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The anomaly for a dimension D =2n gauge theory is calculated for arbitrary n )2 from the l-agon
Feynman diagram with l =(n+1). The result is both finite and unique despite the nonrenormaliza-
bility of the theory. The contributions of higher polygons to the anomaly are deduced from gauge
invariance and Lorentz invariance. The no-anomaly condition in D=2n is the vanishing of a sym-
metrized trace over l generators written in the ferrnion representation. It is shown how to compute
this trace for totally antisyrnmetric representations of SU(N).

I. INTRODUCTION

The triangle anomaly' holds a unique position in dimen-
sion D=4 gauge field theory since it must vanish for
gauge symmetries to preserve renormaliz ability. The
anomaly arises only from massless fermions if the gauge
symmetry is exact. Conversely, the anomaly condition
severely constrains the spectrum of massless fermions; in
the standard low-energy SU(3))&SU(2) XU(1) theory the
quantum numbers of each family are such as to agreeably
cancel the anomaly between quarks and leptons.

All interactions except gravity are apparently describ-
able by D=4 gauge fields. Hence, the massless fermions
appear to be unconstrained except by the triangle anomaly.

These considerations have generated interest in dimen-
sions D&4 because, in principle, the higher-D anomaly
conditions could give further constraints on the fermion
representation. We are very hesitant in invoking more
than four dimensions since there is no direct experimental
motivation. However, a leading candidate for a finite
quantum gravity is provided by the superstring which
necessitates D=10. If, as appears to us unlikely, any
%=8 supergravity should be finite in D=4, our motiva-
tion to consider D & 4 would be correspondingly weakened.

Another important conceptual issue in considering
D&4 is whether the higher dimensions are merely a
mathematical device to derive an interesting D=4 theory
which would not necessitate considering D & 4 or are actu-
al physical dimensions which are presumably compactified
at a very small length scale so as to have so far escaped
detection. Only the latter alternative is of interest here,
since otherwise higher-dimensional anomalies are surely
irrelevant. Thus, we are not considering unphysical di-
mensions such as, e.g., the use of D= 11 as a device to ar-
rive at D=4 supergravity.

Perhaps the most important point to emphasize in this
introduction is that the calculations which follow are not
tied to any specific notion of supergravity or supersym-
metry, nor to any notion of grand unification or families.
We have calculated the relevant anomalies in D & 4 non-
renormalizable gauge theory with well-defined finite re-
sults, and without prejudice on their application.

The technical aspects of these anomaly calculations are
interesting. The form of the anomaly in D&4 is com-
pletely constrained by considerations of differential

geometry and topology. For example, in D=10, we must
sum over 5I=120 crossed Feynman diagrams to calculate
the anomaly, but the tensor structure of the anomaly will
be shown to be unique due to the fact that it can be writ-
ten as the 5th Chem form of the curvature tensor for the
Yang-Mills bundle.

The anomaly in D =2n is controlled by the I-agon dia-
gram with / =(n +1). This is important because the po-
lygons with 1+hi sides with 1(bl ((n —2) are all linear-
ly divergent but contain uncontrolled counterterms for
Al) 1. The anomalous pieces are, however, required by
Lorentz and gauge invariance to be directly proportional
to the I-agon anomaly, as will be shown in this paper.

Why are we led to expect anomaly calculations in non-
renormalizable D & 4 theories to give unique finite
answers' The reason is simple to state as follows: Strings
in D=10 provide cutoffs of ultraviolet divergences by
massive Regge recurrences of the massless states. In the
zero-slope limit, the cutoffs become infinite. But the
anomaly must be independent of the Regge slope (and
hence finite) because it is governed by only the massless
fermions.

The organization of the paper is as follows. In Sec. II,
we establish notation and set up our procedure by the sim-
ple example of the D=4 triangle anomaly. The box
anomaly in D=6 and the pentagon anomaly in D=8 are
evaluated in Secs. III and IV, respectively. The hexagon
in D=10, and generalization to the I-agon in D =(2l —2)
are treated in Sec. V. In Sec. VI, the consistency condi-
tions on the anomaly for general D are derived from dif-
ferential geometry and topology. Section VII illustrates
how to evaluate the symmetrized traces for the case of
fundamental representations of SU(X). Finally in Sec.
VIII, there is some discussion. Two appendices are devot-
ed to some generalization of Sec. VII, and to a speculative
discussion of fermion families, respectively.

II. TRIANGLE ANOMALY IN D=4

To establish notation and demonstrate our calculational
technique in a familiar setting, we first consider the trian-
gle graph. The vertex function which is Bose symmetric
is defined as
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Pi
Pl~~ ~p=p2I. ~ ~I =o ~ (2.5)

After imposing this requirement, we shall evaluate the
anomaly X3 in

= 3
2qK VK~I ——2 X3e&I a13P la P2p (2.6)

It is important to realize that the asymmetry in Fig. 1

with a y5 at only one of the three vertices is not a genuine
asymmetry. What we have in mind to calculate is a Weyl
spinor circulating with coupling —,(1+yq) at each vertex.
The anomaly calculated from Eq. (2.1) is obviously
equivalent to this up to an overall factor 2 which we
have restored in the normalization of Eq. (2.6).

One observation worth making is that

r.i.,(p iP2) =r.„i.(pu i ) (2.7)
FIG. 1. Triangle diagram.

1
V~x„(pip2) —$raxp(plp2)+ 2 cievipa(P2a Pia) ~

16m

(2.1)

where S denotes the Bose symmetrization

1$r xP(Plp2) 2i
[r AP(plp2)+r y4i(P2pl )] (2.2)

and 1 „x&(p,p2) is the Feynman amplitude for the graph of
Fig. 1,

This follows at once from Eq. (2.3) by using the change of
variable k'= —k, anticommuting y„y5 ———ysy„, and then
reversing the order of factors by

Tr(YSYaj pyyf syzygy) +Tr(ysy+857 yySiya) (2.8)

However, although the property Eq. (2.7) has generali-
zations equating Feynman amplitudes in pairs in higher
dimensions, it will not play a central role in what follows.

To calculate the anomaly, we need to evaluate
pii V„i„=0to fix the coefficient a in Eq. (2.1), then coin-
pute the anomaly in Eq. (2.6) from (2q„)V„i&.

To evaluate p]~I „~„we first put

r„,„(p,p, ) pi = (4' q)—+(k—+r) . (2.9)

q=~(pi+p2), r=i(pi —pi). (2.4)

Very important is the final term in Eq. (2.1) which anti-
cipates the linear divergence problem and is essential to
ensure that the following %'ard identities are satisfied:

d k Tr[yi(k 9')y„—y5(Sr'+q)yi (ig'+y)]

(2vr) (k —q) (k+q) (k+r)2

(2.3)

Here we have set the fermion mass to zero since the anom-
aly is mass independent. The kinematics has been chosen
judiciously to facilitate generalization later. We have

The second term in Eq. (2.9) gives rise to a 2nd-rank pseu-
dotensor depending on only one four-momentum and
hence vanishes. The remaining term is

(2.11)

Tr[y„y~(k'+q)yi, (lg'+ p')]
p 1A, ~Kkp 4 (2.10)

(2ir) (k +q) (k +r)
4j 4 &ap13Kkap2P

(2m ) (k +q)'(k +r)'
where in Eq. (2.11) we have retained only the linearly
divergent piece which will contribute the anomaly. Add-
ing the crossed graph gives

1

(2m. )
" " (k+ ) (k+r) (k —) (k r)— (2.12)

To extract the surface term in Eq. (2.12), we shift the
momentum in the first term by defining k'=(k —pi).
The two terms in Eq. (2.12) then cancel except for the sur-
face term.

We then find using the generic Taylor expansion (with
k'=k+a)

f d k f(k)= f d~k'f(k' a)—(2.13)

= f d k'f(k')

—a& f d k f(k)+ . . (2.14)
BKg

that the residual surface term in Eq. (2.12) gives

2l 4 d k
Pii.$rxapa= gpgP2P&apPr d k

dk 4(2ir) dkg

(2.15)

2i ( i)—4 d
p 1A,S~K&p 4 p lap2p&a~pK d kE

dk 4(277) 4k

(2.16)

1
e„z sipi~2siVol($ ) .3

2(2ir)
(2.17)

Using iko ——k4 on going to Euclidean space and doing
symmetric averaging gives
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Since the "volume" of an n-sphere of unit radius is

(n + 1)/2

I'((n + I)/2}
we have finally that

1
P»Sr„g&= 26 „aPP ~aP2P16~

(2.18)

(2.19)

n (2m)"n! (2.2o)

multiplying e Z ap . . . (P2~3pp4~ ' ' + . . ). AS We
shall see, this will always lead to the condition a= + 1
and hence provides a sign check.

Finally we need (2q)„SI'„~&. Using

Thus p)~V„~& requires a= + 1 in Eq. (2.1). In generaliz-
ing Eq. (2.1) we shall use for D =2n the coefficient

2q'y5 ———(k' —q')y5 —y5(k+ q)

in I „~& gives

(2.21)

(2q) I
Trl y)y5(@+q)y, (@+r) l Trl y)(& q—)y5y„(@+ r) ld k

2 2 +
(2vr) (k +q) (k + r) (k —q) (k+r)' (2.22)

4l d4k k P2P P1P
(2')" " (k +q)2(k +r) (k —q)2(k +r)

The crossed diagram gives similarly, for the linearly divergent terms,

(2.23)

P2P P]P
(27') " (k —q) (k —r) (k +q)(k r)— (2.24)

Now observe that the sum of the p2p terms in Eqs.
(2.23) and (2.24) are the same (within an overall sign) as
those encountered in computing p»SI „~&. Likewise a
momentum shift k' = (k —p2 ) allows us to combine the
p&p terms. The result is

Va =q —pa

~ab =q —Pa —Pb»~

(2.29)

(2.3O)

where now 2q =p]+P2+ . +p„. For later use we also
define kinematic variables

1(2q)„SI g„—— „e„pp)~2p .
8W

(2.2S) tahe =q —Pa —Pb —Pc (2.31)

1
X3 ——

24~22! (2.26)

We have given many details of the triangle-anomaly cal-
culation because the evaluation of the I-sided polygon in
(2l —2) dimensions will proceed analogously with only a
few minor changes, most of which we shall summarize
here.

First, since

Iya y2n+) I+
in D =2n we have

(2.27)

2qy2 +] (@ g)y2 + j y2 + )(@+/) (2.28)

Combining with Eqs. (2.1} where now a= + 1 and (2.6)
gives the result

and so on.
The four-dimensional momentum integration is re-

placed by

d4k d'"k
(..)

f (..)
(2.32)

The symmetric averaging in D =2n gives a factor of
(2n) ' and the relevant spherical volume Vol(S " ') to be
used in evaluating the surface term is given by Eq. (2.18).
Finally, the terms in the symmetrized amplitude
SI &&. . . (P~P2P3 . . ) will all combine in pairs to yield
surface terms when contracting with, for instance, p» or
q„. Furthermore, as we shall see below, these surface
terms will always add because of the Bose-symmetry prop-
erty of the vertex function.

III. SQUARE ANOMALY IN D=6 (REF. 7}

In Fig. 2 a "square" Feynman diagram is depicted with external momenta p, ~, pb&, p, , and ( —2q ). (The use of a, b, c
rather than 1,2,3 will provide a more convenient notation. ) The amplitude for this diagram in D=6 is

Tr[y)„(k q)y.y, (k + q)y„(ir+—r, )y„(k' r. )]-
(2m) (k —q) (k +q) (k +, ) (k —r, )

The corresponding four-point vertex function is defined by

V ( ) =SI-KApv PapbPc Kkpv(PapbP'c ) + 3 ~KApvaP(pbapcP+PcaPaP+PaaPbP)144m

and the final term will be adjusted to give the appropriate Ward identities.

(3.1)

(3.2)
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We first evaluate P,~I „~& by using

p, = —(k —g)+(k —t, ) . (3.3)

The second term in Eq. (3.3) leads to a third-rank pseudotensor depending on only two independent six-vectors and hence
vanishes. The first term gives

P" "P" (2~}6
I = — d k

Tr[y„y7(k'+q)y„(k'+ r, )y„(k' r)]-
D abc(k)

(3A}

where the denominator is written in the notation

D+'(k)—:(k+q) (k+r, ) (k r, )—

Using

y2»+1) ale a2 ya2» = &la2. . . a2» (3.6)

8l dbk aPbpPcy aPbpPcy
(3 12)

k k

}6~aver» D+ (k) D '(k)

Thus P,~SI „~& contains the partial contribution

(3.5) Pai.("»Zpv+ ~»yves}

6 aPbPPcy
&av

)6 aver» Dabc(k)
(3.8)

Now we observe that shifting momentum according to

(3.9)k'=k —p,
shifts the denominator to

Dabc(ki} Dbca(k}

=(k q)'(k+r, )—(k rb)— (3.10)

where D " is the denominator occurring in the contrac-
tion p, iI „~ 2(pbp, p, ), since in the latter it is (k' —q)
which survives rather than (k'+q) when one uses the
identity

gives for the linearly divergent term

8i ka( rcra+qra+qrc }py
paA, xkpv —

6 ~avppyz d k abc(2') D ~'(k)
(3.7)

8i d ka
6 Gxpvapypbppcypa5 d k

d 6(2n. ) dkg
(3.13)

1
scpvaPyPaaPbPPcy ~ (3.14)

where we used Vol(S ) =n3 Note. .that Eq. (3.14) is al-
ready symmetric in pb& and p, v. Using this fact and not-
ing that, because p, =(@+I',) (k r—b), —

pagI ~pg =pagP g~=0

gives eventually

1
PaZSI J('Apv 3 ~xpvaPypaapbPPcy .

144m.

(3.15)

(3.16)

2qy7 = —( Jg' q) y7 y7(@+—q')— (3.17)

Thus, in Eq. (3.2), we find that a = + 1 guarantees that
p,~v„~&„——0. Finally we need 2q„I „~&„where we first use

p, =(k+q) (k+r, ) . — (3.1 1) giving for the linear divergence

Si
2q~l ~gatv

—
6 d k ~avppy

(2m)

( kr, r, qkr, +qr—,k) —
py ( kr, r, +qkr, —qr, k} pr—

D' '(k) D' '(k)
(3.1 8)

8t 6, PbPc Py PaPb Py

}6 'Pvapr a Dabc(k} Dabc(k)
(3.19)

Now, as we did above, we use D'+'(k') =D "(k) where
k'=k —p„and hence combine the first term in Eq. (3.19)
with the "second" term in 2q„I „& ~ according to

PbPc Pr Pbpc Pr (3 20)
—( ) ( )

D"'(k) D'"(k)
1

A pvapypa aPb pPc y (3.21)

Note that Eq. (3.21) has total Bose symmetry. Hence the
other two pairs of terms must give the same answer (as we
have checked explicitly) and therefore

1
2q„S1 „gpv ———

3 GApvaPypaapbPPcy
48m'

The anomaly defined by

4
qx ~aApv(PaPbPc ) +4+ApvapyPaapbppcy

(3.22)

(3.23)
FgQ. 2. Box diagra~
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is thus

1
X4 ———

26 331
(3.24)

IV. PENTAGON ANOMALY IN D=8

The diagram relevant for the anomaly in D=8 is the
pentagon depicted in Fig. 3 for the external momenta with
ordering p, ~, pb&, p, , pdp, and ( —2q)„. The anomaly for
the Bose-symmetrized set of such diagrams is calculated
in direct analogy with that for the triangle and square in
D=4 and D= 6, respectively. That is, we contract
SI pp p(p pbp, pd ) first with p,~ then with 2q„. The five-
point vertex is given as F&G. 3. Pentagon diagram.

a
V«xpv (PaPbPcPd ) ~«'«pvp(papbpcpd ) +P 1536~4 ««pvpaPy(pbpcpd PcPdPa +PdPaPb PaPbPc )aPy «

where the coefficient a will be adjusted (again a = + 1, see below) such that the appropriate Ward identities hold.
The Feynman amplitude for the particular pentagon diagram in Fig. 3 is

(4.1)

f d'k Tr[y (@ q~y.y9(@+/)f—(@+yd ) (kr+S d )1 (4 y )]
(2m )b (k —q)2(k +q)2(k +rd)2(k +s,d )2(k r,)—

%'hen SI „~&„Pis contracted with p, ~ we find, among other terms, the two contributions

(4.2)

8
Pat[~«xpvp(papbpcpd ) +~«pxpv(pbpcpdpa )] e«pvpapyb—pbppcypdb d k ka D+' (k) D ' '(k)

where the denominators use the notation

D ~ (k) =(k+q)(k + rd )(k +s,d )(k r, )—
and in Eq. (4.3) we have retained only the linearly divergent contribution. Substituting k = (k —p, ) in Eq. (4.4) gives

Dabcd(I «) Dbcda(k)

so that in Eq. (4.3) only a surface term remains. We have

1
Pak[~«kpvp(papbpcpd ) +~«pkpv(pbpcpdpa )] 4 e«pvpaPiLspaapbPPcAPdb

384m.

(4.3)

(4.4)

(4.5)

(4.6)

This is one of six possible permutations of the three entities

{Pb«P «Pc «'v«pd «P) (4.7)

that enter p,xI „~&„p. [Each permutation of bed is both preceded and followed by a as in Eq. (4.6).] Note that any inter-
change of the entities in (4.7) leaves (4.6) invariant, hence all six permutations add. Also observe that when the p, vertex
is not adjacent to the q„vertex the contraction with p, ~ vanishes. Therefore, we are left with

1
pz gSF&gp,vp 1536m 4 ~~pvpapA5 paa pb p pc@pd5

This requires that a = + 1 in Eq. (4.1) such that p, ~ V„~&„p(p,pbp, pd ) =0.
Contracting I „~„Pnext with 2q, we find

d'k 1 12 I ( ) =16ie'q« «xpvp PaPbPcPd xpvpapyspbppcyPdb
(

8 ak
2~) D+ (k)

(4.8)

(4.9)

All 2&4.=48 terms in 2q„Sl „~& P combine in pairs to give similar expressions. Again, all are of the same sign and
add. So we arrive at

1
«Xp p(PaPbPcPd), eXp paPyspaapbPPcypdb ~

384m
(4.10)
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Substitution into Eq. (4.1) now with a = + 1 gives for the pentagon anomaly

5
9x xA,pvp 5 A.pvpapy5PaaPbpPcyPd5

with

1
X5 ——+

28 44
(4.12)

V. HEXAGON ANOMALY IN D= 10 {REF.7) AND BEYOND

The six-point function in D= 10 will be defined by

1 ekievpa (PaPbPcPdPe ) ~ «Apvpa(papbpcpdPe ) + s ee'«j«vpaa13ys(pbapcppdypes+Pcapdppeypab
19200m.

+PdapePPaypbb+Peapa13pbypcb+PaapbPpcypdb) ~

The Feynman graph of Fig. 4 is the one contributing to
f z/pvpa(PaPbPcPdPe ). There is nothing new in the calcula-
tion of this hexagon anomaly. The relevant denominators
are of the form

D'+™e(k)=(k+q)(k+r, ) (k+sd, )

1
2q„S1"„g~„~———

3840m 5 ~A pvpo aPy5e(PaPbPcPdP'e )aPy5e .

(5.5)

Fquation (S.4) requires a= + 1 in Eq. (5.1) to ensure

p,zy„z„„—0. ~e then find from Eq. (5.5) that

X (k s.b )2(k ——r. )'

and, with the substitution k'= (k —p, ), one finds, e.g. ,

(s.z)

29~ V&Apvpg (PgPbPcPdPe ) =2 X6CApvpoapy5&PaaPb pPcyPd5Pee

Dabcde(k ) Dbcdea(k) (5.3) (5.6)

the left-hand side of which enters in the computation of
P,~I „~&„& . The other pair of denominators obtained from
(S.3) by permuting the four 10-momenta (p»,p, „,pdz, p, )
all contribute to the expression for P,~SI ~& &

with the
same sign. The result is

Pa A ~f ekievpn(papbpcpdpe )

1
e (epvpcraPy5e PaPbPcPdPe aPy5e) . (5.4)

Similarly all the 2X 5!=240 terms in (2q„)SI „~& z com-
bine to give equal-sign surface terms when we permute the
five external momenta. The sum gives

with

—1

210 55t
(5.7)

If one wishes to continue and calculate the one-loop
graph associated with the anomaly in D =2n =21 —2
(l-agon, see Fig. 5) dimensions everything goes through as
in the previous examples. The only nontrivial piece of in-
formation needed is the numerator when one contracts,
e.g. , I „q q q . . . q (P~P2 . .p„) with (p~ )z, which has the
form

k-r a
Recall that

X(k+r„) (k+s„„)),. (k r,)—
(5.8)

(k+r. )=k+ ,'(p~+P2+. . . +p—. &
—p. ) (5.9)

and that s„„&has two negative signs, and so on. Cxoing-

around the graph we finally reach (k r, ) which is—

k+ z(Pi —P2 —P3 —.. . —P.). (5.10)

FIG. 4. Hexagon diagram.

Since the indices a; are all contracted iv« the antisym-
metric e tensor, the term linear in k in the numerator is an
n-form. Its value can conveniently be obtained by think-
ing of the contraction with n a indices as the (n Xn)
determinantal nth-rank tensor
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(Det) . . . =( —,
' )"

+p2a„+p2a, —p2an

p3a„

+pn —ia,

(2k+p)) (2k+p)) . . . (2k+p)), (2k+p))
+p2a 2

(5.11)

+pna, —Pnan, —pna„

where we have extracted a factor —, from each row. One finds then that the piece of Eq. (5.11) linear in k is equivalent to
simply (here [n /2] is the integer part of n/2)

alp2a2 pna

when contracted into the antisymmetric e tensor. Thus

]AT + 1)f«2l&~X X - -. X a a . - a "a p2a-&3a pna
1 2 n 1 2 n 1 2 n 1 2 3 n

Similarly one finds

1V ~~ . . . ~ =e„xx . . . q . . . (k —q) (k+r„) (k r,)—

(5.12)

(5.13)

(5.14)

The final result for the I-agon is that when we define
V ~ ~ . . . ~ (pip2 - .

pn ) to be Bose symmetrized and such

that

I

wedge product

dx R, dx 'h - -. hdx (6.2)

for all i such that 1 (i (n then

denotes a contravariant antisymmetric pth-rank tensor.
Examples are

I
(2q)~V„X112.. . A

= 1 A, 112-. A.na[ . - a plalp2a2

(5.16)

one-form: 2 =Aadxa,

two-form: I' = —,I' pdx hdx~ .

(6.3)

with

Xi =( —1)" 1

22n~n& ~

(5.17)

This is the I-agon anomaly appropriate to
D =(2l —2) =2n dimensions, and is in agreement with the
previous special cases we have considered.

VI. CONSISTENCY CONDITIONS

We shall now study how the group-theoretic and
Lorentz structure of the generalized anomalies is dictated
by global differential geometric considerations. This is im-
portant because in the preceding sections we have explicit-
ly evaluated only the lowest polygon for each D; the com-
plete anomaly for a non-Abelian gauge group will have
contributions from higher polygons but these need not be
calculated separately.

Let us introduce notation of p-forms and exterior
derivatives in a D-dimensional manifold M. Let each
point x of M have tangent space T (M) which is a D-
dimensional space with covariant basis vector [8/Bx'I
(i=1,2, . . . , D). The dual cotangent space T„*(M) is de-
fined with basis vectors dx' such that (0/Bx', dx~) =5~. A
p-form is defined by

co~(x)=f, , . . . (x)dx 'hdx '. hdx ~ . (6.1)

Here f, ~ is totally antisymmetric on its p indices. Theal ..a FKJ. 5. General l-agon kinematics.
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In general, a wedge product between a p-form and a q-
form has the symmetry

A
2l

(6.20)

cop RciJq =(—1) coq Rcmp (6.5)
and where F is the two-form

a-
den = ' dx~+'hdx 'h, P dx & .ax&+'

An example is to define, with [A,A"]=if'"'A',

(6.6)

AAQ
2l

(6.7)

as can be seen by permuting the antisymmetrized indices.
In particular, a wedge product of any number of two-
forms is totally symmetric with respect to their inter-
change.

The exterior-derivative operation promotes a p-form to
a (p + 1)-form according to

F=
g F~~dxp A dx~, (6.21)

then the total Chem character is given by the invariant
polynomial

lc (0)=exp 02' (6.22)

Expansion of the exponential now gives even Chem classes
from 1 up to n, higher Chem classes vanish because of an-
tisymmetry. %'e are interested in the sphere S " ' which
has only one invariant relevant to the homotopy group for
mapping, e.g., for SU(N) according to

then

A
2l

(6.8)

2'„2(SU(N)) =X (6.23)

for stable homotopy. This invariant is contained in the
nth or highest Chem class in the (space-time) manifold of
dimension D =2n, namely the D-form

(6.9)

is equivalent to the familiar expression

F'p=BQ p
—BpA'+f'"'AQ p . (6.10)

+cop=sf, . . . (dx 'Rdx 'R . . Rdx ') (6.1 1)

=f, . . . e(dx 'Rdx 'R Rdx P) (6.12)

1 2 p (D )i al ppl pn —pp

&(dx 'hdx '5, . Pdx "~z P„ (6.13)

Applying the Hodge star twice results in

e +cop =(—1)P'" P'a2p

through permutation of antisymmetrized indices.
In particular, when we write the equation

de J=c Tr(FRF)

with

J= —,
' J~dx

(6.14)

(6.15)

(6.16)

Note that we will always set coupling strength g=1, since
g can easily be restored by overall scaling arguments.

We need to introduce the Hodge star or duality
transformation defined by

C„(Q)=
'n

Tr(QR . RQ) 1

nf
(6.24)

( 1)n
(F 'RF 'R . RF ")

2 "n n!

XSTr(A '. . . A "), (6.25)

(6.26)

where we have indicated a normalization suggestive of the
anomalies found in previous subsections. The equality be-
tween the normalization of the nth Chem class in Eq.
(6.25) and the (n +1)-agon anomaly quoted in Eq. (5.18)
implies that one may cavalierly avoid evaluation of Feyn-
man diagrams.

Note that in Eq. (6.25) we have exploited the fact, men-
tioned already, that a wedge product of two-forms is sym-
metric under interchange of the two-forms.

In an Abelian theory, the (n +1)-agon anomaly for
D =2n is complete and not modified by higher one-loop
polygons. For a non-Abelian theory it is crucial to consid-
er the higher polygons (this is already true for D=4).
Nevertheless, it is unnecessary to compute the higher po-
lygons because the anomaly is dictated by the differential
geometry.

In D=4 we know that the axial-vector-current diver-
gence must have the structure

d +J=c Tr(F RF),
whereupon we may use Eq. (6.9) to rewrite

then it follows that
Tr(F RF) =d(A RdA + —,A RA RA ) . (6.27)

with

B&Jz ——c Tr(F pF p) (6.17)
Here we noted that d dA =0 and A h, A hA hA —=0.
Hence, up to a sign,

1

FaP 2 ~aPy& rs (6.18)
J=ec(A hdA+ —,A AA AA) . (6.28)

The anomaly in D =2n dimensions is determined by the
highest Chem class. Using the curvature 0 given by

Now we restore group indices, according to Eq. (6.7), to
find that

(6.19) J& ——Cez~p&Tr A (A ~B~A y+ —,A ~A ~A &) (6.29)
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=CSTr(A'A A')e„pr(A c)pA'„+ —,ll 'A&pAr) .

(6.30)
The notation STr denotes the totally symmetrized trace

al a2 al ii l2 lISTr(A 'A ' - - A ')= —'V Tr(A 'A ' . A ')
I~

perms

IiI I (6.31)
and the A' are the generators of the gauge group written
in an appropriate basis. Equation (6.30) is an important
consistency condition' in D=4 and shows how the box
diagram plays a role in the anomaly for a non-Abelian
group.

In higher D&4, it becomes even more important to es-
tablish the consistency conditions because higher polygons
are linearly divergent (unlike the box diagram in D=4).
Thus, the effects of nonrenormalizability make expljcit

l

dq J=cTr(FRFRF) . (6.32)

Now we rewrite

FRFRF=(dA +A RA) (6.33)

=d(A hdA hdA+A RA RA hdA

+ —,A RA RA RA RA) .

Restoration of I orentz and group indices gives

(6.34)

evaluation of, e.g., the pentagon in D=6, require extreme
care; the consistency conditions mean that this piece of the
anomaly may be deduced directly from the box in D=6.

We have looked at the higher even dimensions D) 6
and obtained the relevant consistency conditions.

In D=6, we have

B„J„'=cSTr(A'A A'Ad)e„p b,B„(A BpA'BbA, +iA ApA BbA",f'kl —', A A—pA Ab A,"f'"fd ") . (6.35)

For D=8, the relevant eight-form is

FRF RF RF =d(A hdA hdA hdA+ —,A RA RA hdA hdA+ —,A RA RA RA RA hdA+ , A R—A RA RA RA RA RA),

which translates to

B„J„'=STr(A'A A'A A')e prb, q,„kF pFrbF, Q'„k
T

=cSTr(A'A A'A A')g»b, &„kB A pBrAbB, A&3„Ak+ —'A pAf AIIi), A&~il„A~ fg

(6.36)

(6.37)

A b A fA ~ A h A i Aj A «gcfgf dhif ej k
P y (6.38}

rn D= 1O,

F RFRFRFRF=d(A hdA hdA RdA hdA+ —', A RA RA hdA hdA hdA h+2A RA RA RA RA hdA hdA

+ —,A RA RA RA RA RA RA hdA+ —,A RA RA RA RA RA RA RA RA}

whence

B&J+——Tr[A'(F h Fh Fh Fh F)j

(6.39)

(6.40)

=STr(A'A A'AdA'Af)e Prb,„kp„pB APBrAbB, A„BkApB„Ap~+ —APA'yAbB, A„BkApB„AQ"P V P

—2A A' A)A A 8 A'B A j'"jf"
P f g K A, 1M v jLI

&& .
A b As A j A kA l A m A ng Afpcijf dklfemn

7 P f 5 E' K A, P V '
PLf

+ &

A b A i A j A
k A l A m A n A p A q jcijfdklf emnf fpq

9 P y 5 e K A, P, V PJ
(6.41)

Clearly, this procedure can be extended to give the con-
sistency conditions for D ) 12 but, at present, our motiva-
tion is mainly towards understanding D=10 relevant to
the supersymmeiric string theory.

In this subsection, we have seen that the index-free no-
tation of differential geometry was of great practical con-
venience in deriving our consistency conditions.

The subject of the next subsection will be the study of
the generalized no-anomaly condition which can now be
cast into the form, for D =2n,

(6.42)

I

where l =(n+1) and A ', A ', . . . are the gauge-group
generators written in the fermion representation.

VII. SYMMETRIZED TRACE IDENTITIES"

The generalized no-anomaly condition involves a totally
symmetrized trace condition. In this section we give some
details of the calculation of these group-theoretic factors,
such as Eq. {6.42), which involves for the l-agon

STr(A 'A ' . . A ')
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This enters the topological current for D =2n =2(/ —1).
These traces are handled most easily in a diagrammatic
notation (see, e.g., Ref. 12). Our discussion will center on
the totally antisymmetric representations [k] of SU(N)
with k completely antisymmetrized tensor indices.

If A' is in [k] then it can be represented as

(Ag) 1'2 'k g ( 1)P(ga) l82 . 6kl)ti '''l/ (J f)2

I'pg f

(7.2)
where the sum is over permutations of the upper and
lower indices with the sign (+1) for even and odd permu-
tations, respectively.

This may be represented diagrammatically as in Fig. 6.
The product of /A's is then obtained by connecting l ob-
jects of this type together. Finally, the trace in (7.1}
amounts to connecting the incoming and outgoing lines in
all possible ways with plus (minus) signs for each even
(odd) permutation of the lines. By this time, the diagram
may be drawn as a circular "target" with k rings and l
spokes; this provides a convenient visualization for the
trace.

Consider first l=2. Here there are (k!)2 terms in the
trace which may be divided into those where the "target"
must be ringed (k —p) times to pick up the two A, 's and p
times for the 5's; here 0&@&(k —1). For a given p the 5
trace gives the binomial coefficient

is (k —p) '=(k —p) for l=2. The sign ( —1)" &+'
arises from parity of the permutation involving the (A,').

Hence we find

S Tr(A 'A ') =A2(N, k)S Tr(A. 'A, ')
with

r

k N
A (N, k) = g ( —1)' '+'(k —p)

N —2

k —1

(7.6)

(7.7)

(7.8)

(1+x) =(1+x) (1+x)
Now consider l= 3; this gives

STr(A 'A 'A ')=A3(N, k)STr(A, 'A, 'A, ')

A3(N, k) = g ( —1) ~+'(k —p)

N —3 1V —3
k —1 k —2

(7.9)

(7.10)

(7.1 1)

(7.12)

where Eq. (7.8) is the familiar quadratic Casimir invariant
and to make the step from (7.7) to (7.8) one compares
coefficients of x ' on the two sides of the identity

a
1 a2 ak=+a a ~ a1 2 k (7.3)

{N—3)!(N—2k)
(k —1)!(N—k —1)! (7.13)

where
This is the well-known result for the triangle anomaly.

Our new results are for l & 4. For l=4 we find
a (ap a~

11b,b, ". ,=, Q ( —1) &,'&,'.
fb;I

The A, trace gives, for (k —p) connected rings,

( —1}~ i'+'(k —p)Tr(A, 'A, ') .

(7.4)

(7.5)

S Tr(A 'A 'A 'A '}

=34(N, k)STr(A, 'I, 'A, 'A, )

+&4' (N, k)S[Tr(A, 'A, ')Tr{A, 'A, '}], {7.14)

The factor (k —p) arises because there are (k —p)!
choices at each contraction of indices, and a
[(k —p —I)!] ' normalization. One arrives at (k —p)i in
this way, but the starting point is arbitrary and one has
overcounted by one factor (k —p). Hence the magnitude

where, as before,

and

~,(N, k) = g ( —1)'-&+'(k —p)'
p=0 P

(7.15)

Ag' (N, k)=3Ap(N —2, k —1) . (7.16)

To derive A4' (N, k) we note that

antisyrnmetrizers
FKx. 6. Generator in basis of kth-rank antisymmetric tensor.

k —2 k —p —1

A4' (Nk)=3 g ( —1) i' g (k —p q)q—Pp=0 g —p

(7.17)

as follows by considering p 5 rings of the "target, " q rings
for one pair of A;, and (k —p —q) rings for the other pair
of A,'. The factor 3 arises from partitioning the four A,

'
into two pairs. Simple algebra then allows us to go from
Eq. (7.17) to (7.16).

For l=5 we find
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=Aq(N, k)STr(A, 'A, 'A, 'A, 'A, ')

k —2 k —p —1

A5' (N, k) = ' g ( —1)" ~ Q (k —p —q)q~

+A~' (N, k}S[Tr(A, 'A, 'A, ')Tr(A, 'A, ')]
withAq(N, k) given by

(7.18)

(7.19)

from p 6 rings, q A, rings with 3 A, 's, and (k —p —q) rings
with 2 k's; again the combinatorial coefficient is from par-
titioning 5~(2+3). It is straightforward to rewrite Eq.
(7.20) as

and

A5' (N, k)=1033(N —2,k —1) .

For the hexagon l=6
(7.21)

STr(A 'A 'A 'A 'A 'A ')=26(N, k)STr(A, 'A, 'X 'A, A, 'A, ')+A ' (N, k)S[Tr(A, 'A, 'A, 'A, ')Tr(A, 'A, ')]

+36' ' (N, k)S[Tr(A, 'A, ')Tr(A, 'A, )Tr(A, 'A, ')]

+36' (N, k)S[Tr(A. 'A, 'A, ')Tr(A, 'A, 'A, ')], (7.22)

where

(7.23)

and

k —2 N k — —1

2 ' (N, k)=15 g ( —1)" ~ (k —p —q)q'
p=o Jp q=o

(7.24)

=1534(N —2, k —1), (7.25)

A6' ' (N, k)=15 g ( —1)

k —p —2 k —p —q —1

q g r(k —p —q r)—
q=0 r=0

(7.26)

(7.27)

Finally,

(7.28)

k —p —1

A6'(N, k)=10 g ( —1) ~ g q (k —p —q)
p=o P q=0

despite the nonrenormalizability of the gauge theory for
D&4.

The result is not surprising, at least for D=10, since
there is a D=10 finite string theory. The ultraviolet
divergences of the string theory are cutoff by the high-
mass recurrences. But the hexagon anomaly receives con-
tributions only from zero-mass fermions. Consider now
the zero-slope limit. In this limit, the high-mass re-
currences are removed and the resulting field theory is
highly singular. Nevertheless, the zero-mass spectrum
remains unaltered and hence the anomaly is independent
of the Regge slope. Hence it is not surprising that the
anomaly may be successfully calculated directly in the
nonrenormalizable field theory.

The anomaly arises from the l-agon Feynman diagram
with l =(n +1). In the non-Abelian case higher polygons
also contribute but these contributions have been shown to
follow from gauge and Lorentz invariance, and hence need
not be calculated separately. Differential geometry was
useful in arriving at such consistency conditions.

The no-anomaly condition for the non-Abelian case in
D =2n =2(l —1) requires vanishing of a totally sym-
metrized group trace over l generators. In Sec. VII and
Appendix A the calculation of this trace was made for ar-
bitrary antisymmetric representations of SU(N}.

In Appendix B there are speculations about the use of
this no-anomaly condition for D&4 in constraining the
massless fermion representation of a D=4 theory. We
relegated this material to an appendix to emphasize that
the calculations of the text, though motivated by such
considerations, are actually independent of the choice of
model.

= —,2 ' (N, k)+ —,2 ' ' (N, k) . (7.29) ACKNOWLEDGMENTS
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APPENDIX A: SYMMETRIZED TRACE
FOR GENERAL I

A!v(k) =A!v(N~k) =(—1) A~ —i, k ~ (Al)

In this appendix, we give the general form of the trace
of l antisymmetric generators of the irreducible represen-
tation [k] of SU(N). To do this we first define

Ai(N, k)= g ( —1) ~ '(k —p)'
p=0

This can be expressed in the useful form

N —l
Ai(N, k) = g Ai(i)

(A2)

(A3)

where the A& k are the Eulerian numbers of combinatorial
analysis' and A!v (N, k) is the generalization of Eqs. (7.19)
and (7.23). That is,

The coefficient of a general term in the expression for
STr(A ' . . A ') is easily seen to be (in analogy with the
results of Sec. VII)

k —1

P =1
S P2 P1

(A4)

Here C1 . . . 1 is a combinatorial factor. It is equal to the number of ways of partitioning l distinguishable objects into
(l „!2,. . . , l„) reduced by a factor equal to the number of equivalent changes of summation variables that can be made in
(A4), where we arrange the l's such that l; ( l;+ i. Hence

1 n l Tl T ~ ~ ~ l

where q1 is the number of l's equal to l1, q2 is the number of l's equal to lq +1, etc.
With the use of a generalization of (A3) we can write (A4) as

1n —1 11 —1

Cii ! g ' g Aii(! i )A!i(&2) ' ' ' A! (in )

in =1

N —l

a=1

(A6)

Our final expression for the general symmetrized trace l generator of the irrep[k] is

N —I a1 alSTr(A ' A ')= +A!(i) . STr(A, '
1(, ')

k —i

N —l a1
'

l1 11+1 1&+ QCi! ggA! ('i)A! (i2) k (,. +. )
S[Tr(A, '

A, ')Tr(k ' .
A, ')]

i1

N —l
+ . +QCi, . . . ! g +A!(ii) A! (i„)

n

a1 al "n -1+' aln
XS[Tr(A, ' . A, ') . Tr(A, " ' k ")]+ (A7)

In the sum over partitions, note that

g l;=l, li &2, and l; &1+! .
i=1

APPENDIX 8: POSSIBLE RELATIONSHIP
TO QUARK-LEPTON FAMILIES

A possible motivation for the study of anomalies in
higher dimensions is provided by the general idea that it
might be related to the occurrence of the replication of
quarks and leptons. After all, the minimal set of nontrivi-
al fermions in D=4 with vanishing triangle anomaly
under SU(3) XSU(2) XU(1) is similar to one family
(u, d, e, v, ).

In order to check out this idea, the results of this paper

will be useful. However, to be honest, it is necessary to
know the answers to additional questions which we have
not yet even addressed. Here, we shall mention what those
additional questions are and even guess their answers in
order to hint at how things may evolve. At least, these
speculations will provide motivation to tackle the ques-
tions of dimensional compactification.

A basic ingredient is the generalized survival hy-
pothesis: that, starting with vanishing hexagonal anomaly
in D= 10, leads after compactification to a subset of mass-
less, or near massless, fermions in D=4 which have
separately a vanishing hexagon anomaly. That is,

A6(p) =0 A6(pL ) =A6{pH ) =0, (B1)

where the total fermion representation separates into
p=pH+pl (i.e., heavy and light components) as a result
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of dimensional compactification. In the simplest dimen-
sional compactification schemes (e.g., on a torus) the gen-
eralized survival hypothesis is trivially satisfied since
p=pH and there are no light fermions, hence no hexagon
anomaly. In a physically interesting cornpactification, the
hypothesis needs proof.

Let us assume here that this hypothesis is valid in some
physically interesting dimensional compactification from
D=10 to D=4 and that the light D=4 chiral fermions
satisfy a new constraint due to A6(pl ) =0. This leads to a
second question: Does only the connected group factor
(A6) vanish or does the entire symmetrized trace
STr(A 'A 'A 'A A 'A ) vanish? The latter condition
leads, in general, to four new no-anomaly conditions addi-
tional to the triangle anomaly and, as we shall see, this is
very restrictive. Vanishing of only the connected part is
less restrictive (being only one new no-anomaly condition),
but more weakly motivated —though, this depends on the
specific details of the compactification mechanism.

First, assume that the totally symmetrized trace vanish.
Then we can demonstrate that for totally antisymmetric
representations of SU(N), N) 2, there is no solution.
Consider N) 6. Then Aq' ' (N, k) is positive definite for
3 &k &(N —3) and vanishing otherwise. Hence, A6' ' ——0
allows only k=1, 2, N —2, X —1. But now A6' is posi-
tive definite for k=2, X —2 and vanishing for k=1,
N —1. Hence we have only defining and antidefining rep-
resentations of SU(N). But these contribute positive de-
finitely to A6 and are hence eliminated. If N& 6, the ten-
sors on the right-hand side of Eq. (7.22) become linearly
dependent. For ¹=5 we find

5T (A. 'A. 'A. 'A, k 'A. )

= —,'S[Tr(A. 'A, 'A, 'A, ')Tr(A, 'A, ')]
——,S[Tr(A. 'k ')Tr(A, 'k ')Tr(A, 'A, ')]

+ —,'S[Tr(A, 'A. 'A, ')Tr(A, 'A. 'A, ')] (B2)
I

so that there are only three no-anomaly conditions. The
formulas of Sec. VII apply here and give'

k A6(5, k) A6' (5,k) A ''(5k) A ' (5,k)

5
10
10

5

1

—27
+93
—119

0
15

—75
90

0
0

+15
—15

0
+ 10
—30
+40

On using Eq. (Bl), a model of the form

a (10 +5) +b( 10+10) +c(5 +5) (B3)

is easily seen to be impossible for SU(5).
In SU(4), the relation (B2) is still valid and the relevant

coefficients are'

1

—28
121

A6' (4,k)

0
15

—90

g 2, 2,2(4 k)

0
0

15

A6' (4,k)

0
10

—40

After reduction using Eq. (B2), we find that A6' is posi-
tive definite and hence cannot vanish.

In SU(3), we have only 3 and 3* with equal hexagon
anomaly and hence no opportunity for cancellation. Fi-
nally in SU(2), only 2 is fully antisymmetric and it has
nonvanishing hexagon anomaly.

This completes the proof that the fully symmetrized
hexagon trace cannot vanish for antisymmetric representa-
tions of SU(N), any N) 2.

In view of this, let us instead assume only the connected
piece A6(N, k) must vanish. The values of A6(N, k) are
given by'

SU(5)
SU(6)
SU(7)
SU(8)
SU(9)

—27
—26
—25
—24
—23

+93
+66

40
15

—9

—119
—26

40
80
95

k=5

1

—25
15
95

1
—24
—9

1

—23

k=8

Let us take SU(8), as it occurs already in N=8 super-
gravity. The most general combination without triangle
anomaly is

must be precisely three.
As another exemplar, slightly less motivated, consider

SU(9). The general form is

m (28+4(8)]+n [56+.5(8)] . m [36+5(9)]+n[84+9(9)]+p[(126+5(9)] (B5)

This has f=(m +2n) families and from the above table
connected hexagon anomaly A6 ——( —20m +20n) which
vanishes for m =n and hence f =3m is a multiple of
three To . avoid residual replication (superfamilies?) f

with f =(m +3n +2p) families. The above table gives for
the connected part A6 ———2(9m —50p), independent of n
The simplest possibility is then m =p =0, n=1 giving the
three-family model considered in Ref. 15.
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