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The Poisson brackets of the constraints are explicitly computed for various equivalent forms
of canonical gravity with tetrads. This study sheds useful insights on the supergravity "algebra"
and is necessary for the Hamiltonian formulation of the path integral. The shortcomings of a

method devised some time ago for this kind of calculation are clarified.

The quantization in an arbitrary gauge of a con-
strained Hamiltonian system with first-class con-
straints requires the explicit knowledge, off the con-
straint hypersurface, of the "structure functions" of
the theory. '

It is the purpose of this report to give a detailed
calculation of these structure functions in the case of
tetrad gravity, described by the canonical action
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freeze the Lorentz gauge by canonical conditions
Q"(h(z), ) = 0 which are simultaneously (i) local (i.e.,
the functions @"do not involve tetrad derivatives)
and (ii) coordinate invariant, i.e., such that the
tetrads obeying the gauge conditions $"(h(„),) =0 in
one coordinate system also obey these conditions in
all other coordinate systems (at a given point, there
is no preferred direction that can be determined by
local means).

The point which has been overlooked in the litera-
ture is that the Poisson brackets of the metric g,b and
the "metric momenta" m'b,

rrab ) (~(k)ag( b+ ~(L)bI)( )a)

do not have the standard canonical values. A
straightforward calculation indeed yields
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[g,b(x),g,d(x')) =0,
[g.,(x), ~"(x')]= ,

' (s:s,"+sd—sg)s(xx'),

as in ordinary metric gravity. But the brackets
[m'b(x), m'd(x') ] only vanish weakly, 5

(6a)
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Here, G,~~ is DeWitt's supermetric rescaled, for later
convenience, by the factor g'i' and o- is the Hamil-
tonian signature of spacetime. 3 The Lagrange multi-
pliers N and Nb are the usual lapse (rescaled by

g
' 2) and shift, whereas the six multipliers )(.

" "
=—X ~ " are associated with the possibility of per-
forming arbitrary local Lorentz transformations on
the tetrads h („), in the course of the evolution (local
indices are put in parentheses; Greek indices run
from 0 to 3; Latin indices take on the values l, 2, 3).

To our knowledge, the constraint "algebras" com-
puted in the literature are incomplete-they are only
weakly valid —and cannot be used to quantize the
theory when the local Lorentz gauge is fixed by
means of noncanonical gauge conditions (such as

0 or k "'(a'=0). The need for such gauges
has been advocated recently on practical grounds,
when coupling to matter is considered. 4 It can also
be understood geometrically, since there is no way to

with

[m"(x) n "(x')]= p, '~ds(x, x'), (6c)

abed ) ( gacXbd+gadXbc+gbcXad+. gbdXac)
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and
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lf coupling to nonzero-spin fields (described by their
tetrad components) is included, the brackets (6c) do
not even vanish.

As a result, the Poisson brackets of the functions
(2) and (3) differ from their metric gravity values by
terms proportional to the new generators X(&)(„). In
order to evaluate these modifications, we note that
any two functionals F and G of the variables g,q and
m'~ obey

[F,G] = [F,G]Mo+ [F,G] .,
986
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Here, the bracket [, ]Mo is the metric gravity bracket, obtained by setting the right-hand side of (6c) equal to zero,
and the symbol [, ],o stands for the modification of the bracket due to the nonvanishing of [n', m' ]. It can be
computed by setting the right-hand side of (6b) equal to zero.

Applied to the constraints 3'. and 3'.z, this rule yields'

[X(x),X(x') ] = —o.[g (x )X"(x) +g (x')X (x') ]8 ),(xx')

[Xg(x),X(x') ] = [X(x)+X(x') ]8/(x x') + [)(gpS(xx') ])p,

[X„(x),X (x')] =X„(x')8 (xx')+X (x)S,g(xx')+4[p, '„,'8(xx')]i, ,
i

(7b)

(7c)

~here the functions A.~~ are defined by

p 4g ~NtN~ pter (7d)

In the evaluation of the second covariant derivative
in (7c), the indices a and k correspond to the point x,
whereas m and b correspond to x'. Besides, there is a
unit density weight at both x and x'. A similar
prescription holds for (7b).

The remaining part of the constraint algebra is
given by

[X(x),X(,)( )(x')] =0,

[3'(x),X(p)( )(x')]=0,

[X(i)(,)(x).X(,)(-)(x )]
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)(p)(n)X(x)(p) + 1(k)(o')X(p)(p) )8(xix )
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since 3.'(~)( ) generates local Lorentz transformations
and since X and 3C& are both Lorentz invariant.

As pointed out in Ref. 5, there is a good geometri-
cal reason why terms proportional to 3.'(&)(„) should
appear in the algebra (7). Indeed, the spacetime gen-
erators 3.'and Kq, which involve the momenta m

" '
only through the symmetric combination m'b, trans-

]

port the tetrads h(&), according to the law

SA (]) )a =
2 ~ (i) Stab
1 b

Now, it is a key fact that this law is not integrable:
Two successive variations S~g,b and S~,b will not in

general lead to the same final tetrad when performed
in reverse order. The difference is an easily comput-
ed Lorentz rotation, which straightforwardly leads to
(7) as a result of the argument developed in Ref. 7.

This suggests replacing 3.'& by X&, the generators
of ordinary Lie derivatives,

(9)

~(»mh (~(x)wh ) (I0)

[X/, (x),X(g)(„)(x ) ]=X())(„)(x )8 g(xx ) (gb')

(the ordinary Lie derivative+P h(»„although asso-
ciated with an integrable transport law, is not Lorentz
covariant; this is why Kq and X(&)(„)do not com-
mute). Besides, one easily finds

Since X~ and 3.'~ differ by a combination of the con-
straints 3C(&)(„), this change is permissible. The new

generators X~ obey the algebra characteristic of the
diffeomorphism group,

[3C),(x), 3C (x')]=3Cg(x')8 (x,x')+X (x)Sg(x,x'),
(7c')

and are such that

[3C),(x), X(x')]= [X(x)+ X(x')]s,g(xx'), (7b')

[X(x) X(x')] =—a [g (x) [3C"(x)+X"~(~(x)+G) " ""(x)X(„)(„)(x)]

+g(x') [X"(x')+X"
(

(x') + " "(x')X(g)(„)(x')]]Sp(xx') (7a')

where co(&)(„)& is the three-dimensional connection
defined in Ref. 8.

The set of generators (3C, 3',3C(z)(„)) possesses
two distinct advantages: (i) In the limit of zero sig-
nature (a =0), its algebra becomes a true algebra
(the structure coefficients no longer involve the
fields); and (ii) it is of rank one according to the clas-
sification of Ref. 1 (the higher-order structure func-
tions all vanish). This second property, which the
reader can easily check, singles out this set of genera-
tors as the best starting point for the quantization.

Another set of constraints which has been con-

I

sidered in the literature for geometrical reasons is de-
fined as follows. If one expresses the Lagrange mul-

tipliers associated with the primary constraints X(&)(„)
in terms of the tetrads and their derivatives by means
of the first Hamiltonian equations (i.e., the equations

h(», , o= [h(»„H l), one finds'

&(~)(„)= —, [h(~)p, oh(„)'—))(»,oa(„)—()) y) l, (Il)

where n(&) are the tetrad components of the normal
to the hypersurfaces x =const. These multipliers are
thus not equal to the zero components of the four-
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dimensional connection ~"~co~&~~„~0 and do not possess
a direct geometrical meaning. However, by a redefin-
ition of the generators 3.'andXk, one can rewrite the
canonical action (1) as K =X+2+ (12b)

The link between 3.'and 3"on the one hand, and KI,
and X~ on the other hand, is well known, '

S [h ~(z)a N Na ~(i)(«)]

o, d)x[n(i)ah(» l)
—N3C

3(A =Xk+3C k~a
—2g ' (na '2e'giaa)3C

(12c)

—N"X ' —la " «X(g)(«)] (12a)

in such a way that the new multipliers ao" ~, when
expressed in terms of the tetrads, their derivatives,
the lapse and the shift by means of the first Hamil-
tonian equations, are precisely equal to ao " ~ 0.

Here X is equal to n-(»h(«) 3C "' It. is
noteworthy that the term added to X in (12b) is such
that the tetrads remain fixed in a tilting of the hyper-
surfaces xo= const (see Ref. 11 for a definition of
these transformations) .

A lengthy calculation leads to the following algebra,

[X'(x),X'(x')] =0, (7a")

[Xk(x),X'(x') ] = [X'(x) +X'(x') ]Sk(xx') —(+ski(„)(«)g'I'X(""«)5(xx')+ —,'X~„(x)X'"(x)5 k(xx'),
(7b")

[Xk(x),X ' (x') ] =X ' (x )S,k(xx') +X/ (x')5, (x x') —( )Rk {l,)(„)X(")(«)5(xx')

+2g '~'(x)gi (x)X«~(x)X«"(x)5, (x,x'), (7c")

=
q

d)ro[p;q'+a. (qy)y
—)4xA(q, p,y) u'&. (q,p,y)] . (1—3)

We shall assume that the constraints gq =0 and
~, =0—referred to below as the secondary and pri-
mary constraints, respectively —are first class,

[i]a. l[lx] =C asar (14)

where 8 &~&~~„~ reduce, on the constraint hypersur-
face, to the components of the four-dimensional
Riemann tensor, expressed in terms of g,& and m' as
in Ref. 11 (their explicit form will not be needed here).
Moreover, X," and 3Ck both commute with the Lorentz
generators X~&~~„~ since they are Lorentz invariant.

The striking feature of the Poisson brackets (7b")
and (7c") is that they differ from the constraint alge-
bra computed in Refs. S and 12 by terms containing
the squares of the constraints X~&~~„~. This latter
algebra is thus incorrect and only yields the structure
functions on the constraint hypersurface. In order to
understand the origin of the discrepancy, we have to
analyze carefully the method used by the above-
mentioned authors. That method is extremely
economical in providing important information on
the constraint algebra. However, it suffers from one
serious drawback: As we shall show, it is completely
unable to give any information on the squared terms

X(»(«)X, X(»(„)3Ck, 3C(&)(«).X(a)( ) and, for that
reason, must be supplemented by additional con-
siderations.

We shall consider from now on more general sys-
tems described by the following canonical action,

S [q l p ya. )(A u a]

which yields, as in well known, variational equations
equivalent to those implied by SH.

Now, as has been noticed in Ref. 12, the action SH
is invariant under the transformations

SHq = a [q, I]id], SHpl = a [pl, (]la]

SHy =a [y, illa]

SHAWM,
= 4 + C xrC jul

(16a)

[pa= ()(",u') ]. This implies that the action S(, is in-
variant under

Say =a [y ~ (Illi]

&"=~"+ C"xr&xpr ~

(16b)

where the right-hand sides are evaluated "on shell, "
i.e., on the surface where (15) holds.

I

[the compact notation l]lA, ~ (xA, (a, ) has been used],
and that the variational equations SSH/Sp, =0,
SSH/Su'=(a'=0 can be solved for the momenta p,
and the multipliers u'.

SSH SSH pl ——Pl(q, q,y, X)

Sp' Su „a U'(q q y )()

("Legendre transformation"). Pure gravity belongs
to that class of models (h(„),~q', e' ~ =pl, N, Nk
—= A."; )((")(«)= u', no y') as well as gravity coupled to
matter and supergravity.

If one replaces in the action SH the variables pl and
u' by the functions P& and U', one gets the "Lagran-
gian action"

[qlya )(A] P (ql q lya ya ) A)dxo
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(17b)

where 4,PJ and hU'are the differences between

SHpI ~ SHu' [functions (16a)] evaluated on shell and

SPJ, SU'. If only one constraint is quadratic in the
momenta —the other constraints being at most
linear-these equations, which possess a unique solu-

It so happens that the action SL, is in general the
starting point of the theory and that all its invariances
are known in closed form. Thus, (16b) must be one
of these. This enables one to determine C"qx on
shell. 's By the relation (15)—which establishes a bi-

jective correspondence between the velocities q
' on

the one hand and the variables pi [with

&p, (q,p,y) = 0] and u' on the other hand —the struc-
ture functions C"~x are determined as functions of
q', pi,y on the surface ss, (q py) 0. The method
thus provides C"as in the whole phase space (q,p,y)
up to combinations of the primary constraints y».

As to the other structure functions, they can be
found by evaluating the variation SL, U' of the multi-

pliers u' viewed as functions of the Lagrangian vari-
ables. From the definition (15) of the functions P&

and U', one easily derives

8 i[f4 /p + 89 ~U a 8 ~a X8i[ix+p
"ap,ep, ' ep,

'
ep, ep,

"
aq,

(17a)
and

tion, imply hU'= 0. hP& is weakly proportional to
p, ~ 8pa/8q~+ PJ and obeys (17b) because of the re-
lations (15), 81, /8pl ~ P, +8+, /8qj ~ qj-0 and

[pa, ills] =0.' From the property

gU»= j»+ C»~xg&p, x,
the structure functions C'~x can be determined up to
combinations of the functions illa.

Vfe have thus shown that the constraint algebra
can be computed from the invariances of the Lagran-
gian action up to terms such as y, yb or y»x~, which
vanish with the primary constraints. In order to
evaluate these terms a finer analysis is required. It is
not our purpose here to provide such an analysis for
an arbitrary first-class theory (direct computation of
the brackets —as was done above —is of course always
a reliable method). Let us merely mention that in
metric gravity there is no ambiguity since there is no
p, constraint once the primary constraints m ~ = 0
have been eliminated. In the case of supergravity,
the Lagrangian method can be easily supplemented
by the appropriate analysis when the generators X,
Kk, and 8 are taken to involve the gravitational mo-
menta m

" ' only through the symmetric combina-
tions m'b.
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