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We point out that in the calculations of the triangle anomaly there is a discrepancy between the result of
the functional method applied to a chiral model by Fujikawa and the result of the conventional perturba-

tion approach applied to this model. Possible sources for the discrepancy are briefly discussed,

Recently Fujikawa' showed that the Adler-Bell- Jackiw
anomaly and related field-theory phenomena can be simply
treated by the functional-integration formulation of field
theory, without appeal to perturbation-expansion calcula-
tions. It was subsequently shown that Fujikawa's method
can be used to solve the two-dimensional Schwinger model,
correctly producing the gauge-boson mass term.

The key step in Fujikawa's calculation is the use of solu-
tions to the full Dirac equation of the theory under con-
sideration, including source terms, to expand the
functional-integral measure. The measure thus expanded is
generally not invariant under chiral transformation on the
fermions fields, and the triangle anomaly is a result of the
nontrivial Jacobian of the transformation. This situation
can be contrasted with the approach in the early literature,
for instance, Refs. 5 and 6, in which the fermion functional-
integration measure is essentially expanded in terms of the
eigenfunctions of the free Dirac equation. When fermion
fields undergo chiral transformation in this latter case, the
resultant Jacobian of the transformation is unity, and so
only the canonical form of the axial-vector Ward-Takahashi
identities (WTI's) are obtained.

Attracted by the elegance and simplicity of Fujikawa's
method, and intrigued by his comment that the Pauli-Villars
regularization can be considered the perturbative realization
of his path-integral analysis, we tried to apply it to a theory
which has been regularized by the Pauli-Villars method and
the results of the anomaly analysis reported in the litera-
ture. In this theory, fermions are coupled to vector, axia1-
vector, scalar, and pseudoscalar sources, with the fermions
assigned to the fundamental representation of chiral
SU(3) x SU(3) and the sources to the adjoint representation.
The anomalies of the WTI's of this theory are calculated in
one-loop order in Ref. 8. If Fujikawa's method with a par-
ticular cutoff procedure is indeed equivalent, as is men-
tioned in Ref. 1, to the Pauli-Villars regularization, the set
of naive anomalies listed in Table I of Ref. 8 should be
reproduced. We have found that Fujikawa's method ap-
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the usual way: PL =

2 (1 —y5) P. Writing

( —1+yg)i p
= —fr.y ~ttIL, = 4y p,

Eq. (2) can be rewritten as

(3)

~=~o—~"
with Wo=gli rIgq Followi. n. g the argument of Ref. 1, one
finds that the generating functional of the WTI for the
divergence B„j"is given by

r

0= Dq&DqLBJ x + F "(x r x
16m

& exp i Lodx' —i 3"j„dx'
t

plied to the theory defined by the Lagrangian

L =P(ijf+I'~T~+3' y5T +S T +iy5P T )Q —mQP (1)
shows that the Jacobian of the SU (3) x SU (3) chiral
transformation contains exactly the same types of terms as
those in Table I of Ref. 8 (e.g. , (A VV), (APS), etc.).

If we drop the axial-vector and pseudoscalar external
sources of Eq. (1), so that the fermions couple only to the
external vector and scalar sources, we find that the
anomalies in this latter theory as calculated in the manner
of Ref. 1 are identical to those of the theory containing vec-
tor interaction only, which agrees with the corresponding
anomalies of Refs. 8 and 10." It appears that including y5
couplings leads to differences between the method of Ref. 1

and the standard perturbation-theory approach, and we turn
to a detailed discussion of a simple chiral theory considered
by Fujikawa in the third article of Ref. 1 in order to rein-
force this point.

The Lagrangian which we consider is given by

~= Al. (l'8+ 4)QL, (2)
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where

Fv. = O~~. O—.~ ~

Let us remark that all of the WTI's which follow from Eq. (4) are obtained by differentiating with respect to A„. In
particular, functional differentiation of Eq. (4) with respect to A „(y) and Aq(z) gives, setting 3~=0,
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which is the anomalous WTI
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The Fourier transform of the expression (5) gives the momentum-space expression of the anomalous WTI, namely,
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We wish to compare Eq. (6) with the corresponding expression calculated perturbatively. Substituting j~(x) from Eq.

(3), we expand the left-hand side of Eq. (6) as follows:
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The WTI can readily be evaluated in perturbation theory by
considering the three-point function represented in Fig. 1.
There the vertices are given arbitrary coefficients for the
vector and axial-vector couplings. The results pertinent to
the Lagrangian in Eq. (2) can be read off by the appropriate
choice of aj and bj. Using dimensional regularization and
the 't Hooft-Veltman y5 prescription, ' one finds

I

and with a~=a2=a3=1, b] or b2=0, one obtains

k"(T(j„(k)j„" (P)jq" (q)))P= z avhPoP q, (9b)

results well knomn in perturbation theory. 6 ' Incidentally,
the well-known ambiguity of the y5 matrix in n dimen-
sions" "does not cause any problems here, where the ori-
ginal prescription of Ref. 12 can be used unambiguously.
Substituting Eqs. (9a) and (9b) into the first and second
terms on the right-hand side of Eq. (7) (all the other terms
are zero), we find the result
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which verifies that the axial-vector-current divergence is
anomalous, but the vector-current divergence is not. Now
setting a] = b~ = b2= 1 and a2 or a3= 0, one obtains
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FIG. 1, Feynman graph for a three-point function in lowest order
for arbitrary V+A currents labeled 1, 2, and 3 for the vertices with
Lorentz indices P, p„, and v, respectively. The divergence is taken
on the A. index.

which disagrees with the answer obtained by Fujikawa's
method, Eq. (6). The latter calculation reproduces the
anomalous WTI in the presence of a source coupled to the
vector current, Eq. (9a), instead of that for the source cou-
pled to the chiral current, which is the current defined in
the theory.

As an additional check on the result (10), we use a com-
pletely different regularization method, the ~-splitting
method described in Ref. 10. In this method, the local
currents are made nonlocal by a symmetric splitting of the
space-time coordinate of the bilinear currents. In the case
that the vector and axial-vector currents are treated symme-
trically, one obtains, following Bardeen, '

~„~(v) 1
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for the theory of Eq. (2), which is parit~ violating and al-
lows symmetric handling of j„and j„.Using Eq. (11),
one obtains equal contributions to the first, second, sixth,
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and seventh terms on the right-hand side of Eq. (7), and
the result is, substituting Eq. (11) into (7),

k"( T (j ~(k )j„(p )jsub X(q ) ) ) 0= e„z~ p~q
12m

in agreement with Eq. (10). When the anomalies are de-
fined by further subtraction so that only the axial-vector
current is anomalous, '0 then Eqs. (9a) and (9b) are repro-
duced and the result, Eq. (12), again follows, of course.

Several remarks concerning the Pauli-Villars regulariza-
tion method and the anomalies are pertinent here. The
naive anomalies, those present before counterterms are ad-
ded, depend upon the regularization scheme employed to
define the ultraviolet-divergent integrals. " In the Pauli-
Villars scheme, as in the dimensional scheme, ' the naive
canonical vector WTI's are always satisfied. In the Pauli-
Villars regularization of a non-Abelian theory, the axial-
vector WTI for (T(j „" (x)j „" (y)jz (z))) 0 is anomalous
before a suitable counterterm is introduced to cancel it. '
The naive anomaly is proportional to a structure constant of
the group so that in the present case of an Abelian theory,
Eq. (2), the AA V three-point function has no naive
anomalies. Therefore the anomalous divergence Eq. (10) is
obtained in the Pauli-Villars scheme independently of the
addition of counterterms.

Let us mention several points to consider in seeking the
source of the discrepancy between the anomalous diver-
gence equations obtained by the functional-measure argu-
ment of Fujikawa and the standard perturbation-theory cal-
culations performed with a Pauli-Villars, dimensional regu-
larization, or point-splitting prescription.

(1) As mentioned earlier, the results of the functional ap-
proach depend on the basis on which the integral measure is
expanded. Fujikawa argues' that the result of the functional
method, expanding the fermion field in terms of eigenfunc-
tions of the full energy operator, directly relates the
anomalous Ward-Takahashi identity to the local form of the
index theorem. This suggests that the discrepancy between
his result and that of perturbation theory might arise from
nonperturbative effects included in the former.

(2) From the literature that is known to us, ' '9 it ap-

pears that the analytic continuation of fermion fields from
Minkowski space to Euclidean space is not unique. The
point is that one can choose chiral transformations of the
usual sort,

~(E) ~5&(E) ~
(E)

~
(E) ' &5 (13)

if P and P are continued to independent fields PI and
, respectively, in Euclidean space. On the other hand,

Refs. 18 and 19 point out that when only one Euclidean
four-component spinor @E is defined by continuation of p,
then the (noncompact) y5 transformation under which the
massless theory is invariant reads

V5 4 4 '+Y5
yE e tjE yE yEe (14)

while the conventional y5 invariance of a massless theory
does not hold in Euclidean space. The ambiguity illustrated
in (13) and (14) perhaps deserves further study in relation
to chiral conservation laws.

In view of the essential part played by the functional-
integration formulation in studying properties of non-
Abelian gauge field theories, the resolution of the question
about the anomalies as calculated by Fujikawa's method
compared with conventional perturbation methods would be
welcome.

After completion of this work we found a recent paper by
Adrianov, Bonora, and Gamboa-Saravi, ' who have given a
rigorous justification of Fujikawa's method in a pure vector
theory. They too notice that additions to the usual
anomalies occur for a theory with vector and axial-vector in-
teractions. Their work has a different emphasis from ours,
which is to examine the detailed differences between coeffi-
cients of anomalous WTI's in theories with extended in-
teractions terms (S, P, V, and 3) as computed by
Fujikawa's functional-measure approach versus convention-
al perturbation theory.
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