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We consider N=1 supersymmetric systems of nonlinear fields and gauge fields in

(3+ 1)-dimensional space-time. The nonlinear fields take values on Kahlerian complex

manifolds. In a Lagrangian formulation of the systems based on Grassmann manifolds,

which is a class of Kahler manifolds, we show explicitly that both gauge symmetry and su-

persymmetry are spontaneously broken. A general argument, in terms of counting of de-

grees of freedom, further shows that spontaneous gauge-symmetry breakdown is also neces-

sarily accompanied by supersymmetry breakdown in systems based on other classes of
Kahler manifolds. The resulting particle spectra of the systems have remarkable massless

sectors consisting of gauge fields and fermions only.

I. INTRODUCTION

Nonlinear realizations of an internal continuous
symmetry group (G) which become linear represen-
tations when restricted to a given continuous sub-

group (H) have been applied, and extensively stud-

ied, in connection with pion dynamics and its gen-
eralizations. Fields forming nonlinear realizations
are self-interacting scalar/pseudoscalar fields which
take values on the coset space G/H. There exists' a
standard form of nonlinear realizations, and a sys-
tematic procedure for constructing Lagrangian den-

sities which are invariant under the nonlinear field
transformations. The method applies to global as
well as local internal-symmetry groups, and puts lit-
tle constraint on the choice of G and H.

It is plausible that dynamical symmetry break-
downs may happen in supersymmetric theory, lead-

ing to the formation of composite Goldstone parti-
cles analogous to pions of low-energy hadronic
physics, which may be described as supersymmetric
nonlinear fields. Supersymmetric generalization of
the nonlinear fields has been considered by several
authors. Indeed, the idea of nonlinear realization

plays an important role in a recent formulation of
SO(8) supergravity.

Not all nonlinear fields can be supersymmetrized.
In (3+ 1)-dimensional space-time, and for N= 1 su-

persymmetry, the supersymmetric generalization is
restricted to chiral supermultiplets whose scalar
components take values on a special class of corn
plex manifolds termed Kahler manifolds. This
necessary condition greatly reduces the choice of G
and H. Thus supersymmetry has an effect of cir-

cumscribing the possible patterns of dynamical sym-

metry breakdowns.

Some work has been done to study systems in
which the supersymmetric nonlinear fields are cou-

pled to supergravity. In this paper we study super-

symmetric systems containing both nonlinear fields

and gauge fields. The specific class of Kahler mani-

folds involved directly in our Lagrangian formula-

tion and analysis are called Grassmann manifolds

(Gzz). Gze can be represented as a coset space
SU(q+p)/SU(q)XSU(p)XU(1}. The gauge fields

are those associated with SU(q +p).
In Sec. II, after defining the Grassmann manifold

6~ e as a certain class of complex matrices, and the
supersymmetric generalization of these inatrices, we

construct an action in N=1 superspace. The action
is supersymmetric as well as invariant with respect
to the SU(p+q) gauge transformations and auxili-

ary local U(p} transformations. Demanding that
the action be stationary with respect to variations in

the auxiliary U(p} gauge fields leads to a constraint
equation. The explicit expression for the Lagrang-
ian density, after integration over supercoordinates 8
and 8, is obtained in the Wess-Zumino gauge.

In Sec. III we perform a point transformation on
the constrained chiral supermultiplet to get rid of
superfluous degrees of freedom. By also consistent-

ly redefining other fields in the system, we eventual-

ly arrive at a unitary picture. It is then clearly visi-

ble that the SU(q +p) gauge group is broken into the
SU(q) XSU(p) XU(1} subgroup. The 2pq gauge
fields, which correspond to the 2pq broken group
generators, have absorbed all the nonlinear scalar
fields, just the right number, and become massive
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vector bosons. Half of the 2pq two-component
gauge fermions corresponding to the broken genera-
tors absorb the fermionic super partners of the sca-
lar fields and consequently become pq four-
component massive fermions, and the other half
remain massless, forming a (q,p) representation of
the SU(q) XSU(p) gauge group. The other massless
particles are the gauge fields and gauge fermions of
the unbroken SU(q) XSU(p) XU(1) gauge group.
Thus the mass spectrum reveals that supersymmetry
is also spontaneously broken. Indeed, we calculate
the energy of the ground state; it turns out to be
greater than zero.

What would happen if the nonlinear fields take
values on Kahler manifolds other than the
Grassmannian? We argue in Sec. IV that spontane-
ous breaking of supersymmetry will still happen.
We then discuss the unbroken subgroups (H), and
the representation contents (I plus one adjoint) of
the massless fermions that would result in our sys-
tems when the nonlinear fields take values on dif-
ferent classes of irreducible, compact, symmetric
Kahler manifolds. Two remarkable cases are (i)
H =Spin(10) X U(1) and I"= 16, and (ii)
H=E6XU(1) and I =27. We also discuss a number
of other topics related to the findings reported above
in Sec. V.

II. LAGRANGIAN FORMULATION
OF THE SYSTEMS

We shall construct in this section Lagrangian den-
sities for the systems in which the nonlinear fields
take values on Gryssmannian complex manifolds

6& &
where p and q are two positive-integer indices.

The manifold Gz ~ has pq complex dimensions. It
can be represented by p X(q+p)-dimensional com-
plex matrices A with the identification that, for any
A, 2 and uA, where U is any nonsingular p)&p-
dimensional unitary matrix, are to be taken as
equivalent.

I

For the purpose of constructing a supersymmetric
theory, one replaces the complex matrices A by
p X(q+p)-dimensional matrices (4) whose elements
are chiral superfields. We shall retain A to denote
the scalar components of the superfields, and use f
and F to denote the fermionic components and the
auxiliary fields. The equivalence relation is incor-
porated into the theory in the form of an auxiliary
local U(p) symmetry T. he auxiliary symmetry
reduces the number of actual, independent chiral
superfields in the theory to p(q+p} —p =pq. The
action for a system of purely Grassmannian non-
linear superfields is'

Io= f d xd 8d 8Tr( —p V+4te 4), (1)

where p is a mass characterizing the system, and V
are the U(p) gauge superfields in the form of a
p pp-dimensional matrix. The action is supersym-
metric as well as invariant with respect to the local
U(p) transformation:

e
—iA4

&A

and

ev e
—lA evelA

where A are chiral superfields parametrizing the
group U(p). Besides these expected symmetries, we
observe that the action is also invariant under a glo-
bal SU(q +p) transformation:

4—+4e

]0@f

with 0 taking values on the SU(q+p) algebra. The
action required for a supersymmetric system of
6rassmannian nonlinear fields interacting with
SU(q+p) gauge fields then naturally suggests itself
to be the following:

I= f d xd 8d 8{Tr(—p V+4 e 4e )+ —, Tr[WWS(8)+WW5(8)]J,

where U and W are, respectively, the supersymmetric generalizations of the gauge fields and field strengths of
the SU(q+p). Note that in the fundamental representation we normalize the generators (T') such that
Tr(T T ) = —,5,i, . The action I is obviously supersymmetric and invariant with respect to the U(p} X SU(q +p)
gauge transformations. Applying a variational principle on I with respect to variations in V leads to a con-
straint equation, namely,

f gP ~(i —P)v@e U@t~PY p21 (5)

where l& denotes a p Xp-dimensional unit matrix. Consequently the action I can be expressed as

I= f d xd'8d'8(Tr( —p, V)+ —, Tr[~FV5(8)+ W ~(8)]j
with the V to be determined by the constraint Eq. (5).
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The constraint equation takes its simplest form in the Wess-Zumino (WZ} gauge. The validity of the WZ
gauge is ensured by the U(p) X SU(p +q) gauge invariance. In the WZ gauge we write

U = Hc—r &8U&+i888 X iH—88K+ ,, 8—88HD, (7a)

V = H~—"8V„+i888A,„i8—8%.„+, 88-8 HD„. (7b)

(8b)

(8d)

Thus we have V =0=U for rn )3, and the exponentials in Eq. (5) become polynomials. Equating coeffi-
cients of various powers of 8 and 8 on both sides of Eq. (5) yields the following:

AA~=p I&, (8a)

|(A'=O=A1t,

FA ~=O=AF~, (8c)

p, 'v„+ ywy+iA ap'+AU„A'=o,

ip, A,„+ a„AH/ — A&a„p V2—$F —AU„Hg+iAAA =0, (8e}

, p D„——a~A+ AU~—a A' ——'U~A' ~—' a y+ 'yU —wy 'yw—a—y ——'U y2 2 " 2 " 2 " 2

+ (/Lent AAP)+ —,p, VqV"—+, ADAt+F—F =0, (8f)
2

and, of course, the adjoint of (8e). The first three constraints are necessary for defining Grassmannian non-
linear superfields; the others determine Vz, A,„,A,„,and D„.

Substituting Eq. (8) in Eq. (6) we finally obtain the expression for the Lagrangian density,

W(x) =Tr &„A&—&A t+ (&„Qol'P—fol'&„P )—+ , ij iV„VI'+—FFt+,ADA t—
2

+ (fAA AX/)+i(—&„AHX Arri'O'„X)—, F„+""+—D—D (9)

where

8p =ay+ —'AU„,
2

u„y =a„y+—'1(U„,

and

B„a=a„z+—'xU„——'U„z .

F„„is simply the field strength of SU(q +p) gauge fields and V„ is given by Eq. (8d).

(loa)

(lob)

(loc}

III. PHYSICAL CONTENT OF THE SYSTEMS

Let us now install the SU(q+p) gauge couplings constant (g) in the theory. This is achieved by first scaling
each field in the Lagrangian density of Eq. (9) by a factor 2g and then discarding an overall factor of (2g)
from the resulting Lagrangian density. The new expressions, after some rearrangement, is

W(x) =Tr —&„A&"A + (9'„goi'P gW—9ji )+FF—+gADA +i ~2g (QAA t AX/)—
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with

O'„A =B„A +igAU„+ig V„A,

8'qQ =dpg+igQUq+ig VpQ,

S„a=a„X+igXU„igU—,X,

Fq„dq——U„d —Uq+ig [Uq, U„],

(12a)

(12b)

(12c)

(12d)

V&
——— (gHf+iAB&A +2gAU&A ) . (12e)

p
In order to explore the physical content of the sys-
tems we shall replace A and 1( (F=O obviously) by
unconstrained fields. We find it useful to make the
following polar decomposition:

A —= " e'~(0
~
I, )e&,

2g

(13)and

g =e'i'(X
~

0)e",
where exp(iP) and exp(ig) take values, respectively,
on U(p) and SU(q+p)/SU(q)&&SU(p)&(U(1) and X
is a p Xq-dimensional matrix of two-component fer-
mions. They are unconstrained. It is easily seen

I

X'= ie&Xe-& (15)

We will also use subscripts X, E, 8', and S to denote
the four submatrices, being of dimensions qXq,
q &&p, p X q, and p &&p, respectively, of a
(q +p) X (q +p)-dimensional matrix.

In terms of unconstrained fields, the Lagrangian
density, after elimination of the auxiliary fields F
and D, takes the following form:

that the constraints AAt=iu /4g I~ and A/=0
=/A are well respected by the polar decomposi-
tion.

The apparent degrees of freedom associated with

P, though not constrained, are superfluous; their
contributions to the Lagrangian density eventually
cancel completely because of a local U(p) invariance
associated with the composite gauge fields V„. On
the other hand, g is associated with genuine degrees
of freedom; their contributions do not cancel but are
summarized and absorbed by a new definition of the
SU(q+p) gauge fields and gauge fermions. The
new gauge fields U„' are given by

ig U& =ige" U„e "—e ~B&e (14)

and the new gauge fermions A,
'

by

W(x)= ——, TrFq„F' "+2i Tr[(BqA, '+igA, 'U~ igU~A—')WA'], ,

+i Tr[(d&X+igXU&N igU&sX—)o X]+ Tr(XAE+XEX)
2

4

Tr(U~ii UqE)+ 2
Tr(Xo X)(Xo"X)—

64g'(q+p)
(16)

It is clear that massive gauge fields are V 2U&E and
W2U„'ii (U„'z and U„'~ are adjoints of each other)
with mass squared p /8. Meanwhile fermionic
partners of the nonlinar scalar fields, namely, X,
combine with gauge fermions ~2k,F. to form pq
massive four-component fermions of mass p/2. The
other degrees of freedom, including gauge fields

U&& and U&s, and gauge fermions A,~, A,s, and A, ~,
remain as massless particles. The gauge group
SU(q +p) is spontaneously broken to
SU(q)XSU(p)XU(1), as manifested on the mass
spectrum of the particles. The most remarkable
phenomenon is, however, that supersymmetry is also
spontaneosuly broken in the systems. It is shown
both by the mass spectrum and by the presence of a
nonzero positive ground-state energy, namely, the
constant p pq/64g (q+p) in W(x) of Eq. (16).
The constant results from the Tr(gADA +DD) term
of the Lagrangian density of Eq. (11).

IV. GENERALIZATION TO SYSTEMS
BASED ON OTHER KAHLER MANIFOLDS

Algebraic manipulations in the last section
demonstrate explicitly spontaneous supersymmetry
breakdowns occurring in the systems of Grassman-
nian nonlinear fields interacting with gauge fields.
The breaking of supersymmetry is intimately tied to
that of gauge symmetry. Let us show the necessity
of this connection by an argument based on count-
ing of degrees of freedom.

Consider a supersymmetric system of nonlinear
fields taking values on a coset space 6/H, assumed
to be a Kahler manifold, and gauge fields of gauge
group G. The number of degrees of freedom is
N; =(4X dimG +2X dimG/H). If the gauge group
6 is broken to H, assuming that gauge fields corre-
sponding to generators of 6/H absorb the nonlinear
scalar fields, without triggering a spontaneous su-
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persymmetry breakdown, then we would expect at
least the number of massless vector supermultiplets
to be dimH; each vector supermultiplet contains one
gauge field. The total number of degrees of freedom
would then be at least Nf ——4X dimH + 8

X dimG/H because each massless vector supermul-
tiplet has 4 degrees of freedom but the massive one
has 8. Since N, Nf—= —2X dimG/H, the assump-
tion of having gauge symmetry breaking G~H
without supersymmetry breakdown is therefore false
in the systems we are interested in.

Let us continue the above line of reasoning but
admit that supersymmetry breaks while the gauge
group G breaks to H. Thus Nf ——N;=4X dimH
+6X dimG/H. After symmetry breakings, half of
the degrees of freedom form the massive and mass-
less gauge fields; the remaining half are fermionic:
(2X dimH+2X dimG/H) for gauge fermions, and
1X dimG/H for fermionic partners of nonlinear
scalar fields. They form definite representations of
the unbroken gauge group H: an adjoint plus repre-
sentations I' and I ~ for gauge fermions and a I' for
the other fermions. (I is the representation content
of the nonlinear scalar fields. ) Assuming that the
mechanism for generating masses for gauge fer-
mions is Yukawa coupling, which is the supersym-
metric counterpart of minimal gauge coupling of
nonlinear fields, then gauge fermions in the adjoint
representation and I representation would remain as
massless particles while the other fermionic degrees
of freedom become massive.

What are the available subgroups H and represen-
tations I'? Irreducible symmetric Kahler manifolds
expressible as G/H with G being a compact, con-.
nected, simple Lie group are classified into six
classes. " They are the following:

(i) G/H =SU(q+p)/SU(q)XSU(p)XU(1)

with number of complex dimensions dim, G/H =qp,
so I is a (q,p) representation;

(ii) G/H =SO(2q)/U(q),

dim, G/H =q(q —1)/2,

so I is a second-rank antisymmetric tensor represen-
tation;

(iii) G/H =Sp(2q)/U(q),

dim, G/H =q(q+ 1)/2,

so I is a second-rank symmetric tensor representa-
tion;

(iv) G/H =SO(q+2)/SO(q) XU(1),

dim, G/H =q,

so I is a vector representation;

(v) G/H =E6/Spin(10) XU(1),

dim, G/H =16,
so I is a spinor representation 16; and

(vi) G/H =E7/E6X U(1),

dim, G/H =27,
so I is a minimal representation 27. Except in case
(iv), I are always complex representations of the
non-Abelian part of H. H carries a U(1) factor,
which is a necessary condition for G/H to be
Kahlerian.

Generalization of our work to cases where G is
noncompact will not be a simple task, if it is possi-
ble at all. This is so even in cases without supersym-
metry. We simply want to make a remark here that
mathematically noncompact, irreducible, symmetric
Kahler manifolds can also be classified" into six
classes parallel to the compact cases, and have a list
of H and I' identical to the above one.

V. CONCLUSION AND DISCUSSION

We have shown in this article that there exists a
class of models in which spontaneous breakdown of
gauge symmetry is necessarily accompanied by
spontaneous breakdown of supersymmetry. What
we consider are N=1 supersymmetric systems of
the nonlinear fields interacting with gauge fields in
(3+ 1)-dimensional space-time. The systems have a
rich geometrical structure in the sense that the non-
linear fields take values on Kahler manifolds G/H;
G is also the gauge group to be broken. Explicit La-
grangian formulation of the systems based on the
first class of Kahler manifolds, namely, the
Grassmannians, is achieved. It may be useful to do
so for systems based on other types of Kahler mani-
folds, "and we see no obstacle in principle against it.

The above-mentioned connection between break-
ings of gauge symmetry and supersymmetry is in
strong contrast to what happens in renormalizable
supersymmetric Yang-Mills theories. In such
theories, if the chiral part of the scalar potential,
which is a polynomial depending only on the scalar
components of chiral superfields, does not break su-,
persymmetry, then the presence of gauge interac-
tions does not change this situation whether or not
there is gauge symmetry breaking. The reason is
that the chiral part of the potential is invariant with
respect to the complex extension of the gauge
group. ' Interpreted along the line of reasoning used
in Sec. IV, the complexification doubles the number
of would-be Goldstone particles so that there are
enough degrees of freedom for forming massive vec-
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tor supermultiplets and thus not conflicting with su-
persymmetry. Our result should not be taken as im-
plying that supersymmetry will break down whenev-
er there is an interaction between gauge fields and
the nonlinear fields. For example, if we modified
the systems such that the gauge group were H, or
smaller subgroups, instead of G, there would be no
breakdown of supersymmetry nor of gauge symme-
try. However, for modified systems with gauge
group X such that G DX and X not completely in-
clued in H, one obtains breakdowns of both gauge
symmetry and supersymmetry. Lagrangian densi-
ties for modified systems can be easily obtained by
modifying those of the original systems. For exain-
ple, in the Grassmannian cases, the modifications
are achieved by taking U of Eq. (4) to be that of the
desired gauge groups.

The resulting particle spectra of our systems have
some remarkable properties. First, one notices that
a well-known sum rule' for masses is violated, at
least in the Grassmannian cases. Second, one no-
tices that there is no scalar particle, the spectra con-
sist of only gauge bosons and fermions. In particu-
lar, the massless sector consists of gauge fields of H,
their corresponding gauge fermions, and a I' repre-

sentation of other gauge fermions. In most cases I
are complex representations (see Sec. IV for a com-
plete listing) of the non-Abelian part of H. Since I
run through representations 16 and 27, respectively,
for the cases where the non-Abelian part of H is
Spin(10) and Es, one cannot resist speculating on a
possible connection between the I gauge ferrnions
and quarks and leptons. ' But in this respect our
systems appear to be incomplete; they cannot ac-
commodate the phenoinenon of repetition of the
family structure of quarks and leptons. We also ob-
serve that the systems presented are nonrenormaliz-
able, as manifested by, for instance, the presence of
a quartic fermion interaction term in the Lagrangian
density, Eq. (16).
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