51), (71)—(73), and (76) into (70),
we find the result

I (co~m+~ n)-=10.5 .MeV.
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I (co +—~+rr m )—:9.07 MeV . (78)

It is evidently a reasonable position to take that
the SLAC lattice QCD theory can account for the
essential aspects of the large-distance-dominated
hadronic decays by the lowest-lying vector-meson
nonet of ordinary SU(3) flavor symmetry Th. at this
is true argues for the deep dynamical significance of
the entire lattice framework in general and of the
SLAC formulation of this framework in particular.
The stage is therefore set for the further application
of this SLAC theory to large-distance hadron
dynamics. Such applications will be taken up else-
where.

It should be emphasized that, in all of the calcula-
tions which we have performed for the vector-meson
nonet, the PCAC idea augmented with MIT bag
ideas in kaonic transitions, vacuum insertion, and
our variant of Gell-Mann's idea to abstract to the
hadron currents the properties of the currents of
quasirealistic model field theories were all necessary.
Thus, operationally it appears that the lattice idea is
in fact intimately related with these various tech-
niques, which are already well tested in other areas
of theoretical particle physics.

That such a relationship exists is also consistent
with the recent results of the Monte Carlo ap-
proach to lattice QCD. Note however that, while
the work on hadronic masses in Ref. 23 is effected
at finite lattice spacings, the work on the transition
from weak- to strong-coupling behavior is done in
the limit a~0, the continuum limit. That no bla-
tant contradiction with observation was found by
the authors in Ref. 23 then shows that, insofar as
the static properties of the light hadrons are con-
cerned, the lattice theory is a theory which describes
the large-distance confining aspect of QCD and
which joins on smoothly and abruptly to the weak-
coupling asymptotically free region of this QCD
theory. Thus, the results of Ref. 23 should be
viewed as complementary to the dynamical decay re-
sults obtained in I and in the present analysis. Tak-
en together then, the results of our work and of Ref.
23 would suggest that the lattice framework is
indeed a complete theory of large-distance hadron
dynamics. To repeat, further checks of this sug-

The agreement between the theoretical result and ob-
servation is again a reasonable agreement.

This completes our discussion of the decay
co~mmm. We are indeed encouraged that it, too,
like p~mm. , K*~K~, and P —+KK, lends itself to
analysis in the SLAC lattice QCD theory augmented
with vacuum insertion and a natural extension of
Gell-Mann's work in current algebra.

IV. DISCUSSION

gestion are in order.
We would like to recall, at this time, that the had-

ronic decays of the vector mesons of the SU(3) nonet
have been discussed, historically, from the point of
view of the "current-field identity, " as used by
Sakurai, and the p-dominance type of idea as used
by Gell-Mann, Sharp, and Wagner. These two ap-
proaches to the vector-meson decays are not unrelat-
ed. We would note that, in general, we have ob-
tained results which are comparable to, and in some
cases better than, the results of Refs. 25 and 26 for
the corresponding large-distance-dominated vector-
meson decays. Thus, in this regard our results show
that the SLAC lattice has in fact allowed us to im-
prove on our understanding of these large-distance
processes- quantitatively.

We would like to end this paper with the follow-
ing remark. The lattice was introduced into hadron
dynamics to represent the confining large-distance
aspect of hadron dynamics in a gauge-invariant
manner. This apparently artificial cutoff, in view of
our results and the results in Ref. 2, has now been
shown to describe, in addition to confinement, the
actual details of large-distance light-hadron decay
dynamics. Such a situation is clearly a situation of
progress in our understanding of the fundamental
aspects of light-hadron dynamics.
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APPENDIX: LATTICED KAON
NORMALIZATION CONDITION

In this appendix, we wish to present our deter-
mination of the effective lattice constant for purely
kaonic processes such as P +KK. This determ—ina-
tion will be effected by using a latticed kaon noririal-
ization condition together with the PCAC and MIT
bag ideas as they apply to kaons. ' We understand
that the application of the PCAC idea to kaons is
much more of an approximation than is the applica-
tion of this same idea to purely pionic processes.
Nonetheless, since we are trying to determine wheth-
er the SLAC theory, as represented by (11), contains
the essence of the large-distance physics in the pro-
cess P~KK, we will be content to obtain an esti-
mate of the appropriate lattice constant a. It should
be remembered that, since our rate for P~KK de-'
pends, at the least, on the fourth power of a, this
rate may easily differ from the actual observed rate
for this decay by a factor of 2—3 if we make an er-
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ror of 25 go in a. With this understanding, we will
use the limit on a implied for kaons in the MIT bag
model' as a check of our respective PCAC estimate.
In this way, we may hope to obtain an appropriate
value for a in kaonic transitions.

Thus, to detei inine the effective lattice spacing for
kaonic processes, we first appeal to the normaliza-
tion condition

(0
~

ytO y5g X4 i5tt/-O
~

IC+ ) = i V 2f~pOI~2pO,

(A 1) FIG. 4. PCAC equation for fz on a lattice.

f~=-0. 114 GeV . (A2)

In (A1), the K+ is at rest so that its four-momentum
is p=(m +, 0). The notation A,4;5 is an obvious

notation:

where fz is the K&„decay parameter and will be
taken to be A4 15 —A4 lA5

where A,, are Gell-Mann's SU(3) matrices with the
normalization condition tr(A, ,A b ) = —,5,b, a, b
=1,2, . . . , 8.

To proceed, we follow our work in I and use the
PCAC idea to write

~&fop i

(2p0)1/2
= —3 f tr t(t, +mq), , y yp, ;,i(g, .+mq)lattice 27T

q
—m +EE k22 —m +i ~2

(A4)0X ) )'5~4+i5
i ~&fzpo(—2p')"

ed,„F;g 4. As in I, weha

(A5)

F
replaced the exact qua p

tive free propagators

(A6)

with

m„

mq=

O O ms

(A7)

where we take

m„=m„=0.343 GeV (A8)

(A9)m, =0.52 GeV

ff t'
g the integral over dk 1 tn (A4), we

(A10)2f& m& ——3lmir ~ ~

where
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n/a dk
&

~/a
W= 4i —n/a 2~ —~/a

dk f
jX —~/a

—(ki +m, )' [—(k| +m, )'/ —m~]+kl
—2(ki +m, )' [—m~ —(ki +m„)' —(ki +m, )' ][—m~+(ki +m„)' —(k|+m, )' ]

—2(k&'+m„')' '[mx —(k|'+m„')' '+(ki'+m, ')' '][m~ —(k, '+m„')' ' —(kl'+m, ')' ']

Plsmu

—2(ki +m, )' [—m~ —(k| +m, )' —(kl'+m„)' ][—m~+(k| +m„')' —(kl +m, )' ']

77lsmu

2(k 2+m 2)1/2[m (k 2+m 2)1/2+(k 2+m 2)1/2][m (k 2+m 2)l/2 (k 2+m 2)1/2]

(A 1 1)

On making the approximation of replacing the integration volume

I
—m. /a (k i & m. /a, n/a —& k. ~i & m. /a, —m. /a & k i (m. /a I

by a sphere of the same volume, we obtain

2''=
2 [I(mx, m„,m, )+I(—mx, m„m„)], (A12)

where

I(mz, m„,m, ) = 2m'

mK

l'
2 2

2
r+m —(r ——)—S

rm, ( —m, —m„)2

ln
i
sec8p+tan8p

i

mK

(r —, )+m, ( r)—+-
m m

tan8p

2m' ms
( r /2)+-

mK 2

sin8p 2 m, sin8p
+

cos 8p 3 mir cos 8p

m, 3 2m, ( —m, —m„)(r —1)
[—2(r —r )]+m, [2(r —r )]+

mK mK

(1—r )'/ tan(8p/2)
X te.n-'

( 1 2)1/2 1+r (A13)

with

and

mx +mg —mg
2 2 2

2mKm

' 1/3

8,=tan-'
ams

Using an average value of

mx ——0.495 669 5 GeV

we find, by the Newton method, that

a =5.75 GeV

(A14)

(A15)

(A16)

(A17)

This is the kaonic PCAC lattice parameter.
This value of a is very close to the pionic value of

5.74 CreV ' found in I using these same latticed
PCAC arguments as applied to pions. Thus, since
we know that (A17) is correct for pions, we can ex-
pect that it will be at most an estimate for kaons-
for PCAC is not expected to give accurate values for
kaonic transitions. Thus in view of our results for
the p~vrrr and IC*~Km. widths, we are naturally
invited to assess how far off (A17) is for kaons.

To do this; we appeal to a model which describes
kaons with relative case while it has trouble with
pions (and PCAC)—the complementary situation to
our lattice PCAC calculations. We have reference
to the MIT bag model. ' In the two exemplary mass
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spectra worked out in Ref. 15, the kaon mass varies
from 0.497 GeV when the kaonic radius is 3.26
GeV ' to 0.371 GeV when this radius is 0.73
GeV '. The nonstrange-quark mass is 0 for
mt' ——0.497 GeV and is 0.108 GeV for mx ——0.371
GeV. The corresponding strange-quark masses are
0.279 and 0.353 GeV, respectively. Hence, from
Ref. 15, we find the average strange-quark momen-
tum p, in the kaon in the two fits to be —1.86 GeV
whereas the average nonstrange quark momentum

p in these two fits is 1.74 GeV. We will use these
two average values as the respective internal mo-
menta of the kaon. The requirement that the kaon
be consistent with the lattice of spacing a is simply
that all momenta in the Brillouin zone
—m. /a & k & n./a, for a given direction in space, are
essentially disjoint from the momenta which
describe the internal dynamics of the kaon. Evi-

dently, this requires

—&1.74 GeV .7T

a
(A18)

a =1.81 GeV (A19)

As we expected, this a is within an order of mag-
nitude of the PCAC result (A17). We argue that
(A19) is to be preferred in the treatment of transi-
tions involving kaons (and strange quarks) on the
lattice —transitions such as those discussed in the
text.

The result (A19) agrees with the result (44) in the
text.

Since we wish to describe all large-distance effects
associated with these kaons, we would use the equal-
ity in (A18) to find
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