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Eighth-order magnetic moment of the electron. I. Second-order vertex
containing second-, fourth-, and sixth-order vacuum polarization subdiagrams

T. Kinoshita and W. B.Lindquist'
Newman Laboratory ofNuclear Studies, Corneil Uniuersity, Ithaca, New York 14853

(Received 25 March 1982)

We have calculated the contribution to the eighth-order anomalous magnetic moment of
the electron arising from 25 Feynman diagrams generated by inserting second-, fourth-, and
sixth-order vacuum polarization loops in the photon line of the second-order vertex dia-

gram. Our result is 0.0766(6)(a/m ) . The theoretical error represents the estimated accu-

racy (90% confidence limit) of the numerical integrations.

I. INTRODUCTION AND SUMMARY

+C (a/ir) + (1 2)

The first three coefficients have been calculated, i'

CI ——0.5,
C =—0.328478445

Cs ——1.1765(13) .

(1.3}

If one uses the best current value of the fine-
structure constant

a ' = 137.035 963(15), (1 4}

the QED prediction (1.3), including other known
small corrections, leads to

a,'s= 1 159652478(127)(1'7)(.) X 1o (1.5)

The first error quoted is due to the experimental er-
ror in (1.4), the second is due to the purely computa-

The anomalous magnetic moment of the electron,
a, =(g, —2)/2, has always played a central role in
testing the validity of quantum eltx:trodynamics
(QED). At present the best published experimental
values of the anomalous magnetic moment of the
electron and positron are'

a'" =1159652200(40}X10

a,'+ =1159652222(50)X10

The agreement between the values in (1.1) affirms
the validity of the TCP theorem for the electron g
factor to the level of 10

The QED prediction for a, can be written as a
power series in a /ir,

a, = Ci(a/n. )+Ci(a/n. ) +Cs(a/ir)

tional error in Cs, and the third (?) refers to the er-
ror of the yet-to-be-calculated eighth-order contribu-
tion. If one ignores this last uncertainty, the agree-
ment between (1.5) and (1.1) is at the two-standard-
deviations level.

The error in Ci arises from the 21 integrals (out
of 72} which are not yet known analytically. Of
these, 16 have been evaluated recently by a com-
bined analytic-numerical technique and contribute
negligible error. The error in the remaining five will
be reduced soon, either by the analytic-numerical
technique, or by pushing the purely numerical in-
tegration harder.

In view of the magnitude of (a/ir), which is
about 29)&10 ', it is obvious that the largest,
theoretically accessible error is that of C4. In 1977,
long before some of these results became available,
we conducted a feasibility study of the eighth-order
calculation and found it to be possible to complete
within a reasonable amount of time and effort.
Fortified by this result, we launched upon a sys-
tematic evaluation of C4. This is the first of a series
of five papers on our calculation.

There are altogether 891 Feynman diagrams con-
tributing to the electron anomaly in the order a .
These diagrams can be classified into five (gauge-
invariant) groups according to the way vacuum po-
larization subdiagrams appear in them.

Group I: second-order vertex diagram containing
vacuum polarization loops of second, fourth, and
sixth orders. Twenty-five diagrams belong to this
group. Typical diagrams are shown in Fig. 1(a).

Group II: fourth-order vertex diagrams containing
vacuum polarization loops of second and fourth or-
ders. This group contains 54 diagrams. Typical di-
agrams are shown in Fig. 1(b).

Group III: sixth-order vertex diagrams containing
a vacuum polarization loop of second order. One
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FIG. 3. Eighth-order vertices containing two closed

electron loops, one within the other.
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FIG. 1. Typical vertex diagrams of eighth order from
the five groups contributing to C4.

hundred fifty diagrams belong to this group. A typ-
ical diagram is shown in Fig. 1(c).

Group IV: vertex diagrams containing a photon-
photon scattering subdiagram with further radiative
corrections of various kinds. This group consists of
144 diagrams. Typical diagrams are shown in Fig.
1(d).

Group V: diagrams that contain no vacuum polar-
ization loops. This group is comprised of 518 dia-
grams. A typical diagram is shown in Fig. 1(e).

We report here the contribution to a, from the 25
diagrams of group I. It is convenient to further
classify these diagrams into the following gauge-
invariant subgroups.

Subgroup I(a): a single diagram obtained by in-

serting three second-order vacuum polarization
loops in a second-order vertex. This is shown at the
left end of Fig. 1(a).

Subgroup I(b): diagrams obtained by insertion of
a second- and fourth-order vacuum polarization
loop in a second-order vertex. Six diagrams belong
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to this group. Three are shown in Fig. 2. The other
three are obtained from them by time reversal.

Subgroup I(c): diagrams containing two closed
electron loops —one within the other. Three dia-
grams belong to this subgroup. Two are shown in
Fig. 3. The third is obtained from Fig. 3(b) by
charge conjugation.

Subgroup I(d): diagrams obtained by insertion of
sixth-order (single electron loop) vacuum polariza-
tion subdiagrams in a second-order vertex. Fifteen
diagrams belong to this subgroup. Eight are shown
in Fig. 4. Each of A, C, D, E, and F and the time
reversed diagram for E has a charged conjugated
counterpart.

The contribution of subgroups I(a) and I(b) can be
readily evaluated using the second- and fourth-order
spectral functions for the photon propagator which
are known analytically. ' As the sixth-order photon
spcetral function is not known, the remaining 18 di-
agrams could not be evaluated similarly. Thus our
first task was to construct an analogous sixth-order

Q&. /4 Sg
'l

g 4 6
g

I

H

FIG. 2. Three of the diagrams contributing to sub-

group I(b). The other three are obtained from these by
time reversal.

FIG. 4. Eighth-order vertices obtained by insertion of
sixth-order (single electron loop) vacuum polarization sub-
diagrams in a second-order vertex.
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TABLE I. Contributions of individual diagrams of Figs. 3 and 4 (factor g; of 2 or 4 for
asymmetric diagrams included).

Figure

3(a)
3(b)
4A
4B
4C

4D

4H

g;dBfg

0.01140 (2)
0.001 72 (1)
0.044 56 (14)
0.028 39 (19)

—0.03833 (S)

—0.027 40 (12)

0.17925 (43)

—0.061 93 (13)

0.038 80 (14)

0.023 S2 (12)

Residual renormalization terms

—2~2,p2M2, P2
—2M2 p2M2 p2
—45'B2M2 p4b+2(k'B2) M2 p2

-2~ B2M2,P4b+(~'B2)2M2, P2
—2h'B2M2, p4b+2(~'B2) M2, p2
—2L B4bM2, P2 255m4bM2 P2
—4~ L2~2,P4b+4~ L2~ B2M2,P2
—2A'B M2 p2 —265m M2 pp
—46'L 2M2, p4b+ 86'L25'B2M2, p2
—4b, 'L„M„,—4d 'B,LM2, P~
4(~'L2) M2, p2 —4~'L4r.M2, P2
—2h'L2M2 p4,
3(~ L2) M2, p2 —2~ L41M2,P2
—2A'L2~2 p~
—2A'L4xM2 p2

TABLE II. Auxiliary integrals —group I.
Defining

Value equationTerm

M2 P2

2,P2*

EB2
EM2 p~
2~2 p4b

AB4 +2 U.4,+AL4„
EB4b+ 2', 4, +LU, 4I

55m4,
55m4b

0.015 687'
—0.012702'

0.75
0.034 548 (12)
0.041 864 (23)

—0.513 8 (17)
0.5424 (6)

—0.301 5 (10)
2.208 1 (4)

(3.6)
(4.14)

(4.15)
(3.18)
(3.24)
(4.15)
(4.15)
(4.15)
(4.15)

119'Exact values are M2 p2= 36
—~ /3 and M2 pp

=
3

—13m /24.

function, which we achieved in a form convenient
for numerical integration by making use of a
parametric representation of Feynman amplitudes'0
and a specific method of renormalization"
developed and applied successfully to the calculation
of the sixth-order anomalous magnetic moment of
the electron. ' Details of this construction are
described in a separate article. '

Our calculations are carried out in the Feynman
gauge.

All numerical integrations were performed on the
CDC 7600 at Brookhaven National Laboratory us-

ing the integration routine RIwIAD. The results of
numerical evaluation of individual integrals are
summarized in Table I. Values of auxiliary integrals
needed to obtain the contribution al ' of group I dia-

grams to the electron anomaly are given in Table II.
Combining these results we find

al ' ——0.0766(6)(a/m ) (1.6)

This result was reported earlier in Ref. 15. The un-
certainties in (1.6) and Tables I and II represent the
90'/fo confidence limits estimated by the integration
routine.

In Sec. II we outline our calculation of the contri-
butions from subgroups I(a) and I(b). In preparation
for the discussion of subgroups I(c} and I(d), we
present in Sec. III a very brief summary of the
Feynman parametric-integral formulation of second-
and fourth-order vacuum polarization loops given in
Ref. 13 and of the integrals obtained when the loops
are inserted in a vertex diagram. Based on Sec. III
and the results for sixth-order vacuum polarization
loops given in Ref. 13 we discuss the contributions
of subgroups I(c) and I(d) in Sec. IV. Comments on
the numerical integration are given in Sec. V.

II. CONTRIBUTION OF SECOND-
AND FOURTH-ORDER

VACUUM POLARIZATION LOOPS

For simplicity we shall omit the factor a j~ and
put the electron mass equal to unity throughout this
article.

As is well known, the effect of a vacuum polariza-
tion loop insertion in a photon line is to give a (vari-
able} mass to the photon propagator. To take ad-

vantage of this fact let us write the contribution to
the. second-order electron anomalous moment from
the vertex diagram containing a virtual photon of



870 T. KINOSHITA AND W. B.LINDQUIST 27

mass p in the form

a(z)( ) f dy
1

(2.1)

where

P7 1 +p2
1—

2
(2.2)

If, in the photon line, we insert a gauge-invariant set
of closed electron loops which is expressed by the re-
normalized vacuum polarization tensor

1 —t y
(2.6)

4/(1 t—) being the mass of the virtual photon. If ri

such loops are inserted sequentially in the same pho-
ton line we obtain'

a= f dy(1 —y} f dt (2.7)

which can be readily proved using the partial frac-
tion decomposition

II&"(q)=(q"q" g""q —)II(q ),
where

(2.3)

x, , x —a; k, x —aj, ,~kak —a;
(2.&)

II(q')= —q' f dt,
q —4/(1 —t~)

(2.4)

its contribution to the electron anomaly becomes

Formulas (2.5} and (2.7) enable us to calculate the
contribution of vacuum polarization loops to the
electron anomaly once the spectral function p(t) is
known. For the second and fourth orders, we
haves, 9

a= f dy(1 —y}f dt

where

(2.5) pg(t) = t'(1 —t'/3)
1 —t

and

(2.9)

2f

3(1—t )

(3—t')(1+t') 1+t 1+t

~'

+2 L +L1 —t 1+t
1+t

—L 1 —t
2

4L(t}+L(t—')

+ —(3—t')(1+t')+ ———t(3 —t') ln16 4 2

+ t(3 —t') 31n —21n(t) + —,t(5 —3t') (2.10)

with

L(t) =—f ln(1 —x) . (2.11)

The contributions of subgroups I(a) and I(b) are thus as follows.
Subgroup I(a). This is one of the few cases in the eighth order where the analytic result is known. ' We re-

peat the calculation here as a check of our method. We start from
3

pz(t)
(2.12)I+[4/(1 —t') ](1—y ) /y'

where p2 is given by (2.9). Carrying out the t integration we find
3

(8) 8 a a a a+1a,(,)
—— dy(1 —y) ——+ + —— ln

0 9 3 2 6 a —1
(2.13)

where

a=2/y —1 . (2.14)
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By numerical integration we obtain

a tt,') ——0.000 876 8(2),

which is in excellent agreement with the analytic result'

aI~)) ——1S1849/40824+ —
6I g(3}—4((4)=0.000876865

where g is the Riemann g function.
Subgroup I(b). The contribution of the six diagrams of this subgroup can be written as

(8) 1 p2(s) 1 pg(t)
a'„'b, =2 dy(1 —y) ds dt

0 1+[4/(1 —s )](1—y)/y o 1+[4/(1 —t )](1—y)/y

where pz and p4 are given by (2.9) and (2.10). Numerical integration gives

a Itb) =0.015 325(2) .

(2.15}

(2.16)

(2.17)

(2.18)

III. ANOMALOUS MOMENT
CONTAINING PARAMETRIC FORMS
OF VACUUM POLARIZATON LOOPS

I

Equation (3.2) can be rewritten in the form

DpGII' '(q )=q f (dz) f dt
U'V,

(3.4}

II„"„'(q)=(q„q„—g„,q )II' '(q ),
with'

(3.1)

II' '(q )= f (dz) z
ln

U2

where'8

(3.2)

(dz) =dz) dz25(1 —z)2 },
z) &0, z2 )0, U=z)2, A) z2/U, Vo=——z)z,

6=z)A» V=Vo q2G Do=2—A)(1 —A) ) ~

(3.3)

In this section we summarize briefly the
parametric forms of second- and fourth-order vacu-
um polarization loops and their contribution to the
electron magnetic moment when inserted in a
second-order vertex. Although analytic results are
known in these cases, this is useful for illustrating
our general procedure described in Sec. IV. Further-
more, these parametric formulas will be needed later
in the renormalization of the integrals of subgroups
I(c) and I(d).

For the second-order electron loops of Fig. 5(a) we
can write the renormalized vacuum polarization ten-
sor in the form

with

V~ = Vo —&92G (3.5)

= f dy(1 —y) f (dz) In

where

~=1+' '-,' (3.7)
y2

In this form the relation between M2 t z and II' ' of
(3.2) is very transparent. This relation can be readily
generalized to higher-order cases. %ith the variable
change z) ——(1+t}/2 and integration by parts (3.6)
can be rewritten as (2.5) (with p:—pz}.

The fourth-order vacuum polarization tensor has
contributions from the diagram of Fig. 5(b} and
from two diagrams of the form shown in Fig. S(c).
The former contribution, renormalized at q =0 but
with subvertex divergences not yet explicitly re-
moved, can be written as' '

11'")(q')= f (dz)
&0 1 1

V V,

If we note the similarity of (3.4} to the spectral rep-
resentation (2.4), we can readily conclude that the
contribution of (3.4} to the electron anomaly is'

(4)
+2,Z2 —™2,Z2

(a) (b) (c)

FIG. 5. Vacuum polarization diagrams of second and
fourth orders.

Vo

U3
ln (3 8)
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(dz ) =dz1dz2dz3dz4dz5$ (1—z 12345 )

U —Z5Z 1234 +Z 14Z23

811=Z235 ~ ~12 Z5 ~ 822 —Z145 ~

A 1
—(Z3812 +Z4811 )/U, A4 ——A 1

—1

A 2 —(Z3822 +z4812 )/Uy A 3 —A 2 1

Vp —Z1234 6 Z]A 1 +Z2A2 V Vp q 62

DQ —(A 1 +A4)(A2 +'A 3 ) A 1A4 A2A3

DI (A 1A 2+A 3A4 N12 A 1A4~22 A 2A 3~11

(3.9)

This integral contains ultraviolet (UV) divergences
arising from the subvertices S'= [2,3,5 J and
S"=j1,4,51. The divergent terms can be isolated
by applying E~ and Eq- operations"' to the in-
tegrand of (3.8). For the l2, 3,5J vertex we find the
divergence to be' ' '

H„„'=H' ' —2L2H~ ' (3.14)

which is obtained by a standard renormalization of
the subvertcces, as

seen that (3.10) factorizes as

K II' '=L II' ' (also K, II'~'=L II' '),
(3.12)

where L2 is the UV-divergent part of the vertex re-
normalization constant I 2,

I 2 ——I.2+6'I.2,
L2 ———,(lnA ——,), (3.13)

6'L2 ——ink, + —, ,

A and A, being the UV and infrared (IR) cutoffs,
respectively.

Making use of (3.12) and (3.13), we can write the
function

rC„II'"'= f (dz) ln
Vo

where

(3.10) H,',„'=EH' ' —26'I.,H"',
where

an'"'=(& —IC„—SC„)ll'"'

(3.15)

(3.16)
I I 2U =Z14Z233, VP =Z14+Z23 /Z235,

A', =z4/z, 4, A4 ——A1 —1, 822 ——z14,

D1 ———A'134822, O'=Z1A1,

V= Vo -q26

(3.11)

is free from UV divergences.
We are now ready to find the contribution of the

sixth-order diagram of Fig. 6(a) to a, . Going
through steps analogous to (3.15) we find it to be'

a2 P4a =AMZ, P~ —2h L2M2 P2
(6) I (3.17)

A similar formula holds for E1411' '. It is easily
l

1 Do
hllf2~4, = f dy(1 —y) f (dz)

2 +, ln
0 U'V m U'

D'1
1n

U 3

8"'
g7I i U 3 $$7I I

with

(3.18)

(3.19)W= 1+ Vo i —y, Vp i —y „Vp'i y—, 8"=i+, ----, 8"=I+—6 y2
' 6' 2 ' Gi

The primed variables are given in (3.11) and the double-primed variables are analogously defined for the %14
UV subtraction.

The renormalized vacuum polarization term due to Fig. 5(c) can be written as

II' "'(q )=2EII' '(q') 6'8 II'—"(q ),
(3.20)

EII' '(q )= f (dz)(1 —Ks) 2
—— — + + lnV' V Vp U'V U'

where S is the self-energy subdiagram [2,SJ and
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U=z5z 1234 +z2z134& Vo =z1234p B]1—z25p B12 —z5p B22 z1345

Ai ——z4Bii/U, A2 z4B——i2/U, A& ——Ai, A4 ——Ai —1, G=ziiAi+z2A2, V=VO —q G,
Do=(4Ai —A2)A4 CP= —Ai A2A4 Di =Bi2Ai(Ai+3A4) .

6'B2 is the UV-finite part of the wave-function renormalization constant B2,

B2 b, '——B2+B2, B2=——,(lnA+ —,), 5'B2= , b—,'L—
2 .

Vo and (dz} are the same as in (3.9}~

The contribution of the diagram of Fig. 6(b) to the electron anomaly is then given by

tt 2,p4b —~~+2,p4b ~ B2M2, P2
(6)

where

1 &0 Co D1 8'
~M2p4b= f dy(1 —y) f (dz)(1 —It2)

0 U'V, W U'Ge U'

(3.21}

(3.22)

(3.23)

(3.24)

All quantities are defined in (3.21) except that W is given by (3.19) in terms of the appropriate Vo and G.
The total contribution of the diagrams of Figs. 5(a) and 5(b) to the electron anomaly is thus

2,P4 2,P4a+ tt 2,P4b ~2,P4a+ 2~2,P4b 2 M2, P2
(6) (6) (6) 3

(3.25)

We have evaluated b,M2 p~ and ~2 P4b numerically. The results are listed in Table II. The value of a2 p4
calculated from (3.25) [0.052 88(3)t is in good agreement with the exact result 0.052 87. . ..

IV. CONTRIBUTION OF SIXTH-ORDER VACUUM POLARIZATION LOOPS

Following the discussion of Sec. III, the contributions from the diagrams of subgroup I(c) (Fig. 3) can be
readily calculated once the contributions from the sixth-order diagrams of Figs. 6(a) and 6(b) are known. Con-
sulting the formulas (2.7) and (3.18) we find that the diagram of Fig. 3(a) gives

a 2 P(~ P2)
——hill 2 P(~ P2) + residual renorrnalization terms (4.1)

with

1 1 Do D1 W
kllf2 p(4, p2) = dy(1 —y ) dtp2(t) (dz)(1 Ks Ks-)— 2

— + ln
0 0 U'V, W U'

where S' and S"are the respective subvertices {2,3,5] and {1,4, 5I in the diagram of Fig. 6(a). Also

Vo 1 —y
G

with

4
Vo =z1234+ 2 z5

1 —t

(4.2)

(4.3)

(4 4)

where 4/(1 t ) is th—e effective photon mass due to vacuum polarization and (dz), U, G, Do, and Di are given
by (3.9). Similarly the diagram of Fig. 3(b) contributes

2,P{4b,P2) EM2, P(4b, P2) + residual renormalization terms (4.5)

with

1 1 Do Co D1 8'
~M2, p(4b p2) = f dy(1 —y) f dtp2(t) f (dz)(1 E, ) + — + ln, (4.6)0 0 U' V 8 U'Gg U' 8' —1

where S is the subdiagram {2,5I of Fig. 6(b), W is defined by (4.3) and (4.4} and U, G, Do, Co, and D are
given by (3.21). The results of numerical integration of (4.2) and (4.6) are listed in Table I.

The residual renormalization terms for these contributions, which express the difference between the stand-
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ard and Es renormalizations, can be written in terms of integrals corresponding to Feynman diagrams of lower
orders .They are listed in the third column of Table I. In this column &&2 pi aiid Mz p2 are finite parts of
the UV-divergent constants L2 p2 and B2 p2 corresponding to the vertex and self-energy diagrams of Fig. 7:

ALz i,2
——469/216+2@ /9=0 02. 1949

(4.7)
Mz pz ——419/108 —71T /18=0.041 450 '

From Table I and (4.7} we find that the contribution of the subgroup I(c}to the electron anomaly is

ai(,') ——0.011 13(2) . (4.8)

Vacuum polarization terms arising from the loops in the diagrams of subgroup I(d) (Fig. 4) can all be written
in the form' '

II'„„'(q )=ALII' '(q )+ residual renormalization terms,

where

(4.9)

b,II' '(q )=-,' f (dz) g(1—E, )
S V2 +

U2V2 0+q 0(~ 2~ )
0

q'B1 &2 Vo+ —— + + lnO' V V +O'V'O' V
I

(4.10)

and

8 8

(dz)= gdz5 1 —gz;, V =z, , V=V —q G. (4.11)

6 is determined by the individual diagram The .functions Do, Di, D2, 80, Bi, and Co were obtained using the
algebraic computation program scHooNscHIP and are listed in the Appendix of Ref. 13. The Es operations
for all UV-divergent subdiagrams S must be carried out in (4.10). The contributions to the electron anomaly
due to the diagrams of Fig. 4 can then be written as

Q2 p6& =AM2 p6i+ residual renormaliZation terms, (4.12)

1 Dp Bp CphM;= —f dy(1 —y) f (dz) g (1 E) — (1—2W)+ (1—W)+
S 0

1 D1 B1 D2
ln

U 8 Vp G U ~—1
(4.13)

where 8'is given by (3.19) in terms of the appropriate Vo and G.
The integrals EM2 p6& are free from divergence and can be evaluated numerically. Their values (multiplied

by the appropriate multiplicity factor rl;) are listed in the second column of Table I. The residual renormaliza-
tion terms are listed in the third column of the same table. In this column Mz &2„represents the magnetic-

moment contribution of the counterterm diagram shown in Fig. 6(c).
Summing the contributions of diagrams A to H of Fig. 4 yields

H

Qi(d) = g t)&AMz @6'—4~zbMip4+5(ZEB2) Mi pz —2(bL '+M )M2 pz —265iii M p g, (4.14)
i=A
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9A 9C ID IF 2 ~ QE —4 ~

2 ——6'B2+5'L2 ——4,
hllfz, I ~ 511fz I ~——+2b3fz p4s,

AL =AL4~+2~L4 +AL4I+2AL4s ~

~'4) =~~+~4b,
55m'"'=LNm4, +45m4b .

(4.15)

The quantities in the last three lines of (4.15}are de-
fined in Ref. 12. Their values are listed in Table II.

Using the numerical values listed in Tables I and
II we obtain

a&&d~
——0.04928(57) . (4.16)

Finally, collecting the results Q.15), Q.18), (4.8), and
(4.16) we obtain the contribution of 25 Feynman di-
agrams of group I to the electron anomaly a, given
in (1.6).

4
I I

J

I I 1

(a) (b) (c)

FIG. 6. (a) and (b) are sixth-order vertex diagrams con-

taining fourth-order vacuum polarization loops. (c) is a

diagram obtained by shrinking the electron self-energy

subdiagram (2, 5] of (b) to a point.

where

(1—Ks')( I Es-) ' M— (5.1)

is free from all divergences except a logarithmic one
associated with the subdiagram S. Suppose S con-
sists of the lines 1,2, . . . , m, and zi, z2, ,z~ are the
corresponding Feynman parameters. The diver-
gence of (5.1) arises from the subdomain of integra-
tion

0&Z1+Z2+ ' ' ' +Zm (ZS (5.2)

of a number the computer can handle in any opera-
tion. A run may terminate with a register overflow
if the integration routine samples in a divergent re-
gion and attempts to evaluate a divergent term be-
fore it has a chance to compute the corresponding
subtraction term appearing later in the integrand.
In our formulation, divergences (both UV and IR}
are associated with regions where some Feynman
parameters z;~0. Hence, for certain z; (or sums of
z;) the integration routine was prevented from sam-
pling in a region 0 (z; ( 10 ' . The value of 10
was chosen empirically.

In addition, inspection of (4.2}—(44} reveals that
t=l and y 1 (perhaps in combination with certain
Feynman parameters z;~0) are regions that could
potentially lead to a computer register overflow.
This was found to be the case for the integrals of the
diagrams of Figs. 2(a) and 2(b). Both were run with
the regions 1 —t & 10 and 1—y & 10 excluded.

Errors caused by such omissions of the integra-
tion domain are of order 10 ' and hence complete-
ly negligible. To see this let M be the unrenormal-
ized integral corresponding to a Feynman diagram
6 with divergent subdiagrams S,S',S",. . . . Then
the integral

V. COMMENTS ON
THE NUMERICAL INTEGRATION

One of the problems associated with Monte Carlo
numerical integration of integrands involving point-
by-point cancellation of divergent pieces is a
hardware-dependent feature —the limits on the size

where zz can be chosen as small as one wishes. In
this domain the "phase space" is of order zz and the
integrand of (5.1) must behave as zs in order to
generate a logarithmic divergence. If we now apply
1 —Ks to (5.1) the integrand of the convergent in-

tegral

(1—Ks)(1—Z's) . . M (5.3)

/
i i

(o) (b}
FIG. 7. Fourth-order vertex and electron self-energy

diagrams containing a second-order vacuum polarization

loop.

behaves as zs +' in the domain (5.2). This means
that the contribution to the integral (5.3) from the
domain defined by (5.2) is of order zs, provided that
the roundoff errors are under control.

Except for the integrands for Figs. 2(a) and 2(b),
the final run for all diagrams consisted of a max-
imum of 2X 105 subcubes (each subcube containing
two sampling points) in the hypervolume defined by
the range of integration (minus the excluded regions)
for each iteration of the integral, with numbers of
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;iterations ranging from 5 to 10 depending on con-
vergence rate and a time limit cutoff. The integrals
for Figs. 3(a) and 3(b) were run with a maximum of
5X10 subcubes for each of 10 iterations. For the
longer integration runs, computing times ranged
froin 5 to 10 minutes on the CDC 7600.
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