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Classical gluon dynamics and condensates
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Time-independent, spherically symmetric solutions are constructed for the classical equa-
tions of motion for SU2 gluon dynamics in the presence of infinitely extended sources.
These solutions can be used to investigate the concept of gluon condensation and to model
the physical vacuum as a color-repelling medium.

I. INTRODUCTION

Quantum chromodynamics is widely believed to
possess the property of color confinement and this
property is usually associated with the vacuum
structure of the theory. The realization that the
vacuum in a confining theory can be quite different
from that of a nonconfining theory developed over
years of trying to understand confinement in simple
field-theory models. The idea forms the basis for
the MIT bag model' where hadrons are pictured as
"bubbles" of a perturbative vacuum surrounded by
the medium of a nonperturbative, color-repelling
vacuum.

There have been many attempts in recent years to
establish confinement in QCD by identifying a
mechanism for constructing a vacuum state with
color-confining properties. For example, Callan,
Dashen, and Gross have suggested that it is possi-
ble to describe the Q CD vacuum as a
meron/instanton plasma. Other efforts to model the
QCD vacuum by identifying the mechanism respon-
sible for producing it have started with such diverse
building blocks as monopoles, flux tubes, vortices,
or glueballs.

Among the motives for the construction of
models of this type has been the hope that an expli-
cit representation of the vacuum would aid in the
formulation of a "proof" of confinement. This
hope has not, as yet, been realized. Although these
models have proved informative and have provided
significant physical insight, they have not made pos-
sible any such proof. In fact, the issue of confine-
ment has been more satisfactorily treated by other
theoretical methods. For example, Monte Carlo
simulations on lattices suggest strongly that Wilson
loops in SU2 and SU3 exhibit an area-law behavior
(signaling confinement) even in the weak-coupling
regime. The fact that lattice regularization can be
made completely gauge independent so that the cal-
culations involve only the physical degrees of free-

dom and do not require the invention of specialized
field configurations in intermediate steps makes
these results particularly compelling.

It is possible to criticize lattice calculations. Since
they are carried out with discrete, rather than con-
tinuous, space-time variables we can imagine that
there are some subtleties in passing to the continu-
um limit which make the results of lattice calcula-
tions difficult to interpret. However, lattice calcula-
tions provide a significant advance in our under-
standing of nonperturbative effects in non-Abelian
gauge theories and it is appropriate to build on the
experience gained from these calculations to formu-
late new goals for semiclassical models. While it
does not now seem so important to uncover a
mechanism for confinement, it is still important to
have a quantitative, analytic model for a confining
vacuum. While lattice calculations support the gen-
eral picture in which the physical vacuum can be
described as a system of mobile charges forming an
extended medium they reveal little of its local struc-
ture. It would be desirable, for example, to have
analytic expressions for "background" fields in the
vacuum to formulate perturbation theory' in a
manner which connects to work done by Lee and
others" on the corrections to the Feynman rules in
field theories subject to confining boundary condi-
tions.

One element which makes this goal possible in-
volves the important series of papers by Shifman,
Vainshtein, and Zakharov. ' These papers explore
in considerable detail the phenomenology of experi-
mental observables associated with the issue of a
nontrivial vacuum. The difference between the
physical vacuum

~

vac) and the hypothetical pertur-
bative vacuum

~ P ), where quarks and gluons prop-
agate freely, can be described by various order
parameters,

o; = (vac
~
0;

~

vac) —(P
~
0;

~ P ),
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+ (q =ud)

=- —0.84)(10 4 GeV4. (1.2}

The importance of the work of Shifman, Vainshtein,

and Zakharov is that, using sophisticated sum-rule
techniques, they are able to extract from experiment
a comparable number for gluons,

os ——(vac
~
(a, lm)G,"'G,'„„~vac)

—= 1.2X 10 GeV (1.3)

fhese numbers then turn the exercise of understand-

ing the vacuum structure in a non-Abelian gauge
theory from one of primarily formal interest to one
which makes direct contact with experiment. A use-
ful model of the vacuum would be able to incorpo-
rate numbers such as (1.2) and (1.3}and relate them
to other quantities of experimental interest.

An important additional impetus to the idea of
reexamining models for the non-Abelian vacuum
can be traced to work started by Savvidy. ' Savvidy
calculates the one-loo~ quantum corrections to the
field configuration G iq H(constant). ——He argues
that, under certain conditions, the state with zero
field is unstable against the effects of quantum fluc-
tuations. This argument has been taken up and im-
proved by Fukuda and Kazama' so that it can be
formulated in a gauge-invariant way using an effec-
tive potential parametrized in terms of the gluon
condensate crs. This line of reasoning does not
necessarily lead to a proof that condensation neces-
sarily occurs in a non-Abelian gauge theory such as
QCD (Refs. 16—18), but when combined with the
phenomenological evidence of a gluon condensate
such as that found in Ref. 12, it does give insight
into the reasons behind the formation of a nontrivial
vacuum state.

The ansatz of Savvidy, Giq ——H(const), serves as
the starting point for the construction by Olesen and

giving the difference between the expectation values
of scalar operators in the two states. In language
borrowed from many-body physics, the appearance
of a nonvanishing o; is characterized as a '"conden-
sate" associated with the appropriate operator.

Two opefatois, Og =Ga Ga, pv and Oq wqgi gi .

(each flavor), which are dimension-4 scalars associ-
ated, respectively, with the gluon and the quark
fields, play a key role in the bulk description of the
QCD vacuum. It has long been accepted that the
existence of a quark condensate is necessary to
understand the breaking of chiral symmetry and
that current-algebra sum rules' are able to attach a
number to this condensate,

Nielsen of the most ambitious and complete model
for the QCD vacuum thus far in existence. Nielsen
and Olesen call their construction a "quantum
liquid" model but it has come to be known more
simply as the "Copenhagen vacuum. " We will com-
pare the properties of the Copenhagen vacuum with
our models in the discussion of Sec. IV. The con-
struction of Nielsen and Olesen is very imaginative.
However, after the early stages of construction,
there are no explicit representations of the fields or
vector potential. This makes it difficult, for exam-
ple, to show directly that the Copenhagen vacuum
confines. '9 Therefore, it is possible that using the
classical equations of motion to suggest a different
starting point would eventually yield a model more
useful for calculations.

The above discussion should serve to indicate that
the idea of the QCD vacuum as an extended medi-
um containing color fields is well motivated even if
it falls short of being firmly established. To
represent this medium and its effects on physical
processes, we can model it by a set of extended clas-
sical sources. We then look at solutions of the clas-
sical equations of motion in the presence of such
sources. The study of the classical equations of
motion for a non-Abelian gauge theory is by now a
well-developed topic. Most analyses, however,
look for "particlelike" solutions which are either lo-
calized or have finite classical energy. This will not
be the approach in this paper. If we label the classi-
cal energy density e, (x) we will be looking at field
configurations for which

E,= f d xe, (x)=oo . (1.4)

The motivation for this relies on the unknown 0-
point fluctuations assumed in the work of Savvidy, '

Fukuda and Kazama' and on the results of Nielsen
and Olesen' discussed above. While the formation
of a condensate is a process which may require the
full quantum theory in order to be understood, we
merely assume that it is possible to represent the fi-
nal state in some fashion using classical fields.

The remainder of this paper is organized as fol-
lows. Section II defines our terminology and
focuses on some of the arguments for the existence
of a gluon condensate. Section III makes some sim-
plifying assumptions and constructs some "sample"
solutions of the equations of motion for SU& gluon
dynamics which have the property of a nonvanish-
ing gluon condensate. So:tion IV discusses briefly
the problein of using these solutions to construct a
model for the vacuum and compares our approach
with that used in the construction of the
Copenhagen vacuum.
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II. CONDENSATE AND THE QCD VACUUM
AS A MEDIUM

I: Tu Tb 1 =0""Tc

and the gauge-covariant derivative is given by

(2.3)

(2.4)

Equations (2.1) and (2.2) describe the interactions of
quarks and gluons. Since they play no direct role in
our discussion, ghost or gauge-fixing terms are not
included above although they may be necessary to
describe the quantized theory.

The appearance of nontrivial vacuum structure in
the SU~ gauge theory defined above has been an ac-
cepted feature of theoretical analyses for many
years. An early approach which indicates the need
for such structure involves the problem of chiral-
symmetry breaking. The chiral limit of (2.1) can be
defined by setting mq

——0 for the "light" quarks
(q=u, d, s) and mq

——ao for the "heavy" quarks
(q=c, t,b, ...). In this limit there are fermionic
currents associated with the light quarks:

In order to fix conventions, consider an SUN
gauge theory to be defined by the Lagrangian

+ g qf (tP mf )q—f, (2.1)
f

where

6„'„=BP„'—B„A„'+gf' A„A„',

a,b = 1, . . . , N 1. (2—.2)

If T„Tb form a representation of SU&,

8q~= Gq„G '~"+ g mqqq+A, II,(g)

f
(2.8)

where the constant A, accounts for vacuum energy
renormalization. The P function can be expanded

3 5

P(g}= Po, P—i— (2.9}

o'; = &vac
I
0;(x)

I
vac) —&P I 0;(x)

I P ) (2.7)

associated with different scalar operators. In our
discussion, we wi11 primarily be interested in three
operators of dimension 4,

G„'„6'"', mqqq (each flavor), and 8„",
where 6&„and mqqq are defined in (2.1)—(2.4) and

8&, is the energy-momentum tensor. Of course,
operators of higher dimension, such as

f g "6&,G '"t'G~ and mq qI "qql &q

may also be necessary to characterize the physical
vacuum. In fact, it may require an infinite number
of these order parameters to describe the difference
between

I
vac) and

I P ). However, the assumption
is usually made that only a few of the low-
dimension operators are important and that it is
possible to write the other o's in terms of this small
set using the equations of motion and various
averaging processes. ' One reason for seeking an ex-
plicit "model" of the vacuum is to test this assump-
tion for reasonableness or, if possible, to obtain oth-
er estimates of the high-dimension operators.

The three dimension-4 operators mentioned above
are not independent. They are related by the trace
anomaly equation

Jvp. =H'p~ 0 ~

(2.S) If we then normalize

Jap, =gap, ls~ 0

The jnvariance of the Lagrangian under an

SU3@SUs transformation in the chiral limit can be
used to show

oq = —
& vac

I mqqq I
vac),

0= &P I mqqq I P ),
o o ——

& vac
I
(a, ln)G&„G'""

I

.vac),

0=&/
I
(a, /ir)G„'„O'""I P),

0= & vac
I 8$ vac),

(2.10)

where
I P ) is the dressed Pock state representing the

vacuum in perturbation theory and the equality is
true to arbitrary order in the perturbative expansion
parameter. The observation that this equality does
not seem to be realized experimentally (for example,
the mass of the p is not equal to the mass of the A, )
leads to the hypothesis that the physical vacuum

I
vac) does not correspond to the perturbative vacu-

um IP). As mentioned in the Introduction, to
characterize the difference between the two states,
we can use the value of various order parameters

the consequences of (2.8) can be written

Po Pi as
o'8= erg 1+ + ' + Poq.

f
(2.1 1)

As shown originally by Gell-Mann, Oakes, and

Renner, ' when chiral-symmetry breaking occurs
through the Goldstone mechanism, the size of the
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quark condensate can be determined in terms of the
pseudoscalar meson masses. With the normalization
(2.10) this can be written

2 02
ET' —4 m~ f~ + ' ' (q =Qpdp) p (2.12)

where f~ is the pion decay constant in the chiral
limit. The nonvanishing quark condensate provides
direct confirmation of the idea that the QCD vacu-
um can be considered as an extended medium. Since
the main topic of this paper is the gluon condensate
we will not go into the various applications of quark
condensation such as those involving the determina-
tion of quark mass parameters. ' It is interesting,
however, to consider the possible implications for
the gluon condensate of the "accepted" existence of
quark condensation. In defining the chiral limit of
(2.1}, we made a sharp distinction between "light"
quarks, with m~/A—=0, and "heavy" quarks, with
m&/A=- oo. In practice, this distinction is not clear
cut and there exist quarks which can be considered
both light and heavy. In renormalization prescrip-
tions (such as versions of minimal subtraction )

where all quarks contribute to the P function, the
contribution of a specific quark flavor to the
energy-momentum tensor anomaly is

(S,e„")f s(kp )—0fcTG+Of (2.13)

For large masses, the requirement that heavy

quarks not contribute to the vacuum energy in Eq.
(2.13) leads to

oG —— hm 12+of .
mf ~00

(2.14)

In terms of the vast energy scales associated with
grand unified theories, the fermion mass spectrum
does not seem to span such a large energy range.
Since pions can evidently be understood as qq states
in a way not too different from other pseudoscalars,
it seems plausible that the value of the quark con-
densate should be nonzero for all flavors of quarks.
Eq. (2.14) then implies that the gluon condensate be
nonvanishing.

A more convincing argument that o.
G is nonvan-

ishirig can be found in the phenomenology of Shif-
man, Vainshtein, and Zakharov. ' Using dispersion
techniques, they are able to derive sum rules relating
the masses and couplings of hadronic resonances to
ov and to crG If w. e define the vacuum polarization
function

11" (q )=i f d x e''i"

&((vac
~
T[j i"(x)ji.(x)]

~

vac),

(2.15}

where A and B are flavor indices. Using the
operator-product expansion on the right-hand side,

(q )(vac
~

0
~

vac) Co(q )ir+GG(q ) 2 2 O'G+Cg(q )
& 2

o'& +(dim 6 and higher) ~

(q2)2 (q2)2
(2.16)

The coefficients C„can be calculated using pertur-
bation theory while various averaging processes
(such as vacuum dominance' ) are used to estimate
the higher-dimension order parameters. Using
weighted dispersion relations, Shifman, Vainshtein,
and Zakharov' form sum rules by saturating the
left-hand side of (2.15) with narrow resonances. The
estimate for aG obtained phenomenologically in this
way is

=—(0.33 GeV) (2.17)

Alternative analyses using different approaches sug-
gest that the value may be a factor of 2 higher ' but
we will use the values in Eq. (2.17). The impor-
tance of this work is that it shows that experimental
numbers are sensitive to the vacuum structure.

An independent chain of reasoning suggesting the
existence of a nonvanishing gluon condensate is
based on the possibility of showing that the pertur-
bative vacuum is unstable. This approach has been
pursued, for example, by Savvidy, ' who has calcu-

I

lated the effect through one loop of quantum fluc-
tuations on the vacuum energy density. Starting
with a constant field configuration G,2

—H all other
6&„——0 then gets the result for the real part of the
energy density,

11% HRes(H)= , H'+ g—H' lng
192m p 2

(2.18)

where the E refers to SUN and p is a renormaliza-
tion point. This expression (for large enough gi) can
have a nontrivial minimum away from H =0. Thus
it appears that the non-Abelian state H =0 should
be unstable against the development of a finite mag-
netic field. With the constant fields above, the ener-

gy density also has an imaginary part signaling fur-
ther instabilities. These are discussed in further de-
tail by Ambj@rn and Olesen, and by Chang and
Ni' and are used by Nielsen and Olesen in the con-
struction of the Copenhagen vacuum.

The argument concerning the instability of the
"naive" perturbative vacuum has also been formu-
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lated by Fukuda and Kazama' directly in terms of
the order parameter associated with a gluon conden-
sate. The approach of Fukuda and Kazama has the
immediate advantage of dealing with Lorentz-
invariant quantities. For our purposes, it is not im-
portant whether or not these arguments prove that
gluon condensation must take place in SU~ gauge
theories. One thing which is important, however, is
that such condensation is not a purely classical ef-
fect. The classical energy density for the Savvidy
vacuum

H1

2

has the obvious, trivial, minimum at H =0.
Therefore, if we are to make a quasiclassical

model of the @CD vacuum, we should look for field
configurations which are nonvanishing almost
everywhere even if they have infinite classical energy
and have no simple interpretation in terms of local-
ized particles. We now turn to the question of
whether the equations of motion admit such solu-
tions.

(vac
~

E E
~
vac}= —(vac

~

8 8
~
vac} (3.3)

and if 0GpO, the "classical" E fields are to be
represented as imaginary numbers. By using a Eu-
clidean metric where

absorbed into the parametrization of the classical
sources. The second simplification involves the
change of the color gauge group from SUs to SU2.
In the solutions, the vector potential plays the role
of a connection between the manifold of space-time
and the manifold of the group space. The mappings
involved utilize the projection of an 0(3) or SU2 sub-
group of the original group. By dealing with the
gauge group SU2 we can perhaps avoid some possi-
ble problems involving the degeneracy of solutions
without seriously changing the physical content.

Another modification of the equations is that we
will be working in Euclidean space rather than in
Minkowski space. Generalized Lorentz covariance
requires

(vac
~
G„'„G~

~
vac) =c(g„~g„g„g„&—) (3.2)

so that if the vacuum is to be a Lorentz scalar,

III. THE CLASSICAL EQUATIONS OF MOTION
FOR SUp GLUON DYNAMICS

GqvGyv = , (Ei'E)'+B—j'Bg')

instead of

(3.4)

The fact that the classical equations of motion for
a non-Abelian gauge theory are nonlinear leads to
difficulties in studying their solutions. Many useful
techniques for finding solutions to Maxwell's equa-
tions in ordinary classical electrodynamics involve
linear expansions or the superposition of elementary
solutions. Such techniques can simply not be car-
ried over into the study of chromodynamics.

In spite of the difficulties, there has been a great
deal learned about the classical equations of motion.
For example, Coleman ' has demonstrated the ex-
istence of plane-wave solutions. In addition, the
self-dual sector of the theory, where

(3.1}

has been extensively studied utilizing the special
topological properties of the solutions. There has
also been a lot of special interest in generalizations
of Coulombic solutions and in solutions with the
configuration of magnetic multipoles. We are now
interested in looking for a completely new type of
solutions, those with field configurations consistent
with gluon condensate in the vacuum.

For the analysis in this section, we will take the li-
berty of making extensive simplifications to QCD.
The first simplification involves the neglect of fer-
mionic degrees of freedom. Thus, strictly speaking,
we will be dealing with gluon dynamics rather than
chromodynamics, with all the influence of fermions

Ga Ga,P (gaga EaEa) (3.5)

grA4 ——r,f(x},
grA =P;,P(x) g;, [I——a(x)],

(3.6)

where r; is the unit vector in the radial direction and
x =r lr0. The tensors in (3.6),

y(. (rir". 5,, ), — — (3.7a)

~~ ~I'a =&aH~( (3.7b)

have both group indices (a =1,2, 3) and three-space

we can represent a vacuum with gluon condensation
in terms of real fields. We postpone, for the present,
the interpretation of the continuation back into Min-
kowksi space. A final simplification will be to look
for solutions which are time independent and
display the gauge-theory version of spherical syin-
metry. By this we mean that vectorial objects either
point in a fixed direction and depend on the magni-
tude of the radius or they exhibit an angular depen-
dence in such a way that the radial asymmetry can
be compensated by a local gauge transformation.

Incorporating the simplifications mentioned
above, we follow closely the formalism of Mathel-
itsch, Mitter, and Widder and of Jacobs and Wud-
ka.2 Working in the class of gauges with r;A =0,
we parametrize the vector potential in the form
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indices (i =1,2, 3). The gauge condition guarantees
that the component of A proportional to

AA
pea ~i ~a (3.7c)

vanishes. The current induced in the medium will
be parametrized,

grp J4=~arI(x)

grp3j =p;, u(x)+p;, v(x)+Q;,p(x) .

(3.8)

With these definitions, the Yang-Mills field equa-

tions

(3.9a}

where

(3.9b)

Db g g&b g~&&g&
P (3.10)

can be reduced to the system of ordinary differential
equations

detail in Refs. 25 and 26. For the special case of
vanishing magnetic sources, v =p=v=0, they have
also been studied in Refs. 27 and 28. However, the
analysis in these papers concentrates on "particle-
like" solutions. These are localized solutions with
finite

E,= —, I d x(E Eg'+B B ) . (3.15)

This is a completely natural constraint within the
framework of classical dynamics. However, it is not
a constraint which would be satisfied by a model of
the vacuum involving gluon condensation. As men-
tioned earlier, if we are to take seriously the argu-
ments of Savvidy, ' Fukuda and Kazama, ' or the
phenomenology of Shifman, Vainshtein, and Za-
kharov' as discussed in Sec. II we must relax this
requirement. Since the equations of motion are non-

linear, this involves more than merely superposing
localized solutions. Our approach to the equations
will not be dynamical. That is, we will not be using
the equations to see how localized sources interact.
Instead, we will try to construct global solutions
with certain desirable properties.

(f xf')'+ —f(a +P—)=x2q,

2(aP' —Pa') =x u,

a"+ (1 a P f—) =——xv—,
X

P"+ (1 a P f—) = ——xp—,
X

(3.1 la)

(3.11b)

(3.11c)

(3.11d)

Transverse solutions

It is not immediately obvious what set of classical
charges leads-to a physically "interesting" model for
the vacuum. To find out, we employ some extra
constraints. One possible constraint which can lead
to some interesting features is the requirement that
E and 8 be transverse to p;, . That is,

where the primes denote derivatives with respect to
x. Because of the antisymmetry of the field tensor

6&„, the current must satisfy the covariant diver-

gence relation

f xf' =0, —

a +P =1.
This gives f=cx and (3.11a) becomes

(3.16}

(D„j„)'=0 (3.12)

xv'+2v +2(va —p p) =0 . (3.13)

With the parametrization above, this gives the con-
straint

2c =q(x) .
X

(3.17)

To keep correspondence between electric and mag-
netic charges we can also assume v(x) = —2'/x so
that

In order to understand the properties of a possible
gluon condensate, it is useful to have explicit expres-
sions for the color electric and magnetic fields. Re-
calling the assumption of time independence, it is
straightforward to show

a(x) =sincox,

p(x) =coscox

and Eqs. (3.11c) and (3.11d) become

(3.18)

gr'E.' =p,.(f xf')+0;.(af) A—.(Pf), —

(3.14a)

(co +c )a=xp,

(co +c )p=xv
(3.19)

gr B,' =p;, ( I a P}+P;,(—xa')—
—f;,(xp') . (3.14b)

Solutions to Eqs. (3.11) have been studied in some

so that (in this solution) the "induced" currents pro-
portional to the transverse tensors are linearly relat-
ed to the fields. Replacing x =r/r p and introducing
0 =N /rp, C =c/rp we can write the electric and
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magnetic fields in the simple form

E,' =—[P;,sin(Qr) —g;,cos(Qr) ),
gr

B,' =—[P;,cos(Qr)+g;, sin(Qr)] .
gr

(3.20a)

(3.20b)

Euclidean invariance requires C =Q. In this simple
solution, both E,' and 8 have magnitudes which
fall like 1/r and both rotate transversely in three-
space and color space with a period Q =

~
grB/v 2

~

'proceeding radially from the origin. Because

would interact very weakly so that the directions in
group space and three-space of each "condensation"
site are approximately independent.

Constant sources

In the solution discussed we were forced into the
artifice of putting together solutions with different
origins. Since the condensate density followed the
1/r density of q(r/rp) and U(rlrp), this suggests
that we choose constant sources,

oo(R) = * f 4nr dr(G&„G&„)(r),

20oo(R}= R .
(3.23)

(3.21)

there is no special topological charge in the field
configuration. The gauge-invariant combination

2Q
(3.22}

g 2r 2

The amount of condensate contained in a sphere of
radius R

q (x )=2crp

U (x)= —2iprp2 .

Equations (3.11a) and (3.11b),

(f xf')'+ —f(a'+P—') =2crp'x',

2(aP' —Pa')= 2mrp x—

permit the ansatz

f(x)=cx,
a(x}=rpx sincox,

P(x)= rpx coscox,

(3.28)

(3.29)

(3.30)

Since the value of G depends on the choice of ori-

gin, this trial solution does not immediately provide
an acceptable model of the vacuum. However, we
can achieve translational invariance with a "dilute"
gas of such fields. Since the trivial vanishing field
configuration also provides an acceptable solution to
(3.11) we can terminate this solution at radius R (at
the expense of introducing 5-function terms into the
sources). A- volume of three-space filled with a den-

sity p=n/L of these condensation centers would
have

E =—(P;,sinQr —P;,cosQr),

0 1 1—n.i 2 ~giar

(3.31}

1
+P;, cosQr+ sinQr

1+ g;, sinQr — cosQr
Qr

so that the color electric and magnetic fields can be
written

oo —— Q (RL ). (3.24)
where, as before c =cIrp and Q =co/rp This gives.

QR »2m .

These two requirements are consistent if

n»2+0~'~4,

(3.26)

(3.27)

This corresponds to a dilute gas if the total volume
filled by the spheres is small,

8 R «1.
3

(3.25)

The equations of motion provide a nontrivial can-
straint if there are many oscillations of the fields
within each sphere,

—,[(E E )+(B B )]=-,
g r

0+C
g

2
(3.32)

Because of the 1/r singularity, this density is not
integrable over 4m.r dr and cannot be used directly
as a model for the vacuum in a region containing
the origin. It is also important to observe that, un-
like the transverse solutions discussed earlier, there
is a value

and a dilute ensemble of such field configurations Eaga
l l gr

(3.33)
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associated with these fields. We therefore seem to
have topological charges imbedded among the elec-
tric and magnetic charges in this solution.

=x sincox, x )1,
P(x)=coscox, x &1

=x coscox, x 0 1 .

This can be generated by

q(x)=, x &1
2c

X

(3.34)

=2c~ x)1 ~

2NU(x)= —,x &1
X

= —2'~ x+1

xp(x)=(co +c }sincox, x &1

=(co +c +1—1/x )x sincox

—2N cosNx, x & 1,
xv(x)=(co +c )coscox, x &1

xv(x)=(co +c +1—1/x )x coscox

+2cosincox, x & 1 .

(3.35}

In addition, the sources defined at x =1 contain 5
functions not explicitly shown. This matchup gives
the field strengths of (3.20) (x & 1) and (3.31) (x & 1)
and the condensate density

(E;E; +B;B; )=— , r &ro
4m. 2 2m. r

0 1 1——1
2~2r2 4~2 r4

r & ro (3.36)
so that we can arrange in this manner to have an
"almost" constant value of the gluon condensate.

Wilson loops and classical confinement

The above preliminary exercise was instructive in
showing how the equations of motion can be used to

The patched solution

We can combine the features of the two solutions
above by patching them together at x = 1 (r =ra) to
give

f(x)=cx,
a(x)=sincox, x &1

construct a "medium" with specific chromodynamic
properties. We are not going to pursue these partic-
ular solutions further because they lack one property
believed to be crucial in understanding the QCD
vacuum; they do not confine.

To understand the concept of confinement in this
type of classical approach where there are no "quan-
ta" to play the roles of quarks and gluons we can
borrow from the work on other nonperturbative ap-
proaches and simply form a closed loop from the
classical fields

W"(s)=p'g f A,"dl& . (3.37)

(3.38)

For the solutions discussed above (3.16), (3.30), and
(3.34), f(x)=cx and the classical loop vanishes.
This means that a medium constructed from a set of
classical charges leading to these field configura-
tions would have little in common with a "confin-
ing" vacuum. In order for the radial loop to have
an area-law behavior, we must have f(x)=oxi so
that

W"(r) = (r2 —r i )T
ro

CT

2
(area) .

ro
(3.39)

We can use this requirement to construct model
solutions to the equations (3.11) which display clas-
sical confinement.

Classical confinement by static magnetic charges

One of the most persistent attempts to understand
the dynamics of confinement involves the "dual
Meissner effect."" The idea is that the QCD vacu-

This is a gauge-invariant but path-dependent func-
tion of the classical fields. If the function W grows
linearly (or faster} with the area of the surface, then
we may say we have a "classical" version of confine-
ment where two hypothetical test charges whose
own fields can be neglected would experience a
linear confining potential. If the fields give a
behavior which depends more slowly than linearly
with the area, then we have the classical version of a
nonconfining medium. With the gauge choice
r;A; '=0 and the assumption of time independence, it
is particularly convenient to evaluate the loop with
two radial legs and two time-directed legs,

W"(r) =g [24(r2) —A4(ri)]r, T

1 1f(r2/ro—) —f(ri/ro)—
r2 r)
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um is full of mobile magnetic charges which repel
electric flux in much the same way as the mobile
Cooper pairs in a superconductor repel magnetic
flux. We will not go into any detail concerning the
origin of this idea but it does suggest the possibility
of "constructing" a vacuum from source configura-
tions with q (x) =0. If we insert the "confining" an-
satz

E = [—p;, +P;,sin( —,lx )
gfp

—11;,cos( —,lx )],

8 = [P;,cos( —,lx )+g;,sin( —,lx )] .
gfp

(3.48)

f(x)=ox

into (3.11a},we get

(3.40)

E'E'=8'8' (3.49)

The stronger requirement of generalized Euclidean
invariance

2ax(a +P —1)=x q(x) . (3.41)

For the static electric charge distribution to vanish,
we must have a +P = 1, which can be
parametrized in the form

a =sin[co(x)],

P =cos[co(x)] . (3.42)

With this parametrization, Eq. (3.11b) becomes

X
co(x)=—I u (x),

2
(3.43)

where the choice of an integration constant involves
a boundary condition. The two equations for the
transverse sources can be written in the form

gives 3o =2l2 so that everything is specified in
terms of the parameter 0 which gives the coefficient
of the area-law behavior for Wilson loops in Eq.
(3.38),

0G ——(vac
~
(a, /n }G&„G&„~vac)

3 0' 3
( 8',i/A)

4m rp 4m
(3.50)

0/ru ——0.45 GeV (3.51)

This equation can be used to test whether we have
constructed a reasonable model for a confining vac-
uum since it relates two, otherwise independent, ob-
servables. Inserting the value

CT X +N tl—N a
co 0' x +co P. (3.44)

such as is found in SU2 lattice calculations gives a
value

oG ——0.015 GeV (3.52)
which shows that everything is determined in terms
of u(x) and 0. Inserting this solution into (3.14)
gives

E = [ p;, +P—zsinco(x) —P;,cost@(x)],
g~o

8 = — [P;,costa(x)+P;, since(x)] .xu(x)

2' p

(3.45)

An interesting feature of this solution is that the
magnitude of E does not depend on position. The
color electric field merely rotates in position and
isospin space so that

2

E E = I 1+2[sin ru(x)+cos co(x)] Jf ~o
(3.46}

is independent of position. We can also have 8 8
independent of position if we choose

—xu(x) =2l,
(3.47)

co(x)= —,lx
1

so that

which is consistent with the value (1.3) found
phenomenologically by Shifman, Vainshtein, and
Zakharov. ' However, since we are neglecting fer-
mions and dealing with SU2 rather than SU3 it is
not clear that this numerical agreement is signifi-
cant.

It is important to observe that the solution (3.48)
has E 8 =0 so that we are not introducing any
topological charge. As is obvious from comparison
with earlier solutions, it is not trivial that this naive
construction should result in an expression for
(E E +8 8 ) which is independent of position. In
fact, , the fields (3.48) have three properties: (1) area
law for classical Wilson loops; (2) no static color
electric charges; (3) E E,'+8,'8,'=const, widely at-
tributed to the QCD vacuum. The fact that a non-
linear set of equations admits a solution with this
much in common with our naive expectations is
highly encouraging.

IV. DISCUSSION

We found, in Sec. III, that the classical equations
of motion for SU2 gluon dynamics admit solutions
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which have the characteristics of an extended medi-
um. Within the limitations imposed by our simpli-
fying assumptions, it is important to ask if these
solutions can be useful in constructing a quantum-
field-theoretical understanding of the physical vacu-
um. In this regard, it is interesting to examine the
algorithm proposed by Nielsen and Olesen for con-
structing the Copenhagen vacuum.

As mentioned in the Introduction the starting
point for the construction of the Nielsen-Olesen vac-
uum is the Savvidy ansatz, ' a state with

Gi2 ——H3 (4.1)

and all other components vanishing. Direct substi-
tution shows that this satisfies

(D"Gq„)=0 (4.2)

since both the commutator term and the derivative
vanish separately. As pointed out by Ambj@rn and
Olesen, 5 however, this solution is not stable against
the addition of small fluctuations. The construction
of Nielsen and Olesen systematically "improves"
the approximation in several steps while retaining
the property Gz„G'""&0. The enumeration of
these steps proves to be instructive.

Step 1. The linear instability in the classical equa-
tions is used to give the field some spatial depen-
dence,

Gig HI 1 —2exp——[—gH(xi +xi')/211 (4.3)

2m

gH
(4.4)

At this stage the color field is still strictly magnetic.
Step 3. Nielsen and Olesen then formulate an esti-

mate of the fluctuations of the centers of the fiux
tubes. They find

(xi —(xi))8=, &02 (4.5)

which strongly suggests that the medium construct-
ed from these flux tubes is more akin to a classical
liquid than to a solid. They conclude that the lattice
constructed in step 2 does not remain fixed in place
but undulates. The time fluctuations of the magnet-
ic fields at this stage of the construction generate
color electric fields.

so that the field configuration corresponds to a flux
tube of radius r =(21n2/gH)'~ surrounded by an
infinite return yoke. It is at this point that the
model starts to develop domain structure.

Step 2. The construction of the model proceeds
by filling the xi-xi plane by a lattice of flux tubes
separated a distance

' 1/2

Step 4. The bending of the flux tubes in the direc-
tion orthogonal to the x ~-x2 plane is taken into ac-
count.

Step 5. Tunneling and fluctuations of the domain
walls are taken into account. More electric fields
are produced at this stage.

Step 6. Statistical averaging over directions in
three-space and in color space are used to finally
produce a state which is a Lorentz and color scalar.

These steps in this construction are outlined here
to demonstrate how far away one must go from the
original starting point of a constant magnetic field
in order to generate an acceptable model for the
QCD vacuum. It is notable that one requirement
for Lorentz invariance, E; E = BB,—is not
directly addressed in the construction since electric
fields are only generated as quantum fluctuations
while the magnetic fields are treated classically.
Equally important, once past step 2 in the algo-
rithm, there are no longer explicit expressions for
the field strengths. This means, for example, that
the question of whether the vacuum constructed in
this manner actually confines color charge has to be
dealt with using indirect arguments about the ran-
dom nature of the flux.

We will not be able to go into detail here about
the steps which must be taken to generate a compar-
able quantum model of the vacuum starting from
one of the classical solutions generated in Sec. III.
It is to be hoped that the construction is less in-
volved since the starting point has more in common
with the physical state we are trying to describe.
The formalism for quantizing a non-Abelian gauge
theory using fluctuations around an arbitrary back-
ground field has been discussed recently by Ambjisrn
and Hughes and by Horibe and Hosoya. It ap-
pears that the methods developed can be applied to
the solutions to the field equations represented in
Sec. III.

In analogy to the construction of Nielsen and
Olesen, one of the most important things to do is to
investigate the classical stability of the solutions to
the equations under the addition of small fluctua-
tions. This can be done in several different ways. A
first approximation might involve leaving the classi-
cal sources fixed and varying only the fields around
these classical values. It is not clear, however, that
this is the most appropriate approach to the stability
problem so we will not go further into the question.

One problem which merits some study involves
the interpretation of these solutions once the con-
tinuation is made from Euclidean space to Min-
kowski space. The appearance of imaginary values
for the vacuum expectation of "classical" fields is
certainly disconcerting. It is not clear that the con-
straint
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(vac
~

B B [ vac) = —(vac
~

E E
i
vac) (4.6)

should necessarily be imposed at the classical level.
The solution found by the Copenhagen vacuum
which ignores electric fields except those generated
by fluctuations in the magnetic fields provides room
for simpler classical interpretation but makes it dif-
ficult to deal with the issue of confinement through
the introduction of classical Wilson loops.

Finally, it is obviously important at some point to
go back and study the properties of a system which
includes fermions in a proper way. Sources which
yield E B +0 must be examined in a more careful
manner in conjunction with the problem of chiral-
symmetry breaking. The general question of the

vacuum structure of non-Abelian gauge theories
provides an interesting starting point for many other
problems.
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