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The infrared behavior of four-dimensional quantum chromodynamics at finite tempera-

ture and chemical potential is examined within the context of perturbation theory. The
reduction to an effective three-dimensional theory of the Yang-Mills field coupled to a mas-

sive adjoint scalar field is explicitly shown to occur at the one-loop level. A renormalization

scheme especially appropriate for the reduction is exhibited. By working in a general

Lorentz-covariant gauge, the (well-known) one-loop electrostatic mass is shown to be gauge
invariant. Infrared divergences at the two-loop level indicate the need for a nonperturbative

treatment of the effective theory; their gauge dependence implies that the naive method for
computing the electrostatic mass in covariant gauges is invalid beyond one-loop. Further
analysis is carried out in a class of gauges ("static gauges") that are particularly well suited

for finite-temperature calculations. The systematic construction of the effective theory is

outlined, and performed in a static gauge. At distance scales beyond the electrostatic

screening length, pertinent to an investigation of possible magnetostatic screening, the effec-
tive theory simplifies further to pure three-dimensional Yang-Mills theory with coupling
T' g (T). This implies that the leading-order magnetostatic mass gap must be proportional
to g2T.

I. INTRODUCTION

Hadronic matter, when subjected to sufficiently
high temperatures and/or densities (such as might
occur in astrophysical processes or in heavy-ion col-
lision experiments), goes into a phase where its
colored constituents (quarks and gluons) are no
longer confined. While the nature and details of this
deconfining phase transition are not yet completely
understood, the existence of the quark-gluon plasma
phase is widely accepted. We shall, therefore, as-
sume the qualitative phase diagram shown in Fig. 1.
(T, -200 MeV -2)&10' 'K, )Lt, corresponds to
several times nuclear density. ) We choose to work

p, (Chemical potential)

Quark - 6luon
Plosmo .

(Tem peroture)

FIG. 1. Phase diagram for hadronic matter.

well above the phase transition (so that its details are
irrelevant) and shall concern ourselves with the
properties of the quark-gluon plasma in thermo-
chemical equilibrium with its environment. Such a
system is described statistically by the grand canoni-
cal ensemble, and we shall adopt quantum chromo-
dynamics as the underlying field theory. Thus we
are led to examine the properties of four-
dimensional QCD at finite temperature and chemi-
cal potential (QCD4r„). '

It is interesting to coinpare the QCD plasma with
the QED plasma. The case of QED&r& is well
known: Only magnetostatic correlations persist
over long distances; fermionic and nonstatic elec-
tromagnetic fluctuations are thermally damped out,
while electrostatic fields undergo Debye screening.
Since photons have no self-interaction, the static,
long-range smtor of the theory is trivial. Perturba-
tion theory is completely applicable to QED4r„.

Unlike its Abelian counterpart, however, QCD4r„
is plagued by severe infrared divergences in the per-
turbation expansion. To some extent these are cured
by the chromodynamic analog of the Debye effect:
screening of static (chromo-) electric fields. Also,
fermions and nonstatic (chromo-) electromagnetic
fields are thermally damped out over large distances.
The problem is with the static infrared (chromo-)
magnetic sector of the theory: it is highly nontrivial
and nonperturbative, on account of the self-
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interactions between massless gluons. It seems like-
ly that this nonperturbativity implies the generation
of a mass. It is unclear whether this mass is a
Debye-type screening mass or whether it corre-
sponds to a bound-state (glueball) mass gap, or even
whether these are distinct, mutually exclusive
choices. What is clear is that the singular properties
of QCD4z& warrant further investigation.

Indeed, there has been much recent interest in this
topic: analytical studies' ' as well as numerical
Monte Carlo computations have been carried out.
Common to most of the analytical investigations of
QCD4z& is the working hypothesis that the leading
infrared behavior of the theory is completely
described by an effective Lagrangian, which is essen-
tially that of Yang-Mills theory (pure, quarkless
QCD) in three Euclidean dimensions (QCD3). This
phenomenon, which we call "dimensional reduc-
tion", can be viewed in the context of the decou-
pling theorem: The nonstatic modes of QCD4z„are
suppressed in the infrared, their only effect being to
renormalize the input parameters (coupling con-
stants, masses) of the effective theory. Note that
QCD3 is itself ultraviolet finite. (Being superrenor-
malizable, it can have at most ultraviolet mass re-
normalization; however, gauge invariance prohibits
even that from occurring. )

This paper has two main objectives: firstly, to ex-
plicitly demonstrate dimensional reduction in

QCD4z& at the one-loop level of perturbation theory.
This is done in Sec. II, where we compute the one-
loop covariant-gauge gluon propagator at finite tem-
perature and finite (quark) chemical potential, in the
static limit. We show that maximal decoupling of
the nonstatic modes can be achieved through a prop-
er choice of renormalization constants. As a by-
product of the calculation, we establish the gauge in-
variance of the one-loop electrostatic mass. The
infrared-effective one-loop theory that emerges is
QCDi coupled to a massive adjoint scalar field (the
electrostatic field) which we call extended QCD3
(EQCD3).

Our second goal is to see just how far we can go
with a perturbative treatment. This is the subject of
Secs. III and IV. In Sec. III, we examine the two-
loop covariant-gauge gluon propagator (which also
contains information about one-loop coupling-
constant corrections) and find gauge-dependent in-
frared divergences. These indicate the breakdown of
naive perturbation theory, due to the perturbative
expansion of the effective theory. They also indicate
the gauge dependence of the naive covariant-gauge
electrostatic mass beyond one-loop, making covari-
ant gauges inconvenient for further calculations. In
Sec. IV, we abandon covariant gauges in favor of a
more convenient class of gauges and propose a

scheme for constructing the effective theory wherein
the renormalization effects of the nonstatic sector
are computed perturbatively, free of infrared diver-
gences. The definition of EQCD3 is broadened to
include a quartic self-interaction for the adjoint sca-
lars. In the far infrared these massive scalars decou-
ple from EQCD3, which then simplifies to yield
QCD3 as the effective theory.

Our main results and conclusions are recapitulat-
ed in Sec. V. Notation, Feynman rules, and some
computational details are presented in Appendix A.
In Appendix B, we consider the effects of colored
scalars on dimensional reduction. We find that a
finite chemical potential for scalars leads to an-
tiscreening effects but, provided these are not too
large, dimensional reduction goes through as before.

II. THE ONE-LOOP CALCULATION

Consider QCD4rz in the plasma phase. We shall
assume the validity of perturbation theory until it
breaks down at some loop order (by the occurrence
of infrared divergences). Thus we are not too con-
cerned with the size of the coupling. However, for
the sake of rigor, we may take (T,p) to be suffi-
ciently large. Then the coupling is small and we can
also neglect quark masses. (Their inclusion would,
in any case, only improve our results. ) Since we are
interested in the collective behavior of the plasma,
which involves the long-range properties of the
theory, we shall focus our attention on infrared
(momentum transfer

~

k
~

small compared to tem-
perature T) correlation functions (propagators).

At the classical (tree-graph) level, only zero-
energy bosonic modes ("static modes" ) propagate in
the infrared; fermionic and finite-energy bosonic
modes ("nonstatic modes" ) are suppressed by factors
of —

~

k
~

/T . The surviving propagators are thus
those of the static A4 field ("electrostatic potential" )

and the static A; field ("magnetostatic potential" );
thus the effective infrared theory is EQCD3 (where
the A s play the role of the Yang-Mills potential in
three dimensions and the A4 appears as a scalar,
transforming under the adjoint representation of the
gauge group, which is massless at the classical level).

Quantum corrections to the classical theory in-
volve an infinite sum over nonstatic modes. Does
dimensional reduction continue to work? To answer
this question, we shall calculate the one-loop correc-
tions to the covariant-gauge static gluon propaga-
tors. We shall find that, in a suitable renormaliza-
tion scheme, dimensional reduction works even
better at this level. The only effect of the nonstatic
sector is to renormalize the input parameters of the
static, three-dimensional sector. Thus, at this order
in perturbation theory we see finite-mass generation
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for the A4 field ("electrostatic or Debye mass") and
wave-function renormalization. The A; field
remains massless.

We define the parameters of our calculations as
follows (details of the calculation will be found in
Ref. 8; for notation, Feynman rules, etc. , see Appen-
dix A):

SU(N): Gauge group,
Nf. Number of quark flavors,
p). Chemical potential for flavor f= I, . . . , E&,
T: Temperature,
B: Dimension of spacetime, D —+4,
A: Scale of dimensional regularization,

Covariant-gauge parameter .

(&)is' Hap (k)

(a)

(Quark)

(Counterterm)

0 bj
, ob b(1) (k2)

(b)

FIG. 2. One-particle irreducible (1PI) self-energy dia-
grams at the one-loop level for (a) gluon and (b) ghost.

A. Gluon self-energy

The renormalized one-particle-irreducible (1PI) gluon self-energy (polarization tensor) II ti(k) is shown to
one-loop in Fig. 2(a). At finite T and p we find, in the static infrared limit (kz ——0, k~0), the following.

(i) Electrostatic mass and self energy-

N T k11„"'(k ) = —m, '+ g + g'T
~

k
~

O(
~

k
~

'/T'),
J ~

EQCD3 Nonstatic

where the electrostatic mass (squared) is given by

1 g2T2 g2 f
mE (N+ , NI) —— +—2g pI2F f—]

(ii) Magnetostatic self energy. -

II,',"(k)=(S,,—k, k, rk') 11'"(k'),

II'"(k )=[((+1)+10—2] +g T/ k(O(f k
/

lT).
64

EQCD3 Nonstatic

(iii) Gluon wave function renor-malization constant

2
Z3" —1 = —,[(3g—13)N +4' ] z +»—+&3

Nonstatic

where C3 is a constant containing g,N, N~ and is different for 1144 and II;)

B. Ghost self-energy

The ghost is part of the Yang-Mills field and, for
dimensional reduction to work, should behave simi-

larly to A;. Calculating the renormalized 1PI ghost
self-energy b(k ) to one-loop [Fig. 2(b)] at finite T
and p, in the static limit, we find that this is indeed
the case,
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&(k )= +g'T/k [O(/ k /'/T')
16

EQCDs Nonstatic

2

Z3 —1= 3V —— +ln —+C3
-(i)

2 16~' D —4

Nonstatic

where C3 is another constant, which depends on the
parameter g.

C. Comments

(i) The result of a typical self-energy computation
is of the form

m.(k )=F(k ) —k (Z —1),

wave-function renormalization (Zi,Zi); otherwise,
their contribution is suppressed by a factor
-(

~

k
~

/T) . [In an arbitrary renormalization
scheme, the suppression factor is

~

k
(
/T »(

~

k
~

/T) .] Thus the leading infrared
behavior of QCD4r& is described by EQCDi.

(iii) Electrostatic (A4-A4) correlations acquire a
mass mE which is O(g). Both the mass and the
electric self-energy are manifestly gauge invariant
(i.e., g independent). The corresponding Debye
screening length is lE

—=mz
(iv) Magnetostatic (A; —AJ and ghost) correlations

remain massless to this order. Examine II'"(k ),
the magnetic self-energy. The contribution
-[((+1)+10] comes from pure QCDi, while the
electrostatic field (i.e., the "E"' part of EQCDi} con-
tributes -(—2). If the electrostatic mass were to be
resummed, then in the far infrared (, ~

k
~

&&m@) the
electrostatic contribution to II"'(k ) would also be
nonleading and the effective far-infrared theory
would be pure QCDi, as described in Ref. 4.

where ir is generic for 1144, II, or b and where r7, the
result of the loop integrations, contains ultraviolet
infinities that are removed

gaia
Z. At T=p=0,

ir(k ) typically contains a ink term; at T/p&0, the
logarithmic dependence is cut off by the Tlp, scale.
(We have assumed p & T; for )M » T, )M replaces T in
the lnT/A (erm for the fermionic loop. ) This ab-
sence of ink is crucial for dimensional reduction to
work effectively. ir(k ) in the infrared approxima-
tion is then of the form

+k )=7ioT +F(T
~

k
~
+52k +O(k /T ) .

We renormalize by setting (Z —1)=ir& i.e., by sub-
tracting off all terms proportional to k in the self-
energy; we call this scheme "maximal decoupling"
(MD}, since it minimizes the effects of the nonstatic
modes. The renormalization constant thus contains
some pieces additional to the minimal-subtraction
pole at T=p=O. In accordance with the breaking
of manifest I.orentz invariance at finite T/p, the
MD renormalization constants for electrostatic and
magnetostatic gluons are different. The scale
parameter A is to be chosen to be appropriate to the
renormalization of the coupling constant; we expect
A-T corresponding to a renormalized coupling
g(T) (see Sec. IV).

(ii) We have split up the contributions to the self-
energies into EQCDi and nonstatic parts. In the
EQCDs part we include renormalization effects of
the nonstatic modes. %e see that the only leading
effect of the infinitely many nonstatic modes is a
finite mass renormalization (mE ) and infinite

III. BEYOND ONE LOOP: INFRARED
DIVERGENCES AND GAUGE DEPENDENCE

44
;~ob ~(2) (k) (a) (b)

1+ 2

+ (IR finite graphs)

(e)

(c)

FIG. 3. Two-loop contribution to II~(k), showing
infrared-divergent graphs.

The one-loop calculation revealed the general
scheme of dimensional reduction: Except for renor-
malization effects, the infrared contribution of non-
static modes is suppressed relative to the leading
contribution, which is given by an effective three-
dimensional theory. In a suitable renormalization
scheme, the amount of suppression can be maxi-
mized.

Naively, one might expect to be able to check this
scenario to all orders in g2. However, infrared
divergences (IRD's} begin to appear, preventing any
further analysis based on ordinary perturbation
theory.

To understand the nature and origin of these
two-loop IRD's, we shall examine the covariant-
gauge gluon self-energy II p to two-loops. More
specifically, we shall focus on the IRD's in the elec-
trostatic self-energy II44', the case of II',1

' being simi-
lar. It will be seen that the IRD's are a result of the
perturbative expansion of the static sector.
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A. Infrared divergences in II44'

The two-loop contributions to II44 are shown in
Fig. 3. To obtain the low-momentum behavior, we
examine them for IRD's, first at k+0 and then at
k =0.

At k4 ——0, k&0 we find that graphs 3(a) and 3(b)
have scaleless logarithmic divergences which vanish
under dimensional regularization. Thus,

4 ~2

11„'"(k),,= (NgzT)
k +mE2

d3q
X 4 II;; q =0

q

[dzq=d'q/( n2)'],

where II;;'(q )=2II"'(q ) ~
~ q ~, as determined

by the one-loop calculation of Sec. II. We have put
in an mz in one of the denominators to indicate
what would result if the Debye mass had been
resummed [this also trivially modifies the low-
momentum behavior of II"'(q ) according to com-
ment (iv) in Sec. II C]—there is no significant differ-
ence. Thus the low-momentum behavior of II44'(k)
is governed by the IRD's at k =0.

It is more convenient to do the k=0 calculation
in the Landau and Feynman gauges rather than for
arbitrary g. The results are as follows.

(i) Landau gauge (/=0). Graphs 3(a), 3(d), and
3(e} have no IRD. Graphs 3(b} and 3(c}have loga-
rithmic divergences, but cancel each other out.
However, the divergence in graph 3(b} is the same
scaleless one as in the k&0 calculation, and must
actually be set equal to zero. Thus we are left with

g=o
11„"'(0) = ,', (Ng'T)' f-

(ii) Feynman gauge ((=1). Graphs 3(a}—3(e) all

have logarithmic divergences which cancel out.
Again, on setting (b) =0 we have a surviving loga-
rithmic divergence. But in addition graph 3(a} has a
linear IRD which also survives. Thus,

II44(0} = —mE Ng T
d3 q

q

+ —,(Ng'T)' f
These divergences arise from a one-loop Debye

mass insertion in the A4 —A4 propagator and can be
removed by resumming such insertions, as is evident
from the following expansion of the resummed
propagator:

2
= z(1+mE /q )

1 1 2 ~2 —1

q +mE2 q

PlE 24+''' .
q q

The first term in the expansion creates the logarith-
mic IRD, the second term is responsible for the
linear IRD, and higher-order terms would make the
IRD's even more severe.

At k&0, the IRD's at k =0 translate into terms
of the form 1/( k

(
and ln) k ). In addition, one

has terms —T and —T
~

k
~

which come from the
nonsingular static contribution and the leading non-

static contribution; in the MD scheme, though, the
-T

~

k
~

term vanishes. These terms then consti-
'

tute the EQCD3 contribution. The rest we label, in

accordance with the one-loop calculation, the non-

static part. This nonleading piece must vanish as
k~0. A ower-counting analysis of the graphs de-

fining II4'4 indicates that after performing the MD
subtraction of terms proportional to k, the coeffi-
cients being

(Z3 ' —1)-N g +ln —+const

we are left with

[Nonstatic]-N g~O(
~

k
~

3/T) .
-+4

Purely nonstatic graphs contribute terms 0(k /Tz)
to [Nonstatic] as in the one-loop calculation; some
of the graphs with both static and nonstatic internal
propagators yield the nonanalytic 0(

~

k
~

/T)
terms.

To summarize, the infrared behavior of the two-

loop electrostatic self-energy is of the form

II'44'(k4 O, k)=N g +ST——ln +CT + N g T) k (0(( k
)

/T ),

EQCD3

where the coefficients A and 8, and perhaps also C,
are gauge dependent. The divergence of II~' as

, k —+0 can be avoided by resumming the one-loop
electrostatic mass; however, the k=0 IRD's are

Nonstatic

I

then converted into nonanalytic gauge dependent-
pieces, implying that II44 in covariant gauges does
not directly yield the electrostatic mass beyond one-
loop.
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B. Infrared divergences in II';J '

The IR behavior of the two-loop magnetostatic
self-energy has been extensively studied' '; here,
again, one finds gauge-dependent IRD's similar to
those above. These IRD's are only partly removed

by electrostatic mass resummation; a residual loga-
rithmic term remains. Perhaps this residual IRD is
the signal for, and is cured by, the generation of a
magnetic mass m~, in analogy to the role played by
mE in Sec. IIIA above. In perturbation theory,
m~ O——at one-loop, and so mM &g T. If mM -g T,
an infinite class of diagrams (of arbitrarily high loop
order) contributes to a given order in the coupling
constant. If ml &g T the situation is even worse:
the size of the contribution increases with loop or-
der. An equivalent manifestation of the breakdown
of perturbation theory is the blowing-up at small
momenta of the effective IR expansion parameter

g T/
~

k
~

. The only salvation of an expansion in
powers of g would thus be the nonperturbative gen-
eration of a magnetic mass ml-0(g")T, where
1 & n &2. However, as we shall argue later, n =2 is
required on dimensional grounds. Thus attempts to
modify perturbation theory by some sort of
magnetic-mass resummation are bound to fail, and
only a completely nonperturbative treatment can
work.

Attempts have been made recently to estimate the
magnetic mass numerically in finite-temperature lat-
tice gauge theory via Monte Carlo simulations. 5

While these studies indicate the presence of magnet-
ic screening, the statistics are as yet somewhat
crude. The reported value for the magnetic mass is
mM 0.24g (T)T.——The computations are performed
by using twisted boundary conditions on the lattice
to simulate the effects of a monopole-antimonopole
pair. It is not completely clear to us how this mag-
netic screening mass manifests itself in the context
of the gauge-dependent static gluon propagator.

C. Discussion

The lesson learned from this section is twofold.
First, we find that covariant gauges are inconvenient
for direct computation of physical quantities such as
the electrostatic mass. Therefore, if a more suitable
class of gauges can be found, we should abandon co-
variant gauges.

Second, we find the breakdown of perturbation
theory manifesting itself in the infrared blow-up of
II~p. The IRD's in II44.

' are completely removed by
resumming the electrostatic mass, but this only par-
tially cures the IRD's in II,'J'. Of course, these
IRD's are gauge dependent and one may consider
the possibility that a gauge-invariant computation

would be free of IRD's. We rind it hard to imagine
that the IRD's would continue to be gauge artifacts
to all orders of perturbation theory. Indeed, we ex-

pect gauge-invariant IRD's at higher levels due to
the appearance of gauge-invariant operators in the
operator-product expansion. Therefore, we shall
take the broader point of view and suppose that we
have genuine physical IRD's corresponding to possi-
ble nonanalyticities in the g expansion for physical
quantities such as the screening masses. Thus we
conclude that the necessity for a nonperturbative
treatment of the effective theory prevents any fur-
ther analysis of QCD4T„ in ordinary perturbation
theory.

Nevertheless, the same dimensional arguments
that 'led to the infrared suppression of nonstatic
modes at the classical and one-loop levels seem to
work at two-loops also, and should continue to ap-
ply to all orders, since there are no IRD's in the
purely nonstatic sector. Thus we fully expect di-
mensional reduction to be valid to all orders, and
shall continue our analysis on the basis of this ex-
pectation.

IV. PERTURBATIVE CONSTRUCTION
OF THE EFFECTIVE LAGRANGIAN

The leading infrared behavior of QCD4T„ is
described, as we have argued in the previous sec-
tions, by an effective theory in three Euclidean di-
mensions. This effective theory is defined to be the
static sector of QCD4T& modulated by the renormal-
ization effects of the nonstatic sector. The static
sector must be treated nonperturbatively; we do not
attempt such a treatment here. But since there are
no infrared divergences in the nonstatic sector, it
should be possible to perturbatively compute its re-
normalization effects. In the present section, we
sketch a systematic way of doing this.

The effects of nonstatic modes are of two kinds:
First, nonstatic modes induce effective interaction
vertices in the static sector. The electrostatic mass
generation at the one-loop level is the lowest-order
example of this. There is an infinite set of induced
vertices, corresponding to operators of arbitrarily
high order. However, higher-order operators are
heavily suppressed in the infrared and consequently
do not occur in the effective Lagrangian. (Note that
some lower-order induced vertices are just the non-
static corrections to existing static-sector vertices. )
Second, nonstatic modes produce wave-function
and vertex renormalizations in the original four-
dimensional theory. These give rise to coupling-
constant renormalization.

The temperature T and the renormalized coupling
g(T) are the two parameters in terms of which all
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bare interaction vertices of the effective theory can
be expressed. For example, the three-dimensional
coupling constant G and the electrostatic bare mass
parameter mo can be written

G=T'~ g(1+dig +Azg + ),
mo T——(Big +Big + ),

where 2;, B; are constants that can be evaluated per-
turbatively in a manner to be described below. In
practice it will only be necessary to compute the
first few orders. (Note that at lowest order,
mo ——mE and Bi N/3. F——or simplicity, we have
neglected the quark chemical potentials here. )

We now describe the general strategy for evaluat-
ing the infrared effects of nonstatic modes, based on
dimensional reduction. We shall temporarily in-
clude, in the effective theory, the entire infinite set
of induced vertices. Later on we shall decide which
of these we actually wish to retain.

Consider a one-particle irreducible n-point
Green's function with static external legs. Within
the effective theory, such a quantity can be split up
into two parts: An n-point bare vertex and an n-

point "blob." The latter, if perturbatively expanded
in the bare propagators and vertices of the effective
theory, would contain graphs of at least one-loop or-
der. Such an expansion would not in general be in-
frared finite. Now consider the perturbative expan-
sion of the same Green's function in QCD4r&. One
finds three kinds of graphs, depending on whether
the internal propagators are (i) purely static ("static
graphs"), (ii) static as well as nonstatic ("mixed
graphs"), (iii) purely nonstatic ("nonstatic graphs").

It is easily seen that in the infrared limit, the sum
of all static and mixed graphs is precisely the n-

point blob of the effective theory. (Dimensional
reduction allows us to ascertain the infrared effects
of nonstatic modes by shrinking nonstatic internal
propagators down to points. Thus it is seen that
mixed graphs are just static graphs built up from the
induced vertices of the effective theory. Together
with the static graphs they then constitute the per-
turbative expansion, within the effective theory, of
the n-point blob. } The remaining nonstatic graphs
define the n-point bare vertex of the effective theory
after including a factor of T"~ ' to make the di-
mensions come out right.

Thus, the interaction vertices necessary to define
the effective theory may be obtained by retaining
only the purely nonstatic graphs in the perturbative
expansion of static Green's functions in QCD4z&.
Furthermore, the nonstatic graphs for two- and
three-point vertices also provide the QCD4» renor-
malization constants necessary for computing the P
function and the running coupling constant.

We must now decide which vertices to retain in
the effective Lagrangian. We do this by comparing
the n-point vertex with the corresponding n-point
blob, using naive power counting to determine their
relative strengths. A vertex with n static external
legs is first induced at O(g"). If there are p momen-
tum factors in the vertex (i.e., p derivatives in the
operator corresponding to the vertex) each of scale

~

k ~, then the strength of the vertex is

V-g"T' "~i t'I k Ii' ~

The corresponding blob on the other hand arises, at
one loop, from a three-dimensional integration over
n powers of inverse momentum; the strength of the
blob is then

B-(T' g)"
i
k

i

Thus the "suppression factor" for the vertex, de-
fined to be its strength relative to the blob, is

Z =—V/B-(
~

k
~

n')" +' ' .

The actual suppression factor may be better than R
if the vertex is induced at a level higher than O(g").
In particular, one can have R =0 due to some sym-
metry.

At the classical and one-loop levels, we saw that
in a suitable renormalization scheme the suppression
of nonstatic modes was O(k /T ) or better. We
shall use this as our criterion for including induced
vertices, rejecting those with a suppres-
sion factor smaller than or of the order of
(

~

k
~

/T) . Thus we only retain vertices satisfying

n+p &5 .

(Note that for renormalizability of the effective
theory, one needs n/2+p (3.)

Based on this criterion, we reject vertices with five
or more legs. Consider vertices with n=4. We
must have p =0. Designating the electrostatic prop-
agator by E and the magnetostatic propagator by M,
the only vertices with p =0 are 4M, 2M-2E, and 4E.
The first two already exist at the classical level and
are related by gauge symmetry to three-point ver-
tices through the Ward identities for the effective
theory. The 4E vertex, on the other hand, is new
and must be computed. Next consider n=3 ver-
tices. 3M and 1M-2E vertices already exist at the
classical level; the nonstatic graphs represent correc-
tions to these. Because of gauge symmetry, only
one, e.g., the 1M-2E vertex, need be computed. The
other three-point vertices, viz. , 2M-1E and 3E, van-
ish by symmetry. Finally consider the two-point
vertices. The 2M vertex vanishes by gauge symme-
try. The 2E vertex yields the bare electrostatic
mass. The 1M-1E vertex vanishes by symmetry.
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We had previously defined EQCDi to be QCDs
coupled to an adjoint scalar field with mass. Let us
now broaden this definition to include a quartic
self-interaction for the scalar field. From the previ-
ous paragraph we then see that the effective theory
is EQCDs, which is superrenormalizable, needing
only mass renormalization for the scalar field. We
stress that the quartic term in EQCDi represents
higher-order corrections to the one-loop effective
theory of Sec. II, and is not needed for its renormal-
izability. Note that since there is no ultraviolet
mass renormalization in QCD4T„, the nonstatic
graphs defining the scalar mass yield the bare mass
mo ——m +5m, where 5m is the mass counter-
term. At one-loop in the dimensional regularization
scheme, 5m =0 and m =IE .

We summarize this section so far as follows. The
infra'ed properties of QCD4T„are represented, up to
O(k /T ) corrections, by EQCDi. The bare ver-
tices in the EQCDi Lagrangian may be computed by
perturbatively expanding the corresponding static
Green's function~ of QCD4T&, keeping only nonstat-
ic graphs. If k -g"T, then the expansion need
only be carried out up to corrections O(g"}.

The separation of static and nonstatic sectors is
very clean and elegant in a class of gauges known as
"static gauges", ' which are, therefore, particularly
suitable for our purposes. We shall briefly describe
the salient features of these gauges below, and then
outline some sample computations of the EQCDs
bare vertices. We end the section by concluding that
for distance scales beyond the electrostatic screening
length the effective theory simplifies further to the
three-dimensional theory of the pure Yang-Mills
field, QCDs.

details of gauge fixing in the static sector. There is
no nonstatic A4 —A4 gluon, and the nonstatic ghost
effectively decouples from the theory. There is no
mixed (A; —A4) gluon in either the static or the non-
static case.

Static gauges are particularly well suited for
studying the infrared properties of finite-
temperature QCD. Since T&0 breaks Lorentz co-
variance, nothing further is lost by choosing a gauge
which also breaks it in exactly the same manner.
Another such gauge is the more familiar Coulomb
gauge. However, static gauges are superior to the
Coulomb gauge for three reasons: first, the separa-
tion of static and nonstatic propagators is much
cleaner in static gauges. In the Coulomb gauge, the
presence of a nonstatic A4 —A4 gluon is an added
complication. Secondly, the additional gauge degree
of freedom in static gauges makes it possible to
study the gauge dependence of various quantities.
This is not possible in the usual Coulomb gauge. If
one tries to generalize the Coulomb gauge via a g
parameter, one introduces a mixed Az —A4 propaga-
tor which is physically undesirable. Thirdly, static
gauges afford an elegant means of resumming elec-
trostatic mass insertions in a gauge-invariant way':
There exists a gauge-invariant operator which, in
static gauges, reduces to the electrostatic mass term
—Tr(A4z). By adding such a mass term to the qua-
dratic part of the Lagrangian and subtracting it
from the interaction part, one can perform a gauge-
invariant resummation of the electrostatic mass in
perturbation theory. This cures the infrared diver-
gences arising in the electrostatic sector. The mass
is determined self-consistently by relating it to the
decay of gauge-invariant electrostatic correlations.

A. Static gauges

Static gauges are finite-temperature analogs of the
temporal (A4= iAO 0.—) gau——ge. At T&0, the con-
dition A4 ——0 conflicts with the periodic boundary
conditions and discrete energies required by the
standard finite-temperature formalism (see Ref. l,
pp. 47—48). Instead, one demands that A4 be time
independent (static), i.e., that 84A4 ——0. Additional
gauge fixing in the static sector is required to com-
pletely specify the gauge. The resulting Feynman
rules' are given in Appendix A3. We note that
there is an electrostatic (A4 —A4) propagator and a
magnetostatic (A; —AJ } propagator with a possible
static ghost depending on the nature of gauge fixing
in the static sector. The static Feynman rules are
thus those of EQCD& minus nonstatic renormaliza-
tion effects. The only nonstatic propagator is the
A; —AJ gluon, which is completely unaffected by the

B. Computation of the EQCDi bare vertices

EQCD& is the non-Abelian gauge theory in three
space dimensions of vectors (the magnetostatic po-
tentials) coupled to massive adjoint scalars {the elec-
trostatic potentials) with a quartic self-interaction.
Consequently, the EQCD& Lagrangian contains
three parameters: the gauge coupling G, the scalar
bare mass mo, and the scalar self-interaction a.
Since EQCDs is really the limit of QCD4T„, one can
express G, mo, and a in terms of the QCD4r„
parameters g ( T}, T and p (we shall usually omit ex-
plicit references to p for simplicity). This is done by
computing the relevant nonstatic graphs through
some perturbative order determined by the infrared
momentum scale, at small, static external momenta.

We illustrate the procedure by outlining the com-
putations of 6, mo, and ~ to one-loop order in any
static gauge. The relevant nonstatic graphs are
shown in Fig. 4. For our purposes it is not neces-
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~ ~ ~ ~ ~ f ~ ~ ~ ~ ~
2

~ ~ ~ + ~ ~ ~ ~ ~ ~ ~ e jk2 (Z ] )
(&)

2 (g) 2

2 Q
(o)

— l(k 8"-k. k )(Z"2'-~)

(b)

OI

~ "~"Qi ~"b, (:
k~ k~

.~ ~ ~ + — ~ ~ ~ ~ ~ ~ ~ + gf (k+ k ). {Z -1)
i A@

(c)

+ 2, permutatjons

b C

+ 5 permutations

+ 2 permutatjons

(d)
FIG. 4. pne-loop nonstatic graphs for (a) electrostatic self-energy, (b) magnetostatic self-energy, (c) A;A4 triple vertex,

aud (d) g quadrup]e vertex, yie]ding induced bare vertices of EQCD3 and renormalization constants of QCD4r&. (Quark
loops have been omitted for simplicity. )

sary to actually perform any of the computations,
since we can rely instead on previous results where
needed.

Graphs 4(a) give us the induced electrostatic mass
(already known from the covariant-gauge calcula-
tion of Sec. II} and also the electrostatic wave-
function renormalization constant Z@&. Graphs 4(b)

tell us that the induced magnetostatic mass is zero
at this level, and also yield Zz, . Graphs 4(c) give us

the coefficient A i in the expansion of G in powers of
g, and also the vertex renormalization constant

Z„@&. Finally, graphs 4(d) yield the leading value of
the quartic coupling ~.

%e now show that it is appropriate to use the
coupling g ( T), defined at scale T in a suitable renor-
malization scheme such as MD, a11 the way down to
arbitrarily small momentum scales. Consider the re-

lation of the bare coupling constant to the coupling
constant g (A) defined at scale A using dimensional
regularization,

gZP(4D)/2g(A)

where Zg is the gauge-invariant combination

—1/2 —1

A4 A2

Using the invariance properties of the lowest-order

P function and our knowledge of Zs at T =0, we
may write (without actually performing any compu-
tations) in the MD scheme

Z =1+ ( , E N&) —+—In —+constg 11 1 T
24

+o(g } .
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If we identify A with T we obtain the standard one-
loop P function, corresponding to the running cou-
pling constant

g'(T) = g'(To)

g'(To)» T1+
2 ( —,N —N/) ln

1277 p

where g(TO) is the experimentally determined cou-

pling constant at scale To. But if we vary A keeping
T fixed, the "P function" so obtained vanishes to
O(g ), i.e., the coupling constant does not run any
farther to this order. Thus g(A)=g(T), and the
value g(T) can be used even at vanishingly small
momentum scales.

In the MD scheme we have A
&

——0 (and, in fact,
expect A; =0 to all orders) since the renormalization
constant absorbs all constant pieces. Then

We have found that up to the one-loop level the
parameters of EQCD3 are mo =—m +5m =mE,2 2

G=T'~g(T), z-N g T. Depending on the in-

frared momentum scale at which the theory is to be
employed, it may be necessary to compute higher-
order nonstatic corrections to these parameters.
Typically, one would use EQCD3 as the effective
theory at distance scales on the order of the Debye
screening length, corresponding to

~

k
~

-mE-gT.
This means that in dimensionally reducing we
neglect corrections 0 (

~

k
~

/T -g ). For G and a,
the suppression factor is R —

~

k
~

/T-g; two-loop
corrections would therefore be O(g ) and need not
be computed. For mo, R —T/~ k

~

-g ' and so
the two-loop correction, which is O(g), must be
computed.

At distance scales beyond the Debye screening
length,

~

k
~

&&gT, EQCD3 becomes an even better
approximation to QCD4r„, and to fully exploit this
circumstance one would have to compute its param-
eters even more accurately. At such scales the scalar
of EQCD3 acts as a heavy particle which decouples
and so one also has the option of approximating
EQCD3 itself by a simpler theory, QCD3. Being ul-
traviolet finite, QCD3 has only one dimensional

Finally, consider the quartic coupling a. Ultra-
violet divergences in graphs 4(d) must cancel, leav-

ing a one-loop value for the vertex of the form
~N'g T(5~5b, +5,1,5,d+5«5bd ) From. this

we extract the value of a,

~-N2g 4T,

which on physical grounds we expect to be positive.

C. Distance scales and effective theories

parameter, its coupling constant G. Consequently,
the magnetostatic mass, if it exists, must be propor-
tional to 6 to leading order, i.e., m~-g T &&mE.
One is thus justified in using pure QCD3 as the ef-
fective theory appropriate to distance scales on the
order of the magnetic screening length. The correc-
tions to QCD3 from EQCD3 would then be
O(mM /I@ )-O(g ), which is the size of one-loop
corrections. Thus in the leading approximation it is
unnecessary to compute the QCD3 coupling con-
stant beyond the renormalization-group-improved
classical value of G =T'~ g(T).

V. CONCLUSION

The equilibrium behavior of the quark-gluon plas-
ma at high temperatures is characterized by at least
two distance scales. The first distance scale is the
inverse temperature P, which requires the use of the
full theory QCD4r&. The second scale is the Debye
screening length l@=m@ '»P. At distances on
the order of IE or beyond, QCD4r„may be approxi-
mated up to corrections O(mE /T ) by a dimen-
sionally reduced effective theory, EQCD3. The
parameters entering the EQCD3 Lagrangian can be
computed perturbatively through any required or-
der.

At distance scales l» lE, one can approximate
EQCD3 itself, up to O(lE /I ) corrections, by pure
QCD3 with gauge coupling T'~ g (T). The nonper-
turbativity of QCD3 is responsible for that of
EQCD3 and ultimately for the infrared divergences
that plague QCD4r&. It is of considerable impor-
tance to determine the implications of these
divergences —for example, whether they cure them-
selves by generating a magnetostatic mass m~, cor-
responding to a possible third distance scale, the
magnetic screening length l~=m~ '&&lE. As the
leading approximation to QCD4r& at this third dis-
tance scale, QCD3 is the natural starting point for
such nonperturbative investigations. Any mass gap
dynamically generated within QCD3 must be pro-
portional to the square of its coupling constant.
Thus dimensional reduction predicts that in the
leading approximation the magnetostatic mass, if it
exists, is of the order mM-Tg (T). To determine
the coefficient one must go beyond perturbation
theory.

QCD3 has bmn studied on the lattice via Monte
Carlo simulation"; again, there are indications of
mass generation but we feel the data are too crude to
be decisive. A computation with better statistics,
focusing on the question of magnetic screening, is
strongly urged. If a magnetic mass is obtained, it
would be interesting to compare it with the value
0.24g T obtained in Ref. 5.
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We conclude by noting that the program of sys-
tematic dimensional reduction in static gauges, out-
lined in Sec. IV, is equally applicable to the range of
theories mentioned in Ref. 6. (See Ref. 12 for a re-
cent calculation along these lines. )

a k

L~ob

kg
(Ghost)

(Quark)

;gob k&kp
[Sap +)4-)) e ] (Gluan)

k
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APPENDIX A: FEYNMAN RULES, ETC.

1. General formalism (Ref. 13)

aa

7C

q c

7C

4 [Sap )P-a)y + say)r)-r)a + Sya&r P)S]

R 3 g (~obe&cde+&ode&cbe)'g I. a7 P&

+$ re s) (foce fbde + fode &bce )oP

(f a)re
&

dce + )ace &due )]a8 Py

gT 7o
0

To obtain QCD4r„ from QCD, +s. (i) Perform a
Wick rotation to Euclidean space and impose
periodic (antiperiodic) boundary conditions in the
Euclidean-time direction for bosonic (fermionic)
fields, with period P—=T; this gives QCD4r, with
discrete Euclidean energies. (ii} Give these discrete
energies an imaginary component —ip,' the result is
QCD4r)d.

Thus, to go from the Minkowski version of the
theory to the grand canonical version make the fol-
lowing replacements:

—lkp~k4 =CO —lP,
k' —+k; (i =1,2,3),

where

n(2mT}: bosons and ghosts,

(n+ —,)(2n.T): fermions .

Euclidean y matrices are defined via

XO~ f4 p

(b)

FIG. 5. Feynman rules for QCDdr„ in the covariant
gauge. (a) Propagators. (b) Vertices. (c) Rules for loops
are (i) integrate and sum, iT g„f diq, (ii) ghost and fer-
mion loops get factor —1, (iii) single (double) gluon loop

1 1
gets factor 2(6 ).

(TaTa) C g faddfbdd C gab

For SU(N},
~ ~

lyJp ~ ~ a 1p ~ ~ ~ p g
a,b, . . .=1, . . . , (N2 —1),
CF=(N 1)/2N, C„=—N .

To perform the sum over discrete energies, the
standard trick of converting the sum into a contour
integral is used. Iff=f(q} is a function of the Eu-
clidean momentum q =—(q, q4), the Feynman integral
off at finite T and )M is defined as

[f]r&—:Tg I&sq f(q, ro„ip), — ,

and satisfy the relation

[ya, yp]=25 p (a,P=1,2, 3,4) .

Covariant-gauge I'eynman rules are shown in Fig.
5. Factors of i have been included to facilitate com-
parison with the corresponding Minkowski-space
rules. Group-theoretical factors are the same as in
the Minkowski version, ' in the usual notation,

where dsq =d q/(2n)s.
One can split up [f]rz into two parts:

tf3r) =[f]oo+~r„f . —

The "vacuum contribution"

[fin= I ~4qf(q» ~4q=~"q/(2~)'
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is just the Euclidean version of the standard
Minkowski-space result. All ultraviolet infinities
are contained in [f]m. The "matter contribution"

contains no ultraviolet infinities, and needs no regu-
larization. It can be represented as a contour in-
tegral,

p dsq g f . [f(q, ia —ip, )+f(q, i—a i—p)]

where the contours I and I z are shown in Fig. 6.
In this formula, as elsewhere in the Appendices, the
upper (lower) value —in this case the sign in the fac-
tor 1+e' —is for bosons (fermions).

(i)
—1

]+~X
= g X„x"-',

n=0

2. Certain Feynman intelrals
at finite T and p (Ref. 8)

To perform the one-loop calculation, we need to
compute hr&f for certain functions f(q)
parametrized by a static IR external momentum
k=(k, k4 ——0), where ~k~«T. To do this, we
first perform the energy sum via the contour in-
tegration formula of Appendix A 1. The angular in-
tegration over q is then carried out. This typically
leaves us with an integral over

~ q ~
of a product of

powers of
~ q ~, the Bose (Fermi) distribution func-

tion, and a logarithmic factor. The following series
expansions (and their derivatives) are useful:

QQ ~2K —1

(ii) —, ln = g (~'~ &1)
l —g, , 2r —1

The integral over
~ q ~

is obtained as an expansion
in

~

k
~

&T by dividing the integration region into
three parts: 0~~k~, ~k~-T, and T~&x& ~ The
appropriate power expansions are used in each re-

gion.
The following specific functions f(q) arise in the

one-loop calculation:

q'fi= , f2=—, -—, f2=
q (q+k) q2(q+k)2

k.q (k.q)f4= , -, —fs=
q (q+k) q (q+k)2
~2

g;=— 2 f; (i=1,2,3,4,5),k

~2
khj'— gj (j=2,3,4, 5) .

(q+k)

where

&,/n. 'and ~x
~

&2~(bosons),

(2"—I)&„/n'. and ~x
~
&. (fermions),

Integrals over f; are done for p=0 bosons (gluons)
and for fermions (quarks). Integrals over g; and h;
are needed only for gluons, and only for specific
combinations of g; and h;. The results are (upper
value is for gluons, lower value for quarks)

the B„being Bernoulli numbers

1

Bp ——1, B)————, ,

82 +, ——Oform=1, 2, . . . ,

1,
Ao —

0

T /12,
—(T /24+@ /8m ),

'T„f2='O +T[ki k ski
8 T

+O(k), Ao ——

0,

a plone

~ ~ ~

= Rea

.r„
FIG. 6. Contours for computing hpl4f.

br~f2 ——, hrqfi+ ln—T+O(k),
96

1

'T~f4= 2'T~f2—
1 1'Tpfs= 2'Tqfi+ 4'Tqf2

b T(gi —g2) = ln +O(k )
k /ki

8
1'T gs='Tf2 4'T(g i g2), —— —

1 1

'Tg4 2'Tf2+ 2'T(gi g2) ~
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1 1

~Tgs ~Tf2 ~T(gl g2)

bT(g2 —hs)=O(k ),
1

bT(g2 —Eh2)=25T(g2 —hs} t

1
b, Th4 ————,b, Th2,

1 1 1

~Ths 2 iiTf2+ 2 ij'Tgl+ 4 ~Th2 ~

(Note: For fermions, we have assumed (M & T. For
p » T, T is replaced by p, in the ln

~

k
~

/T factors. )

a (k o) b
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

a k b

I I

„,Sob
2

k

a (k,o) b
i J

a (k, kdbito)b
s aoaap$%RRa
I I

a (k, o) b &ob

2
k

[Ma()netostatic, iD() (k 0)]

t Non-static Gloon, (D)) (k, kerro)]

Static Ghost

(a)

3. Feynman rules for static gauges

Static-gauge Feynman rules are derived in Ref.
10; we rederive them here as a special case of the
general formalism of Ref. 14. We work with a Eu-
clidean metric, and Ao ——iA4.

Consider the four vector

A=( i A—,AB4} ~ i (A, A—k4)
k space

in terms of which the gauge-fixing and ghost terms
in the Lagrangian are

EWE= ——,(A~A~ )

aW,„,=~'tA„(a„~'+gf'"~„'~'},
where A& is the gluon field and 21' the ghost
field. By specializing A one obtains specific gauges.
(1,=1/V, A =k/Wg give covariant gauges; A, =O,
A =k/ g, )~0 gives the Coulomb gauge. )

Static gauges are obtained by letting A,~ DD. This
corresponds to setting 842 4

——0. We are left with an
additional gauge degree of freedom in the magneto-
static sector which is fixed on specifying A in the
propagators,

b c
~ ~ ~ ~ ~ ~ II ~ ~ ~ e ~ ~

k~ k~

b: c
%%%1O~lea~

ck

b c

9f (k+k')I

9f (2kdI) SIJ Sk k&
4 e

j92 g face fbde + fade fbce

(tt [Sl)(P r()k+S)k«-r)tekkt(r P)l]

I
2 I ~ I) (fabe fcde + fade fcbe)9 L Ik JI

(face fbde y fade fbee)
IJ I(I

+ it tt (tone idee + tace tdse)]+ II Jk

fabc

(b)

i5,b
iD~ (k) =—

2 5~J—
k

k;AJ +A;k)
k A

k(ki(A +k )
+ ''--,

(k A)

(static, spacelike gluon),

iG' (k)= i5,b/k A—
(ghost, couples only to above) .

The other propagators, like the vertices, are com-
pletely unaffected by the details of A. Thus it is
possible to do a certain class of calculations (e.g.,
nonstatic graphs} without even specifying A. How-
ever, in general we must specify A, which is entirely
analogous to fixing the gauge in EQCD2. A con-
venient choice is the O(3)-covariant gauge,
A=k/v g.

FIG. 7. Feynman rules for QCDdr„ in the O(3)-
covariant static gauge. (Rules for quarks are essentially
the same as for covariant gauges and have been omitted. )

(a) Propagators. (b) Vertices. (c) Rules for loops are (i)

integrate static loops: iT d3q, integrate and sum non-

static loops: iT g„+D f diq; (ii) ghost loops get factor

(—1); (iii) gluon loops get appropriate symmetry factors.

The Feynman rules for the O(3)-covariant static
gauge are given in Fig. 7. The nonstatic ghost effec-
tively decouples froin the theory so it has not been
included. [If desired, the electrostatic mass may
be treated self-consistently in a gauge-invariant~z ~2
manner by replacing k o(k +m ) in the electro-
static propagator; this creates an additional mass in-
sertion vertex im 5,b', see Ref. 10 for details. ]
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APPENDIX B: DIMENSIONAL REDUCTION
IN THE PRESENCE OF SCALARS

~r fi
fermions

T2 p2
24+ 8~

Remembering that fermion loops occur with an
overall ( —) sign, it is easily seen that mass terms
generated by a finite bosonic chemical potential have
the wrong sign. This "antiscreening" effect is due to
the attractive nature of Bose-Einstein statistics.

How does dimensional reduction work in the pres-
ence of )u&0 scalars? In the infrared
( j

k
~

&&p & T), the scalars themselves are screened

We consider here the effects on dimensional
reduction if, in addition to quarks, there are colored
scalars coupled to the gauge field. Unlike quarks,
scalars obey Bose-Einstein statistics and their propa-
gators contain static modes, so we expect qualita-
tively different behavior. Calculations bear out this
expectation.

Consider first the case where the chemical poten-
tial of a particular flavor of scalar vanishes. (This
would occur, for example, for an adjoint scalar
Yukawa-coupled to the quarks with a possible quar-
tic self-coupling in addition. ) The behavior of such
a scalar is clearly similar to that of the A4 field, in
the infrared limit. At the classical level, only the
static mode propagates; at the one-loop level it ac-
quires a screening mass. In addition, the electrostat-
ic mass is enhanced by the presence of scalar loops.
The effective infrared theory is thus EQCD& with
additional massive scalars.

Next, examine the case where @+0. For concrete-
ness, consider scalars of a single flavor transforming
under the fundamental representation, with quartic
self-interaction. The additional Feynman rules gen-
erated by such scalars are shown in Fig. 8.

We compute Ar& f; (see Appendix A2) in the in-

frared,
~

k
~

&&p & T, and obtain

T2 p2
~TI fi=

hr„ fz »——+0(k ),
8

ET&f;, i =3,4,5, are given by

the same formulas as

in Appendix A 2 .

Comparing these values with the corresponding
ones for fermions, we notice only one difference:
the sign of the p, term is opposite to that of the T
term in b z&fi for bosons, while both terms have the
same sign for fermions,

aa

lg T (q+q, )~

aa

—ig (T T +T T )S~p

I J

—iX(SjJ Skj + Sjj SJk)

/ (ijkl =1, . . . . . N)

FIG. 8. Additional Feynman rules for fundamental
scalars with quartic self-coupling.

out. At tPe classical level, the static scalar propaga-
tor is (k —p ) ', the mass term generated by in-
cluding one-loop corrections is of the form
ms ——[0(g, A, )T —(1+0(g, A, ) )p ]. (Note that
this mass term could be negative. ) The computation
of interest is that of the one-loop scalar contribution
to the gluon propagator. The relevant graphs are
shown in Fig. 9.

The results are as follows (these are to be added to
the results of Sec. II):

(i) Electrostatic self energy-

T2
114'4'(k ) = ——,g

p
2772

+g'T
/

k
/
0(

/
k

j
'lT') .

As expected, the @&0 scalar contribution to the
gluon propagator is similar to that of fermions, ex-
cept for the antiscreening effect.

=- 18 II ' (k)cP

I
/

+ ~ +
(Counterterm)

FIG. 9. Scalar contribution to 1PI gluon self-energy.

(ii) Magnetostatic self energy-
II"(k )=g T ~k~0(jk~ /T ).

(iii) Gluon waue function -renormalization con
stant.

r

(Zs —1) ' =—
z +ln —-I-const(,) 1 g 1 T

3 16m2 D —4
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To summarize, in the presence of scalars with
vanishing or sufficiently small chemical potentials,
dimensional reduction goes through with trivial
modifications: The effective infrared theory is
QCD3 coupled to scalars (one of the flavors being
the electrostatic field) which become massive at the
one-loop level and screen out over very long dis-
tances.

If sufficiently large scalar chemical potentials are

present, some of the scalars coupled to QCD3 could
acquire mass terms with the wrong sign, leading to a
Higgs effect in the three-dimensional sector. Such a
situation is more appropriately discussed in the con-
text of spontaneously broken gauge theories and
their phase transitions, and we shall not pursue it
any further here. The interested reader is referred to
recent work on this subject. '
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