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Parametric forttiula for the sixth-order vacuum polarization contribution
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We have obtained a Feynman-parametric integral for the complete vacuum polarization
contribution of sixth order in quantum electrodynamics in a form convenient for numerical

integration.

I. INTRODUCTION

As measurements of various electromagnetic pro-
cesses become more and more precise, the need for
pushing the theoretical calculations in QED to
higher orders becomes more acute. In this article we
present a formula which expresses the complete
sixth-order photon self-energy (vacuum polarization)
effect in a form which is convenient for numerical
integration. Knowledge of this expression is neces-
sary in calculating the anomalous magnetic mo-
ments of leptons beyond order a . It also contri-
butes to the hyperfine structures of positronium and
muonium.

We present our result as an integral over Feynman
parameters. Although it can be expressed in the
form of the Kallen-Lehmann spectral representa-
tion, this does not prove particularly useful insofar

I
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where q is the external momentum entering at the
vertex v and leaving at the vertex p and

as the spectral function obtained is not in a con-
venient analytic form. However, for the above-
mentioned applications, and possibly for all practi-
cal purposes (in particular for numerical evaluation),
we find our formula entirely satisfactory.

We express the photon self-energy amplitude of
2nth order, which consists of 2n vertices, 2n electron
lines forming a single closed loop, and n —1 photon
lines, as an integral over 3n —1 Feynman parame-
ters z; (Ref. 1):

(dz) =5 1 —gz; ff dz;, z; &0, i running over all internal lines, (1.2)F„„=Tr[y„(pi+mt�)y

(g2+mz)y y„yt(gz„+mz„}], (1.3)

D~=-,dm.s 2 2 i
m;~ ()qip

(1.4}

We have included in (1.1) a factor ( —i)(2sr) com-
ing from one of the external photon lines. In (1.4} q;
is that part of the momentum carried by the line l

which is independent of loop momenta. '

The function U is a homogeneous form of degree
n in the z; and is completely determined by the topo-
logical structure of the diagram. Examples are
given in Sec. II and in the Appendix. The function
V is of the form

2n

V=Vp —q G, Vp ——gm;z;,
P(,v)

6 = zgA;,

P(, ,v)

A; = (5tj. zIBtj IU) . — (1.6)

Finally the function B;J is defined by

BIJ= + glCqj CC

where the sum goes over all (not just independent}

where the sum in Vo is over all electron lines and
that in G is over the continuous path P (p, ,v) of elec-
tron lines connecting the vertices p and v whose
fixed momenta q; flow in the same direction as that
of the external momentum q. The function A; is the
"Kirchhoff current" associated with the line i:

27 853 1983 The American Physical Society



T. KINOSHITA AND W. B.I.INDQUIST

Thus all functions can be calculated once the B,J are
known.

Of course the integral (1.1} is not well defined un-

less the overall and subdiagram ultraviolet (UV)
divergences are regularized. Although subdiagram
UV divergences can be handled adequately by sim-

ple Feynman cutoffs, the overall divergence of (1.1}
requires more careful cutoff procedures such as that
of Pauli and Villars to maintain gauge invariance of
the theory. However, if we extract the coefficient of
q&q, in (1.1) and write it as

II~„"'(q)=(qqq„—q gq„)II' "'(q )

+gauge-dependent terms,

the function II' "' has only a logarithmic overall UV
divergence and the number of auxiliary masses in
Pauli-Villars regularization can be reduced to one.
Furthermore, this regularization and the renormali-
zation of subvertex UV divergences can be carried
out independent of each other. The charge renor-
malization can be achieved by

11(2n}( 2) 11(zn)( 2) 11(2N)(0) (1.10)

We carry out subvertex renormalizations by the
method of the intermediate renormalization
developed previously ' which is particularly con-
venient for numerical integration. The remaining
finite renormalization can be carried out without
difficulty as it involves only lower-order diagrams.

In Sec. II we explain how the parametric formula-

tion is applied to the second- and fourth-order vacu-

um polarization loops. Section III is devoted to a
discussion of the sixth-order vacuum polarization
diagrams. Functions necessary to define the sixth-
order integrals are listed in the Appendix.

II. SECOND- AND FOURTH-ORDER
VACUUM POLARIZATION LOOPS

For simplicity we shall omit the factor a/~ and
put the electron mass m equal to unity in the

self-nonintersecting loops c that contain both lines i
and j, g;, is the projection (+1, 0) of line i along the
loop c, and U, is the U function for the reduced dia-
gram obtained from the original diagram by shrink-
ing the loop c to a point. Note that U can in turn be
expressed as a linear combination of B,j's:

ljs U= g vltsz;B;J .

remainder of this article.
Although the vacuum polarization tensors of

second and fourth orders are known analytically,
we shall begin by putting them in the Feynman-
parametric form to illustrate our general approach.
Applying formula (1.1} to the second-order photon
self-energy diagram of Fig. 1(a), we obtain

11„",'(q) = ——, Tr[y„(@i+1)y(hz+1)]

&& f (dz) f dm
U Vm

where M is the Pauli-Villars cutoff mass and6

(dz) =dzidz25(1 —ziq),

U=zi2, V =z~2m —q G,2 2

6 =ziA i, A i ——z2/z)z .

(2.1)

(2.2)

Carrying out the D operation according to (1.4), and
extracting the coefficient of q&q„we find

z]2M 2

II(q )= f (dz) ln
U2 S

ziz —e G

Dp 2Ai(1 —A——i) .
(2.3)

Renormalization at q=0 according to (1.10}leads to

II' '(q )= f (dz) ln
U2

where Vo ——zi2, V=VO —q G. By a simple change
of variable [zt ——(1+t)/2] and integration by parts,
(2.4) can be readily rewritten as

II' '(q )= —q f dt
q —4/(1 t )—

t'(1 —t'/3)
p~(t) =

1 —t

(2.5)

which is essentially the Kallen-I. ehmann spectral
representation of II' '.

The fourth-order vacuum polarization tensor con-
sists of contributions from three diagrams, one of
the form Fig. 1(b) and two of the form Fig. 1(c).
Using (1.1) one can express the contribution of Fig.
1(b) as

II&„'———„Tr[y„(pi+1)y (+2+1)y„(+3+.1)y (/is+ 1)]f U2 p' (2.6)
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(dz) =dz1 dz55(1 —z12345), U=z123425+z14z23

11 ——235, 812——z5, 822 —z145, A1 ——(z3812+z4811)/U, A2 —(z3822+z4812)/U,

Vp —Z1234 6 —Z1A ] +Z2A2 V —Vp q G ~
2

(2 7)

Carrying out the D operations and extracting the
coefficient of q&q„,we can write II' ' in the form

2=Z U'=z14z235 G'=z1A' (2.13)

D1 —— A1A—4822, A1 ——z4/z14, A4 ——A'1 —1,

2

II (q2) = (dz) + 3
ln(4+) 2 Dp D1 VpM

U'V U'

where

(2.8)

VO Z14+Z23 /Z235 V'= Vp —q G' .

A similar result is obtained for Ks II' '. It is readi-
ly seen that (2.12) factorizes as

~s.lI'"'=L21I"' (similarly J:s-11'"'=L211"'),

(2.14)

A4 ——A1 —1, A3 —A2 1. (2.10)

Dp ——(A1+A4)(A2+A3) —A,A4 —A2A3

(2.9)
D1 (A 1 2+A3A4)812 A1A4822 A2A3 11

with

where L2 is the UV-divergent part of the second-
order vertex renormalization constant L2 (Ref. g):

L,=L,+5'L2,
J 1

L2 ———, lnA 8 ~ (2.15)

Charge renormalization at q =0 leads to

II'"'(q )= f (dz)
U VV0

D1 Vp
ln

U' V
(2.1 1)

b, 'L2 ——ln i, + —, ,

A and A, being the UV and IR (infrared) cutoffs,
respectively. Thus we can relate II' ' to II,',„'
(which is obtained by a standard renormalization of
the subvertices) by

II' '=sr' ' —ZL n"'
ren 2

I I

Ksii'~'= f (dz) ln (2.12)

where

where Vp is defined in (2.7).
This expression has UV divergences arising from

the subvertices S'=t2, 3,5} and S"=f1,4,5I. The
divergent terms can be isolated from the integrand
of (2.11) by the K-renormalization method. ' For
the I2,3,5I vertex we find it to be

where

=err~"' —2a'L2rr"' (2.16)

~II'"1=(i—Xs —I:s-)11" (2.17)

2 2

II (q )= (dz)
D+q C, D, VM

U'V U V
+ ln

is free from UV divergences.
The contribution of the diagram of Fig. 1(c) has a

form similar to (2.8):

where
(2.18)

(a) (b)
-Sm

(c)
FIG. 1. Second- and fourth-order photon self-energy

(or vacuum polarization) diagrams.

U —Z134Z25 +Z2Z5~ 6 —Z13A 1 +Z2A2

VO Z1234, V= Vp —q 6,2

11 25~ 12 5~ 22 1345 ~

A1 ——z4811/U, A2 ——z4812/U,

A3 ——A1, A4 ——A1 —1,
C,= —A, 'A,A4,

Dp = (4A 1
—A 2 )A 4

D1 ——812A1(A1+3A4) .

(2.19)
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Renormalization of the overall divergence of II' ' at
q=O leads to

other definitions being unchanged. By the construc-
tion of the Es operation we obtain '

II' '(q )= f (d ) —— +
U2 P' P U2y

st(»=$ g( '+ (2.22)

~o

U3
ln (2.20}

where II' ' is the contribution from the diagram of
Fig. 1(d), 5m 2 is the second-order electron self-mass,
and 82 is the UV-divergent part of the second-order

.wave-function renormalization constant 82 (Ref. 9):

In this case a UV divergence arises from the subdia-
gram S= I2,5J. The Es operation on II' ' gives an

integral of the same form as (2.20) with the in-

tegrand modified as follows:

82 =82+6'82,

A ] 5
$2 ————, lnA ——, , (2.23)

134 25, G =Z13 1

A i ——z4/z)34 A2 (z5/z25)A i

Vo Z)34+Z2 /Z25, V VO q
2 — 2

822 Z 134

(2.21)
~&2=~2 —~L2, ~2= 4 .

It is important to note here that II'2' in (2.22) is
not of the form (2.4) but is given by

2A i(4A i —3) Vof (dz)zi ln
I

U

Do -1

U2

1 —q A1

V

r

a Do ~o= —f (dz)z, — ln
(}zi U2 V

(2.24)

where all functions are defined in (2.2) with z2 re-

placed by z4. This can be turned into (2.4) by mak-

ing use of an identity due to Nakanishi. '

We can therefore write the renormalized quantity

11(4b) 11(4b) sm 11(2 ) g 11(2)
ren ~2

photon self-energy subdiagram is shrunk to a point.
Thus, these can be calculated readily once the
fourth-order vacuum polarization expression is
known. Noting that insertion of a second-order vac-
uum polarization diagram is equivalent to the sub-
stitution of the photon propagator

as

)—/II(4»
ren 2 (2.25}

P2(t)—+ dt
q 0 q —4/(1 t )—(3.1)

where

EII' =(1—E }II' (2.26)

is free from UV divergences. Collecting (2.16) and
(2.25) we can finally express the vacuum polariza-
tion of fourth order in the form

(4) (~) (4b)
IIren IIren + ren

where

t'(1 —t'/3)
P2(t) =

(1—t'} (3.2)

we find from (2.11) that the contribution of Fig. 2(a)
can be written as

=ALII' +2bH' —2~ II' ',
where ~2 is defined in (2.23).

(2.27)

III. SIXTH-ORDER VACUUM
POLARIZATION DIAGRAMS

Of the 18 vacuum polarization diagrams of sixth
order, the three represented by Fig. 2 are reducible
to fourth-order diagrams when the second-order

(b)

FIG. 2. Sixth-order vacuum polarization diagrams ob-
tained by inserting a second-order vacuum polarization

loop in the fourth-order vacuum polarization diagrams.
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II' ' '(q )= f dtp2(t) f (dz) —— + 3ln0 U' V V, U' V
(3.3)

where

VQ Z]234+4zs/( 1 t )— (3.4)

(3.5)

all other quantities being defined by (2.7) through (2.10).
It is readily seen, in parallel with (2.12) and (2.14), that the Ks and Ks- operations yield

E II ' '=E -II ' '=L, II'S' S" 2 P2

where Lz p2 is the UV-divergent part of the vertex renormalization constant L2 pz for the diagram shown in
Fig. 3(a). The integral

/11]~ ]—(1 /s, gs„)ll]~P2]

is now free from UV divergences, and

11]2]
ren 2,P2

with"

~ ~2,P2 ~2,P2 ~2,P2

Similarly, the contribution of Fig. 2(b) can be written as

2C'

0 U 2 V V0 U 2 V U 3 V
I

where V]] is given by (3.4) and the rest by (2.19).
The Es operation on II' ' ' now leads to

Z 11]4b P2]=Sm, ,ll]'"]+B„,ll"]

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

where II' ' is the contribution of the diagram of Fig. 1(d), 5mz p2 is the electron self-mass, and Bz p2 is the
UV-divergent part of the wave-function renormalization constant B2 pz for the diagram of Fig. 3(b). The com-
ment (2.24) on II'z' applies here as well.

The sixth-order vacuum polarization effect arising from the gauge-invariant set of diagrams of Fig. 2 is thus
given by

11]4»] 11]~»]+211]4»»] /11]4»]+2/ll]4»»]
ren ren ren 2,P2

where"

(4b,P2) 4b P2b, il' "'P '=(1—K )II'4b P2', ~ =5'B +b,'L, b, 'B =B, B, —
We find

(3.11)

(3.12)

~2 p2
—f dtp2(t) f dy =—„—m /6=0. 063399 (3.13)

1+[4/(1 —t')](1—y)/y']
The remaining 15 vacuum polanzation diagrams are shown in Fig. 4. Applying formula (1 1) to the dia-

grams 6A,6B, . . . , 6H of Fig. 4, we find

II&„'(q)=——Tr[y&(g]+ l)y (+2+1)y y„(gb+I)] f (dz) z 2, i =A,B, . . . , H, (3.14)

where U, V, and other necessary functions are listed in the Appendix and

8 8

(dz)= gdz, S 1 —$z,
j=i

(3.15)
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Carrying out the D operations and extracting the coefficient of q„q„wecan write II' ' in the form
r

(6i) 2 Dp +q'BO +q'Cp D1 +q B1 D2 VOM'
II' '(q )=—, (dz) + + ln

U V U'V U'

where

(3.16)

VO Z 123456 (3.17)

The functions Do, Bo, Co, D&, B(, D2 have been obtained using the algebraic computation program SCHOON-
scHIP'2 and are listed in the Appendix. Overall renormalization at q=0 according to (1.10) leads to'

2, D { 1 1 qBO+qCO D) 1 1 qB( D2 VoII' '(q )=— (dz) + + —— + + ln—
2 U2 V2 V 2 U2V2 U3 V V U3V U4 V

(3.18)

EgII' ~'=5m2II' ' '+B2II' (3.19)

where 5m& and Bz are as in (2.22), II' ' ' is the
contribution from the diagram of Fig. 5(a), and II'
here can be equated to that of (2.20} after a transfor-
mation similar to (2.24). Clearly Es II' "' is of the
form (3.19) as well. Finally we have

EsEs-II "'=(5m2) II' '+25m2821I'

+(B,)'II'" (3.20)

The integral (3.18) has UV divergences arising
from various subdiagrams which must be extracted
before it is evaluated. We achieve this by construct-
ing subtraction terms which are obtained by apply-
ing Es operations ' on the integrand of (3.18). In
the following we shall carry out this procedure ex-

plicitly for each diagram of Fig. 4.
Diagram 6A. In this case UV divergences arise

from two subdiagrams S'={2,7j and S"={4,8I.
The Es operation on the integrand of (3.18) extracts
the leading term in the neighborhood of the singular
point z27 ——0. The integrand of EsII' "' is of the
form (3.18) except that the various functions are re-

placed by their limits at z27 ——0. By construction we
get

II' ")—II«") 2/m II(4»1') 2B II~4»m2

+(5 )211(2 )+25 B 11(2 )+B 211(2)

=all(s") —2S B,SII(4')+(a B )'11(2)

a11(6")=(I—E,.)(1—E,-)ll(s") (3.22)

is free from UV divergences and can be evaluated
numerically.

Diagram 6B. The results (3.21) and (3.22} hold
for this diagram with a trivial adjustment.

Diagram 6C. The UV divergences arise from the
subdiagrams S'= {3,8 and S"={3,8,2,4,7). The
Eq operation on II' produces a result similar to

at on

E,11(")=5m, 11("2')+B,ll("), (3.23)

(3.21)

where i( 'B2 and b,II( ' are given by (2.23) and (2.26)
and

where II' ' is defined in (2.22) and II' ' is the con-
tribution from the diagram of Fig. 5(b).

Thus the properly renormahzed II,',
„

is given by

6A 6C

60 6E 6F

(b)

FIG. 3. Fourth-order electron vertex and self-energy
diagrams containing a second-order vacuum polarization
loop.

6G 6H

FIG. 4. Sixth-order vacuum polarization diagrams
containing only one closed electron loop.
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-Srn j - Sm Ai(1 —2Ai) 2G(1 —Ai+Ai )
B2e ——(dz)

U V U V

(a)
2

(b)
4

(c)
4GBi i

U3V
(3.28)

FIG. 5. Vacuum polarization diagrams containing
electron self-mass counterterms.

where II' ' ' is the contribution from the diagram
of Fig. 5(c). The Ks- operation yields

Kg-H' '=5m4bH' '+B bII' ', (3.24)

where 5rn4b and B4b are UV-divergent parts of the
electron self-mass 5m4b and the wave-function re-
normalization constant B4b for the diagram of Fig.
6(a) [see Ref. 4, formulas (4.47) and (4.54)]. Since
S'CS", the K~ operation on K~ II' ' reduces to the
calculation of Ks 5m4b and Ks B4b. We find'

Ks 5m4b 5m 25m—2.+Bz5m 2,
(3.25)

KgB4b ——B2B2 .

and

—3A )B))
B2 = —, f (dz) f dm, z,

U V

(3.29)

(3.30)

are the UV-divergent parts of 5m 2 and B2, the latter
being equal to 5m2 and B2 by Nakanishi's identity. '

In terms of these relations we can express the renor-
malized amplitude

II' '=II" ' —5m II'4 "—B II'" 'm2

with G=z»A&. 5m&. is the last term of (3.27)
whereas

(4—3Ai)Bii
5mz ———, f (dz) f dm, z&

U V

We also have

Ks 5m4b ——5m25mq. +Bz5m2,

Kg B4b ——5m 2B2»+B2B2,
(3.26)

—5m4bII —B4bII +5m 25m 2.II(2') (2) (2»)

+5m2B2 II' '+B25m2II' '+B II' '

(3.31)
where 5rnzi and B2. are the electron self-mass and
the wave-function renormalization constant for the
diagram of Fig. 6(b):

1—Ay+A)
5mzo ——f (dz) f dm, .'z,

U V

as

II' '=ALII' ' —6'B AII' ' —6'B II' '
2 4b

b,5m&bn' '—+(6'B2) II' ', (3.32)

2B()
U3V

(3.27)

where

and"

(3.33)

i r
l I 1 I ~ 1

I 3
(b) (c)

5'B4b ——B4b —B4b —5m 2h'B2» —B2b B2,
5'B2» ——B2» —B2», 6'B2 ——B2 —B2,

6'5m2 ——5m2 —5m2, 6'5m 2
——5m 2

—5m 2 .

(3.34)

rum 4b 5m4b 5P——l 4b 5m—2b '5m —
z +B2b.'5m 2,

/
I I 1

I

I

(

FIG. 6. Various fourth-order electron self-energy and
vertex diagrams.

Diagram 6D. This diagram contains three diver-
gent subdiagrams: S= I 2,3,4,7,8 j, S' = [2,3,7 j,S"=

I 3,4,8 j. We find

m4 II(2 )+B~II(2) (3.35)

where 5m4, and B4, are the UV-divergent parts of
the electron self-mass 5m4, and the wave-function
renormalization constant B4, for the diagram of
Fig. 6(c) [see Ref. 4, formulas (4.5) and (4.9)]. The
Kq and Kq operations give
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+2Lg(5m211' '+B2II' ') (3.37)

X,.II" )=X,-II" )=L,II"b), (3.36)

where Lz is defined in (2.15). Using these results we
can rewrite

II(6D) II(6D) 2L II(4b) gm II(2 ) B g(2)
2 m4a 4a

ail"")=(1—It, )(I—I(, —Z,-)ll("), (3.44)

with S={2,3,7j, S'= {1,2,3,6,7,8j, S"={2,3,4,
5,7,8j.

Diagram 66. We have

where 5'L4, is the UV-finite part of the vertex re-
normalization constant L4, for the diagram of Fig.
6(e) [see Ref. 4, formula (4.32)], and

Qff' ' —QQm

—5'B4,II' '+26'L22!'B2II' ', (3.38)

II("'=sII(")—2s'L, sII(4a) —2h'L4III( )

+3(h'L, )'II"' (3.45)

where

all" )=(1—IC, )(1—Z, —IC,-)ll" '

and

65m 4a
——5'5m4a ——5m4a —5m4a,

6'B4a ——B4,—B4a —2L26'B2 .

(3.39)

(3.40)

where 6'L4& is the UV-finite part of the vertex re-
normalization constant L4( for the diagram of Fig.
6(f) [see Ref. 4, formula (4.61)],and

alI(sG) =( I —I~; )(1—IC,,)( I —I(., —It,,)II("),

(3.46)

The remaining diagrams are much easier to renor-
malize. We list only the final results.

Diagram 6E. In this case we have

with S, = {1,6,7 j, S2 —{3,4,8 j, Ss = {1,2,5,6,7,8 j,
and S4 ——{2,3,4,5,7,8 j.

Diagram 6II. In this case we find

II" '=err(") —a'B2SII(4a) —a'L26II(" )
ren

—a'L„II(')+2S'L,S'B,n('), (3.41)

II(6H) gII(6H) 2g~L II(2) (3.47)

all(") =(1—It, )(1—IC,.—Z,„)11("), (3.42)

where b, 'L4, is the UV-finite part of the vertex re-
normalization constant L4, for the diagram of Fig.
6(d} [see Ref. 4, formula (4.56)], AII' ' and EII(
are given by (2.17) and (2.26), and

~II(s~)=(1 IC,. 1(,-)II—(6"),— (3.48)

where 6'L4„is the UV-finite part of the vertex re-
normalization constant L4„for the diagram of Fig.
6(g) [see Ref. 4, formula (4.29}],and

with S={3,8j, S'= {2,3,4,5,7,8j, S"={1,6,7j.
Diagram 6F. Here we get

II' '=AII' ' 5'L b,ii' ' ——2h'L II' '
ren 2 4c

+(2b, 'L, )'ll (2,) (3 43)

with S'= {1,2,5,6,7,8 j and S"= {2,3,4,5,7,8 j.
Finally, collecting the results for the diagrams 6A

to 6H of Fig. 4 and including appropriate multiplici-
ty factors, we can write the vacuum polarization
term of sixth order as

2(glI(~~) + /11(~~) + /11(6&) + /11(&+))+ /11(&B)+4/11(&E)+ /11(6G)+ glI(6H) 4~ II(4)

2[dd3~+AI. 4„+—2&L4+M4s+AL4('+2&L4, +—(Mq} ]II„„—2(b5m4 +55m4b)II„„

(3.49)

—4M2 ———3, (3.50}

—2[lLB4,+ + —,(~2) ]= —1.7447(36),

(3.51)

where M4„~L4~,AJ-4„~4b,h, L4I, AI-4, are the
IR-finite parts of b, 'B~, . . . , b 'L z defined by
(4.43), (4.29), (4.33), (4.67), (4.61), and (4.58) of Ref.
4. The numerical values of the coefficients of II,',„',
II,',„'(=II''), and II,',„'(=II'2') are as follows:

—2(b5m4, +65m4q) =—3.8132(22) . (3.52)

The complete vacuum polarization effect of sixth
order is the sum of II„„'' of (3.11) and II,',„'of
(3.49). This result has been applied to the calcula-
tion of the vacuum polarization effect on the
eighth-order electron anomalous magnetic mo-
ment. ' The contributions of II,',„' ' and II,',„'to the
hyperfine structures of muonium and positronium
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are not difficult to calculate either. However, they
are too small to be of immediate interest.
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APPENDIX

In this appendix we list all functions that are
needed to construct integrals (except for renormali-
zation terms} for the sixth-order vacuum polariza-
tion tensor corresponding to the 15 single-electron-
loop diagrams represented by Fig. 4. The functions
are referenced by diagram as in Fig. 4. The assign-
ment of Feynman parameters zi,zz, . . . , Zs to
respective lines is also found in Fig. 4. Note that for
all diagrams of Fig. 4

U UG USUG/S (A3)

The limit of A; is slightly more complicated, but is
readily found using (A3).

(3) Replace V(q)=V (q) by V ~ (q)+V (m.s.)
and Vp

—=V (q=0) by V ~ (q=0)+V (m.s.),
respectively. The function Vs(m. s.} is the V func-
tion for the vertex or self-energy subdiagram S in
which the momenta of electron (photon} lines exter-
nal to S are put on the mass shell (equal to zero).
Note that V is not necessarily given by (Al) which
is specific to the vacuum polarization diagram.
Note also that we maintain the restriction

z;=1

whether it is UV divergent or not by examining its
behavior in the limit

z1 +z2+ +z —+O

(power counting). Retain only the divergent terms.
(2} Simplify the divergent terms by removing all

nonleading terms of B,J, A;, and U in the same limit.
This leads to

B)~ =BJ~U 8; for i,jES

V = V(q) = Vp —q 6,
where

~0 123456

(Al)

(A2)

i EG

in this replacement.
As an example, for diagram A and S= t2,7), we

have

and 6 is given below for each diagram.
Functions needed for construction of UV-

divergence subtraction terms are not shown explicit-
ly. But they can be constructed readily by applying
the Kz operations ' on the functions given below.
For the readers' convenience we describe briefly the
Es operation. Let M be the parametric integral cor-
responding to the Feynman diagram G which has a
UV divergence arising from the subdiagram S. Sup-
pose S consists of the lines 1,2, . . . , m. Denote by
6/S the diagram which is obtained by shrinking all
lines of S to a point. Then the Ks operation
proceeds as follows.

(1) Determine for each term of the integrand of M

V (q) =z 13456+z6A 6
G/S G/S

V (m. s. )=z2 —z2A2 ——z2 /z27
S S 2

with

G/S
G/S 8 11=z, UG/s

—1

G/S G/S8 11 =Z48, U Z1356Z48 +Z4Z8

(A4)

(A5)

The function V (m.s.) is added to V ~ to avoid in-
troducing a spurious singularity in the integrand. It
also enables us to factorize the integral KsM thus
constructed.

We are now ready to list the functions.

Diagram A:

811 =Z27Z48 p 812 —Z7Z48 p 814 —Z8Z27 p 824 —Z7Z8

U =Z1356811+Z2812 +Z4814

Ai ——z6Bii/U, A2 ——z6Biz/U, A4 ——Z6Bi4/U, A6 ——Ai —1,
G =—Z6A6

Dp =2A6(Ag+A4 —6A i )

Bp ——AiA6[ —3AZA4+6Ai(AQ+A4) —4A i ],



862 T. KINOSHITA AND W. B.LINDQUIST 27

Cp =—A1 A2A4A6

8]][3A 2A 4 6(A 2 +A 4 )(A ] +3A 6 ) +4A ] (A ] +3A 6 )]+9824A ]A 6 i

8] ——2824A] (A]+4A6),

D2 4——8]—]824A](2A]+3A6) .

Diagram 8:

811=Z5gz27y 812—Z7Z58y 815—ZSZ27~ 825 =Z7Z8

U =z1346811+z2812+z5815,

A] ——(z46811+zsB]5}/U, A4 ——A] —1, A2 =(Z46812+zs825)IU,

As —(z]3815+z2825 }/U

6 =z]3A] yz2A2,

Dp —(4A ]
———

A 2 )(4A4 —A 5 ),
Bp = (4A ] —A 2 )A 4 A 5 + (4A 4

—A 5 )A ] A 2

Cp ———A1 A2A4 A5,

D] ——28]2A ] ( —2A ] —6A4+A s }+48]sA4(—3A 1+A 2
—A4) +825 (A 1 +A 4

8] 8]]A2A5——(3A] +4A]A4+3A4 ),
D2 —8]]825——(3A] +14A]A4+3A4 ) .

Diagram C'

812 =Z7Z38) 813—Z7Z8p 823 ZSZ1567

811=Z247Z38 +Z3ZS p 822 —Z1567Z38

U =Z156811+z24812+z3813 ~

A] ——z68]]/U, A2=z6812/U, A3 —Z68]3/U, A6 ——A] —1,
6 = —z6A6,

Dp =A6( —8A ] +4A2 —
A 3),

80 A6[ A]A2(A3 A2}+4A] A2 A3(A] +A2 }]~

Cp ———A1 A2 A3A6,2 2

D] ——B]2[8(A]+A6)A2 —4A] —12A]A6]+8]3[—8(A]+A6}A2+A] +A2 +3A]A6]

+823 ( —16A ]A 6 + 3A2A6 ) + 16A ]A 6822

8]——B]2A ]A2A3(2A]+5A6)+3823A] A2A6

D2 ——8]3[8]2A2(5A]+3A6)+822A](3A]+9A6}] .

Diagram D:

812 =Z348Z7 +Z324 p 813 Z7Z8 Z2Z4 p 814 Z237Z8 +Z2Z3

823 —Z156Z48 +Z8Z47y 824 —Z7ZS Z156Z35 ' 811 —Z34gz27 +Z3248

U =z156811+Z2812+z3813+z4814

A ] —Z68]] IU A2 —Z68]2/U A3 —Z68]3/U, A4 z68]4/U, A6 ——A ]
———1

6 =—z6A6,
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8 2 34+4A3 24+ 4 23~ 8 23 + 24+ 34

Ag ——A2A 3 +A2A4+A 3A4& Sg —A2 +A 3 +A4

Dp A6——(4A1 —Sg ),
Bp ——A6( —2A 1Ag A—

1 Sg +2A 2A3A4),

CP ——2A 1 A 2A 3A 4A 6,
D1 ——811'�(A1+3A6)+2811Ag—2A3812(A4 —A6)+2(813+812)A4A6+A6(4A1SJ3 —A21 ),
81 ———A1 A6Ag —2811A2A3A4(2A1+5A6),

D2 811A——g(A1+3A6}+2812A4(5811A3+3813A6) .

Diagram E:

812 —Z7Z38 p 813 —Z7Z8 p 823 —Z 167Z8

81 1
—Z2457Z38 +Z3Z8 p 822 —Z 167238

U =Z16B11+Z245812 +Z3

A1 ——(z5812+z68 w )IU, A 2 (z5822+——z68 12 )/U

A3 —(z5823+z6813)/U, A5 ——A2 —1, A6 ——A1 —1,
G =—ZSA5 —Z6A6 &

Dp =(A3 —4A2)(A1 —A5+A6) —2[A1(A5 —A6)+A5A6]

Bp ——2A2(A3 —A2)[A1(A5 —A6)+A5A6]+A2 A3(A1 —A5+A6),

Cp ——0

D1 811A—5—(4A2 —A3)+2822(A1+A6)(A2+M5)+812[ ~2(3A1+A6)+4A5(A2 A6)

+2A3(A1 —A5)+A3A6]

+813IA2[A1+A6 —2(A2+A5)]+A5A6I +823[3(A1A6+A2A5)+A2 —(A1+A6)(5A2+4A5)],

81 ——A2 [A1(812A3 —823A6) —A5(811A3+813A6)]+2812A2A3A5A6

D2 811823A2(A2+3A5) 812813A2 3813 22(A1 2+ASA6)+ 822823A1A6

Diagram F:

12 45 37 + 38 7~ 13 7 8 2 45~ 14 237 8 + 2 3

823 —Z 1456Z8 +Z 16Z45 +Z7Z8 p 824 —Z7Z8 Z3Z 16

34 16 27 + 28 7 ~

8 1 1 =Z458Z237 +Z3Z27 p 844 —Z 168Z237 +Z2Z37

U =Z16811 +Z2812 +Z3813 +Z45814

A1 (z5814+z6811)I——U, A2 (z5824+z6812)I——U, A3=(z5834+z6813)IU,

A4=(z58~+z6814)IU, A5 ——A4 —1, A6 ——A1 —1,
G = —zsA s —z6A 6,
D11

——(A1 —A4)(A5 —A6) —(A1+A4)(A2+A3)+A 1A4+A2A3+A5A6

811———(A1 —
A 4)(A 5

—A6)A2A 3
—(A 1+A4)(A 2+A 3 )A 5A 6,

Cp A 1A 2A 3A 4A 5A 6,
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DI 811[A2A3 A4(A2+A3+A5)]+844[A2A3 A 1(A2+A3+A6)l

+814(A 1A4+A5A6)+823[(A1 —A4)(A, —A6)+A 1A4+A5A6]

+812[A4(A3+A5+A6)+A5(2A1+A6)]+834[A1(A2+A5+A6)+A6(2A4+A5)]

+8 1 3[2A 1 (A 5
—A 2 ) +A 5 (A 2 +A 4 +A 6 ) +A 6 (A 4

—2A 2 )]

+824[2A4(A6 —A3)+A5(A1 —2A3)+A6(A1+A3+A5)],

81 A2A3(811A4A5+844A1A6) A4A5( 1+A6)(812A3+2813A2) A1A6(A4+A5)(2824A3+834A2) s

D2 (A1A4+A5A6)(812834+4813 24+814823)+ (AIA5+A4A6)(812834+ 813824)

A2(A1+A6)(2813844+814834) A3(A4+A5)(2811824+812814)+A 1A6(4824834 823844)

+A4A 5( 812 13 811823) +A 2A 3(811844+814

Diagram 6:
B12=Z7Z348& B13—Z7Z8& B23—Z8Z167

B11=Z348Z257 +Z34Z8 p B22 —Z348Z167& B33—Z167Z258 +Z16Z7 p

U Z16B11+Z25B12+Z34B13 ~

A 1 =(z4813+Z5812+Z6811)/Up A2 —(Z4823+Z5822+z6812)/U,

A3 —(z4833+z5823+z6813)/U, A4 ——A3 —1, A5 ——A2 —1,

6 = —z4A4 —z5A5 —z6A6,

Dp 2(A1+A6)(A3+A4)+(A2+A5)(A1+A3+A4+A6) A1A6 A2A5 A3A4 ~

BP = (A 2 +A 5 )[A 1A 6(A 3 +A 4 )+A 3A 4'(A 1 +A 6 ) 1 2A2A 5 (A 1 +A 6 )(A 3 +A 4 )

Co — A 1A 2A 3A 4A 524 6

Dl 811[(A2+A5)(A3+A4) A2A5 A3A4]+ 22[ ( 1+A6)(A3+A4) A1A6 A3A4]

+833[(A 1 +A6)(A2+A5 )—A 1A6 —
A2A5 ]

+812[A1A2 4A3A4+A5A—6+2(A2+A5 )(A3+A4) 4(A1+A6)(A—3+A4)]+813(A1A4+A3A6)

+823[A2A3 —4A1A6+A4A5+2(A2+A5)(A1+A6) —4(A1+A6)(A3+A4)],

81 812A3A4[A1(A2+2A5)+A6(2A 2+A 5)] 813A2A5(A1A3+A4A6)

+823A 1A 6 [A 2 (A 3 +2A4 ) +A 5 (2A 3 +A 4 )]

D2 ——(A 1A2+A5A6)(812833+2813823)+(A 1A3+A4A6)(813822 —4812823)

+(A2A3 +A4A 5 )(811823+2812813) —A3A4(811822+ 5812 )

A1A6(822833+5823 ) A2A5( 11833+813 ) 6812 23(A IA4+A3A6)

Diagram H:

B12—Z34Z57+Z7Z58p B13—Z7ZS Z2Z5 p B1 5 —Z34Z28 +Z8Z27

B23—Z 16Z58 +Z8Z57 p B25 —Z7ZS Z 16Z34 y B35—Z 16Z27 +Z28Z7

B11—B12+Z34z28+z2z58& B33—B23+Z16z27+z2z57

Z16B11+z2B12+Z34B13+ZSB15&

A 1 (Z4813+ 5815+z6811)/U~ A2 (Z4823+ 5 25+ 6812)/U ~
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A 3 —(z4B33 +z5B35 +zsB 13 )IU

A4 ——A3 —1, Ag ——A4 —Ay+A), A6 ——A) —1,
6 =z)A )+z2A2+z3A3

Dii ——2(1+As) —(A 1 +As)(1+A2+As) —(A 1 +4A 1A3+A3 ),
BP =A2A5[2(A1 —A1A3+A3 ) —A 1

—A3 —1]+(A2+As)(2 —A 1
—A3)A1A3+A2(A1 +A 3

—A 1
—A3),

Cp ——0,
Di ——Bit [As(1 —A2 —A3 —As)+As]+B33[A i(1—A1 —A2 —As)+As]+B13(2A1A3 —A 1

—A3)

+B,2[4A 1A3 —3(At+A, }+A,(A, —2A, )+A, +2]

+B23[4A1A3 —3(At+As }+As(A1 —
2A3 }+A12+2]

+Bis[4A1A3 —Ai+A2 —3A3+A2(A3 —2A1)+A3 +1]
+B35[4A1A3 3A1+A2 A3+A2(A1 2A3)+At +1]
+B25[4A1A3+2(A1+A3) 4(A1 +A3 )+1],

B1
——2A 2A 5 [B11A3 (A 3

—1)+B33A 1(A1 —1)+ B13 ( —2A 1A 3+A 1+A 3
—1)],

D2 ——(2A 1A 3
—A 1

—A 3+1)(B12B35+4B13B25 +B15B23)

+(2A 1 1 }[B13(B23A5+B3SA2 } B33(B12 5+B15A2 }]

+ (2A3 —1}[B13(B12A5+B15A2)—B11(B23A5+B35A2)]

—2A1(A1 —1}(B23B35+2B25B33}—2A3(A3 —1)(2B11B25+B12B15}.
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1 2 (2—Ai)
5m2 ——— (dz) z~ dm ~2 U V

(dz) =dz~dz~ 5(1—z» ),
and
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(2—Ai)
5m2 ——— (dz) zi dm ~

—zi2 az, U'V

(2—A])(1—A] )
(dz) zi dm )2 U'2 p2

(4—3A i )Bii
U V

5m2 is UV divergent which, according to our inter-

mediate renormalization scheme, is written also as 5m~.
In 5m ' defined above, on the other hand, the UV diver-
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