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The average action per plaquette is calculated using strong-coupling expansions up to 15th or-

der for the pure U(N), N = 2, 3, 4, 5, and 6, four-dimensional Euclidean lattice gauge theory.

%e compare these expansions with Monte Carlo-generated data and find agreement to be better

than 1lo over the whole strong-coupling region.

The techniques for evaluating the strong-coupling
expansion were outlined in a series of papers. ' In
the present paper the results of a numerical study of
U(N), N = 2, 3, 4, 5, and 6, lattice gauge theories in

four Euclidean space-time dimensions are reported.
The free energy and the average action per plaquette
are investigated through strong-coupling expansions
and Monte Carlo simulations.

The action for the U(N) Wilson theory is

S = BN X(Tr U~ +Tr U~ )

respectively, be found in Tables I and II. Tables I
and II are valid for any U(N) group with N ~ 2. For
W = 1, all coefficients in Table II are one instead of
two, and all coefficients involving the representations
(1',0), (0;1'), and (1;1) in Table I are zero instead
of one. The notation for the U(N) representations is
defined in Sec. II of Ref. 6. The calculations of the
character coefficients and their 8 expansions were
performed with the use of MACSYMA. For N ~ 3 it

TABLE I. The N„, coefficients.

where X~ is a sum over each elementary plaquette in

the lattice. Equation (1) defines our normalization of
8; the factor of W in front of the sum guarantees
that the theory will be a smooth function of 8 in the
large-N limit.

The free energy I' per volume V per N' is defined

—lnZ1 1

where V is the number of sites in the lattice. The re-
duced free energy f or free energy per plaquette in D
dimensions ls
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The quantity f has been calculated in a strong-
coupling 8 expansion to order 8' and the results are
tabulated in Appendix A. Here is a brief summary of
the method of calculation. First of all, we used Eq.
(2) in Ref. 5. For U(N) theories to order 8"it is
not necessary to compute any of the group integrals
in Eq. (8) of Ref. 5. It is, however, necessary to
know (i) the dimensions of the representations of the
U(N) groups, (ii) the character coefficients for the
Wilson action, and (iii) the group product coefficients
N, and N,» of Eqs. (5), (6), and (7) in Ref. 5. The
first two can be found, for example, in Appendix A
of Ref. 6. The latter, namely N„, and X„f„,can,
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27 982 1983 The American Physical Society



27 BRIEF REPORTS

TABLE II. The n~~ coefficients (N «2). The average plaquette action P is defined as

PU(Iv) I (TrU ) (4)
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is time consuming to compute these character coeffi-
cients using Eq. (A4) of Ref. 6 because of the size of
the determinants; instead, the formulas in Eq. (A19)
of Ref. 6 were used.

There were two nontrivial checks on our free-
energy calculations. First, we checked that for N =1
we obtained the U(1) result of Ref. 2. Secondly, we

checked that as N ~ f had a smooth large-N limit;
this would not have been the case if the subtractions
involved in taking the connected pieces of graphs had
not been correctly done. The large-W results are also
presented in Appendix A.

and is related to f"'"' by

Pu(Ivl 1 tl fUtIvl

2 9B
(5)

Appendix 8 tabulates the P"' ' in D = 4 as computed
via Eq. (5).

The Monte Carlo simulation data were generated
on 64 lattices. %e carried out 300 iterations through
the lattice and averaged over the last 100 iterations.
Mixed-phase starting lattices were used throughout
our calculations except in the extremely large cou-
pling region. Periodic boundary conditions were used
in all our calculations. The method of Metropolis
et ci. ' was used to achieve statistical equilibrium with

20 Monte Carlo updates per link of the lattice. In or-
der to eliminate rounding errors due to the finite
work length on the computer, we renormalize our
matrices after every 50 iterations through the lattice.

In Figs. 1(a)—1(e) our Monte Carlo simulation
data on 6" lattices for U(N), N =2, 3, 4, 5, and 6,
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FIG. 1. The average action per plaquette (E) as a function of the inverse coupling constant squared P on a 64 lattice for
(a) U(2), (b) U(3), (c) U(4), (d) U(5), and (e) U(6). The solid lines represent the 15th-order strong-coupling expansions
derived in the text. The statistical error in the Monte Carlo data is less than the size of the Monte Carlo data points.
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respectively, are presented together with the strong-
coupling expansions of Appendix B. To ensure accu-
racy in our diagrams our results were plotted by com-
puter. The Monte Carlo-simulated data and the
strong-coupling expansions agree over the whole
strong-coupling region with an error of' less than 1%.
The critical couplings are B,= 0.416, 0.392, 0.375,
0.375, and 0.375 for N = 2, 3, 4, 5, and 6, respective-
ly.

In the case of a continuous phase transition, series
analysis such as the ratio test and Pade approxima-
tions can sometimes be used to locate the transition.
Unfortunately, for N )2 U(N) gauge theories have
first-order transitions. Nevertheless, we examined
Pade approximations to the free energy. They proved
to be uninteresting. All free-energy coefficients are
positive for the U(~) theory (at least to 16th order)
which curiously also happens in the U(~) chiral
models6 and which suggests a singularity in the series
on the positive B axis. Ratio test estimates of this
singularity do not yet give consistent results; ap-
parently more terms in the series are needed. In any
case, this singularity is unlikely to be the large-N
phase-transition point, again because the transition is
expected to be first order.

Summarizing, strong-coupling techniques appear to
be able to accurately calculate quantities on the
strong-coupling side of the transition, but unfor-

tunately appear to be of little use in obtaining the
phase transition's location.
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APPENDIX A

The reduced free energies f for various U(N)
theories to 16th order are

't

~()(2) ~2+ 2D 16 ~6+ 2~8+ 4D2 70D + 6788 ~)0+ 20D 836D 2504 ~)2

+ 40D —372D + 391 71&D 15 187 468
'

Bi4

405 19845

68D3 200 933D2 2 221 069D 19707 343
216 1080 11 340

F ( =B2+ 2D 4 B —81 B8+ 4D —1&D + 729 B]P + 20D 573 967D + 631 057 B
3 3 64 200 3 12 2&8 10240

r t
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(
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1

fU(5) 82+ 2D 4 86+{4D2 1$D+20)810+ 20D 9291925D+1743245 812
3 3 3 331 776 165 888

'I

40D3 292DP+ 710D B14
84672

3 40$777613D2 322906001D 377650503541 816+0 818
345 600 138 240 232 243 200

1 1 'I

FU(6) 82+ 2D 4 86+(4D2 1$D+20)810+ 20D' 127050796D+ 446$3$64 812
3 3 3 4 501 875 1 500625

805 676
1225

16$D3 12$400 013 $71D' + 303 963 $90 107D 5 554 216 651 8t6+ 0 Bts
10$045 000 10$045 000 3 601 500

tr( ~ 8~+ 2D 4 86+(4D~ 1$D+20)Bu)+ 2(lD $6D + 92
3 3

,
3 3 3

40D3 292D2+710D 572)Bt4+(16$D3 1200D2+2$66D 2276)Bt6+0(Bts)

where D is the dimension of space-time and B is the
(inverse) coupling constant in the Wilson theory

APPENDIX B

The average plaquettes P for various U(N)
theories in D =4 to 15th order are

pU{p) B + 88 + 88 + 188B + 1776B""3'3'45 '
5

11449968" + 106$$6068'
567 567

pU(3) B +4B5 81B + 3 129B 569 6998"
16 40 5120

+ 960$798'3 211395671938'5 +0 8)7
448 3 225 600

pU(4) B+4B5+ 16768 + 4563952B"
45 16 $75

23032128'3 + 10511596$078'~ +0 Bt7
4725 708 750

pU(5) B +4B5 +60B9+ 284 7058" + 22 974 457B
9216 12 096

105$201$53978'~ +0 Bt7
29 030400

pQ($) B +4B5+60B9+ 212 096 8168" + 86 1248'
1 500 625 175

+ 15652$67$9628'5 ~0 8)7
13 505 625

P" 8+48 +60B +1368"

+ 10928' +59208"+0 (8")
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